Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
Pediatr Res ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891365

ABSTRACT

BACKGROUND: Heart rate (HR) patterns can inform on central nervous system dysfunction. We previously used highly comparative time series analysis (HCTSA) to identify HR patterns predicting mortality among patients in the neonatal intensive care unit (NICU) and now use this methodology to discover patterns predicting cerebral palsy (CP) in preterm infants. METHOD: We studied NICU patients <37 weeks' gestation with archived every-2-s HR data throughout the NICU stay and with or without later diagnosis of CP (n = 57 CP and 1119 no CP). We performed HCTSA of >2000 HR metrics and identified 24 metrics analyzed on HR data from two 7-day periods: week 1 and 37 weeks' postmenstrual age (week 1, week 37). Multivariate modeling was used to optimize a parsimonious prediction model. RESULTS: Week 1 HR metrics with maximum AUC for CP prediction reflected low variability, including "RobustSD" (AUC 0.826; 0.772-0.870). At week 37, high values of a novel HR metric, "LongSD3," the cubed value of the difference in HR values 100 s apart, were added to week 1 HR metrics for CP prediction. A combined birthweight + early and late HR model had AUC 0.853 (0.805-0.892). CONCLUSIONS: Using HCTSA, we discovered novel HR metrics and created a parsimonious model for CP prediction in preterm NICU patients. IMPACT: We discovered new heart rate characteristics predicting CP in preterm infants. Using every-2-s HR from two 7-day periods and highly comparative time series analysis, we found a measure of low variability HR week 1 after birth and a pattern of recurrent acceleration in HR at term corrected age that predicted CP. Combined clinical and early and late HR features had AUC 0.853 for CP prediction.

2.
Am J Perinatol ; 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36174590

ABSTRACT

OBJECTIVE: Infants in the neonatal intensive care unit (NICU) are at high risk of adverse neuromotor outcomes. Atypical patterns of heart rate (HR) and pulse oximetry (SpO2) may serve as biomarkers for risk assessment for cerebral palsy (CP). The purpose of this study was to determine whether atypical HR and SpO2 patterns in NICU patients add to clinical variables predicting later diagnosis of CP. STUDY DESIGN: This was a retrospective study including patients admitted to a level IV NICU from 2009 to 2017 with archived cardiorespiratory data in the first 7 days from birth to follow-up at >2 years of age. The mean, standard deviation (SD), skewness, kurtosis and cross-correlation of HR and SpO2 were calculated. Three predictive models were developed using least absolute shrinkage and selection operator regression (clinical, cardiorespiratory and combined model), and their performance for predicting CP was evaluated. RESULTS: Seventy infants with CP and 1,733 controls met inclusion criteria for a 3.8% population prevalence. Area under the receiver operating characteristic curve for CP prediction was 0.7524 for the clinical model, 0.7419 for the vital sign model, and 0.7725 for the combined model. Variables included in the combined model were lower maternal age, outborn delivery, lower 5-minute Apgar's score, lower SD of HR, and more negative skewness of HR. CONCLUSION: In this study including NICU patients of all gestational ages, HR but not SpO2 patterns added to clinical variables to predict the eventual diagnosis of CP. Identification of risk of CP within the first few days of life could result in improved therapy resource allocation and risk stratification in clinical trials of new therapeutics. KEY POINTS: · SD and skewness of HR have some added predictive value of later diagnosis of CP.. · SpO2 measures do not add to CP prediction.. · Combining clinical variables with early HR measures may improve the prediction of later CP..

3.
IEEE J Biomed Health Inform ; 26(2): 572-580, 2022 02.
Article in English | MEDLINE | ID: mdl-34288883

ABSTRACT

This paper proposes a novel deep learning architecture involving combinations of Convolutional Neural Networks (CNN) layers and Recurrent neural networks (RNN) layers that can be used to perform segmentation and classification of 5 cardiac rhythms based on ECG recordings. The algorithm is developed in a sequence to sequence setting where the input is a sequence of five second ECG signal sliding windows and the output is a sequence of cardiac rhythm labels. The novel architecture processes as input both the spectrograms of the ECG signal as well as the heartbeats' signal waveform. Additionally, we are able to train the model in the presence of label noise. The model's performance and generalizability is verified on an external database different from the one we used to train. Experimental result shows this approach can achieve an average F1 scores of 0.89 (averaged across 5 classes). The proposed model also achieves comparable classification performance to existing state-of-the-art approach with considerably less number of training parameters.


Subject(s)
Arrhythmias, Cardiac , Electrocardiography , Algorithms , Arrhythmias, Cardiac/diagnostic imaging , Heart Rate , Humans , Neural Networks, Computer
4.
J Perinatol ; 39(1): 48-53, 2019 01.
Article in English | MEDLINE | ID: mdl-30267001

ABSTRACT

OBJECTIVES: The objective of this study was to define the association between the burden of severe hypoxemia (SpO2 ≤70%) in the first week of life and development of severe ICH (grade III/IV) in preterm infants. STUDY DESIGN: Infants born at <32 weeks or weighing <1500 g underwent prospective SpO2 recording from birth through 7 days. Severe hypoxemia burden was calculated as the percentage of the error-corrected recording where SpO2 ≤70%. Binary logistic regression was used to model the relationship between hypoxemia burden and severe ICH. RESULTS: A total of 163.3 million valid SpO2 data points were collected from 645 infants with mean EGA = 27.7 ± 2.6 weeks, BW = 1005 ± 291 g; 38/645 (6%) developed severe ICH. There was a greater mean hypoxemia burden for infants with severe ICH (3%) compared to those without (0.1%) and remained significant when controlling for multiple confounding factors. CONCLUSION: The severe hypoxemia burden in the first week of life is strongly associated with severe ICH.


Subject(s)
Hypoxia , Infant, Premature, Diseases , Intracranial Hemorrhages , Correlation of Data , Female , Gestational Age , Humans , Hypoxia/blood , Hypoxia/diagnosis , Hypoxia/epidemiology , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/blood , Infant, Premature, Diseases/diagnosis , Infant, Premature, Diseases/epidemiology , Infant, Very Low Birth Weight , Intracranial Hemorrhages/blood , Intracranial Hemorrhages/diagnosis , Intracranial Hemorrhages/epidemiology , Intracranial Hemorrhages/etiology , Male , Oximetry/methods , Oxygen/analysis , Severity of Illness Index , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL