Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 185(16): 3041-3055.e25, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35917817

ABSTRACT

Rare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.


Subject(s)
DNA Copy Number Variations , Genome, Human , DNA Copy Number Variations/genetics , Gene Dosage , Haploinsufficiency/genetics , Humans
2.
Am J Hum Genet ; 110(7): 1110-1122, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37369202

ABSTRACT

Previous studies suggested that severe epilepsies, e.g., developmental and epileptic encephalopathies (DEEs), are mainly caused by ultra-rare de novo genetic variants. For milder disease, rare genetic variants could contribute to the phenotype. To determine the importance of rare variants for different epilepsy types, we analyzed a whole-exome sequencing cohort of 9,170 epilepsy-affected individuals and 8,436 control individuals. Here, we separately analyzed three different groups of epilepsies: severe DEEs, genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We required qualifying rare variants (QRVs) to occur in control individuals with an allele count ≥ 1 and a minor allele frequency ≤ 1:1,000, to be predicted as deleterious (CADD ≥ 20), and to have an odds ratio in individuals with epilepsy ≥ 2. We identified genes enriched with QRVs primarily in NAFE (n = 72), followed by GGE (n = 32) and DEE (n = 21). This suggests that rare variants may play a more important role for causality of NAFE than for DEE. Moreover, we found that genes harboring QRVs, e.g., HSGP2, FLNA, or TNC, encode proteins that are involved in structuring the brain extracellular matrix. The present study confirms an involvement of rare variants for NAFE that occur also in the general population, while in DEE and GGE, the contribution of such variants appears more limited.


Subject(s)
Epilepsy, Generalized , Humans , Epilepsy, Generalized/genetics , Phenotype , Alleles , Brain , Gene Frequency/genetics
3.
Hum Mol Genet ; 32(19): 2857-2871, 2023 09 16.
Article in English | MEDLINE | ID: mdl-37369021

ABSTRACT

Advances in sequencing technology have generated a large amount of genetic data from patients with neurological conditions. These data have provided diagnosis of many rare diseases, including a number of pathogenic de novo missense variants in GRIN genes encoding N-methyl-d-aspartate receptors (NMDARs). To understand the ramifications for neurons and brain circuits affected by rare patient variants, functional analysis of the variant receptor is necessary in model systems. For NMDARs, this functional analysis needs to assess multiple properties in order to understand how variants could impact receptor function in neurons. One can then use these data to determine whether the overall actions will increase or decrease NMDAR-mediated charge transfer. Here, we describe an analytical and comprehensive framework by which to categorize GRIN variants as either gain-of-function (GoF) or loss-of-function (LoF) and apply this approach to GRIN2B variants identified in patients and the general population. This framework draws on results from six different assays that assess the impact of the variant on NMDAR sensitivity to agonists and endogenous modulators, trafficking to the plasma membrane, response time course and channel open probability. We propose to integrate data from multiple in vitro assays to arrive at a variant classification, and suggest threshold levels that guide confidence. The data supporting GoF and LoF determination are essential to assessing pathogenicity and patient stratification for clinical trials as personalized pharmacological and genetic agents that can enhance or reduce receptor function are advanced. This approach to functional variant classification can generalize to other disorders associated with missense variants.


Subject(s)
Nervous System Diseases , Receptors, N-Methyl-D-Aspartate , Humans , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Mutation, Missense/genetics , Nervous System Diseases/metabolism , Neurons/metabolism , Models, Biological
4.
Bioinformatics ; 39(5)2023 05 04.
Article in English | MEDLINE | ID: mdl-37104749

ABSTRACT

MOTIVATION: Pathogenic copy-number variants (CNVs) can cause a heterogeneous spectrum of rare and severe disorders. However, most CNVs are benign and are part of natural variation in human genomes. CNV pathogenicity classification, genotype-phenotype analyses, and therapeutic target identification are challenging and time-consuming tasks that require the integration and analysis of information from multiple scattered sources by experts. RESULTS: Here, we introduce the CNV-ClinViewer, an open-source web application for clinical evaluation and visual exploration of CNVs. The application enables real-time interactive exploration of large CNV datasets in a user-friendly designed interface and facilitates semi-automated clinical CNV interpretation following the ACMG guidelines by integrating the ClassifCNV tool. In combination with clinical judgment, the application enables clinicians and researchers to formulate novel hypotheses and guide their decision-making process. Subsequently, the CNV-ClinViewer enhances for clinical investigators' patient care and for basic scientists' translational genomic research. AVAILABILITY AND IMPLEMENTATION: The web application is freely available at https://cnv-ClinViewer.broadinstitute.org and the open-source code can be found at https://github.com/LalResearchGroup/CNV-clinviewer.


Subject(s)
DNA Copy Number Variations , Software , Humans , Genomics , Phenotype , Genome, Human
5.
Genet Med ; : 101211, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39011766

ABSTRACT

PURPOSE: An early genetic diagnosis can guide the time-sensitive treatment of individuals with genetic epilepsies. However, most genetic diagnoses occur long after disease onset. We aimed to identify early clinical features suggestive of genetic diagnoses in individuals with epilepsy through large-scale analysis of full-text electronic medical records (EMR). METHODS: We extracted 89 million time-stamped standardized clinical annotations using Natural Language Processing from 4,572,783 clinical notes from 32,112 individuals with childhood epilepsy, including 1,925 individuals with known or presumed genetic epilepsies. We applied these features to train random forest models to predict SCN1A-related disorders and any genetic diagnosis. RESULTS: We identified 47,774 age-dependent associations of clinical features with genetic etiologies a median of 3.6 years prior to molecular diagnosis. Across all 710 genetic etiologies identified in our cohort, neurodevelopmental differences between 6-9 months increased the likelihood of a later molecular diagnosis fivefold (P<0.0001, 95% CI=3.55-7.42). A later diagnosis of SCN1A-related disorders (AUC=0.91) or an overall positive genetic diagnosis (AUC=0.82) could be reliably predicted using random forest models. CONCLUSION: Clinical features predictive of genetic epilepsies precede molecular diagnoses by up to several years in conditions with known precision treatments. An earlier diagnosis facilitated by automated EMR analysis has the potential for earlier targeted therapeutic strategies in the genetic epilepsies.

6.
Epilepsia ; 65(4): 1046-1059, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38410936

ABSTRACT

OBJECTIVE: SCN1A variants are associated with epilepsy syndromes ranging from mild genetic epilepsy with febrile seizures plus (GEFS+) to severe Dravet syndrome (DS). Many variants are de novo, making early phenotype prediction difficult, and genotype-phenotype associations remain poorly understood. METHODS: We assessed data from a retrospective cohort of 1018 individuals with SCN1A-related epilepsies. We explored relationships between variant characteristics (position, in silico prediction scores: Combined Annotation Dependent Depletion (CADD), Rare Exome Variant Ensemble Learner (REVEL), SCN1A genetic score), seizure characteristics, and epilepsy phenotype. RESULTS: DS had earlier seizure onset than other GEFS+ phenotypes (5.3 vs. 12.0 months, p < .001). In silico variant scores were higher in DS versus GEFS+ (p < .001). Patients with missense variants in functionally important regions (conserved N-terminus, S4-S6) exhibited earlier seizure onset (6.0 vs. 7.0 months, p = .003) and were more likely to have DS (280/340); those with missense variants in nonconserved regions had later onset (10.0 vs. 7.0 months, p = .036) and were more likely to have GEFS+ (15/29, χ2 = 19.16, p < .001). A minority of protein-truncating variants were associated with GEFS+ (10/393) and more likely to be located in the proximal first and last exon coding regions than elsewhere in the gene (9.7% vs. 1.0%, p < .001). Carriers of the same missense variant exhibited less variability in age at seizure onset compared with carriers of different missense variants for both DS (1.9 vs. 2.9 months, p = .001) and GEFS+ (8.0 vs. 11.0 months, p = .043). Status epilepticus as presenting seizure type is a highly specific (95.2%) but nonsensitive (32.7%) feature of DS. SIGNIFICANCE: Understanding genotype-phenotype associations in SCN1A-related epilepsies is critical for early diagnosis and management. We demonstrate an earlier disease onset in patients with missense variants in important functional regions, the occurrence of GEFS+ truncating variants, and the value of in silico prediction scores. Status epilepticus as initial seizure type is a highly specific, but not sensitive, early feature of DS.


Subject(s)
Epilepsies, Myoclonic , Epilepsy , Seizures, Febrile , Status Epilepticus , Humans , Retrospective Studies , NAV1.1 Voltage-Gated Sodium Channel/genetics , Epilepsy/genetics , Epilepsy/diagnosis , Epilepsies, Myoclonic/genetics , Seizures, Febrile/genetics , Phenotype , Genetic Association Studies , Mutation/genetics
7.
Epilepsia ; 65(2): 322-337, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38049202

ABSTRACT

OBJECTIVE: Dravet syndrome (DS) is a developmental and epileptic encephalopathy characterized by high seizure burden, treatment-resistant epilepsy, and developmental stagnation. Family members rate communication deficits among the most impactful disease manifestations. We evaluated seizure burden and language/communication development in children with DS. METHODS: ENVISION was a prospective, observational study evaluating children with DS associated with SCN1A pathogenic variants (SCN1A+ DS) enrolled at age ≤5 years. Seizure burden and antiseizure medications were assessed every 3 months and communication and language every 6 months with the Bayley Scales of Infant and Toddler Development 3rd edition and the parent-reported Vineland Adaptive Behavior Scales 3rd edition. We report data from the first year of observation, including analyses stratified by age at Baseline: 0:6-2:0 years:months (Y:M; youngest), 2:1-3:6 Y:M (middle), and 3:7-5:0 Y:M (oldest). RESULTS: Between December 2020 and March 2023, 58 children with DS enrolled at 16 sites internationally. Median follow-up was 17.5 months (range = .0-24.0), with 54 of 58 (93.1%) followed for at least 6 months and 51 of 58 (87.9%) for 12 months. Monthly countable seizure frequency (MCSF) increased with age (median [minimum-maximum] = 1.0 in the youngest [1.0-70.0] and middle [1.0-242.0] age groups and 4.5 [.0-2647.0] in the oldest age group), and remained high, despite use of currently approved antiseizure medications. Language/communication delays were observed early, and developmental stagnation occurred after age 2 years with both instruments. In predictive modeling, chronologic age was the only significant covariate of seizure frequency (effect size = .52, p = .024). MCSF, number of antiseizure medications, age at first seizure, and convulsive status epilepticus were not predictors of language/communication raw scores. SIGNIFICANCE: In infants and young children with SCN1A+ DS, language/communication delay and stagnation were independent of seizure burden. Our findings emphasize that the optimal therapeutic window to prevent language/communication delay is before 3 years of age.


Subject(s)
Epilepsies, Myoclonic , Infant , Humans , Child, Preschool , Infant, Newborn , Prospective Studies , Mutation , Epilepsies, Myoclonic/drug therapy , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/complications , Seizures/drug therapy , Seizures/genetics , Seizures/complications , NAV1.1 Voltage-Gated Sodium Channel/genetics , Communication
8.
Brain ; 146(2): 519-533, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36256779

ABSTRACT

Neurodevelopmental disorders (NDDs), including severe paediatric epilepsy, autism and intellectual disabilities are heterogeneous conditions in which clinical genetic testing can often identify a pathogenic variant. For many of them, genetic therapies will be tested in this or the coming years in clinical trials. In contrast to first-generation symptomatic treatments, the new disease-modifying precision medicines require a genetic test-informed diagnosis before a patient can be enrolled in a clinical trial. However, even in 2022, most identified genetic variants in NDD genes are 'variants of uncertain significance'. To safely enrol patients in precision medicine clinical trials, it is important to increase our knowledge about which regions in NDD-associated proteins can 'tolerate' missense variants and which ones are 'essential' and will cause a NDD when mutated. In addition, knowledge about functionally indispensable regions in the 3D structure context of proteins can also provide insights into the molecular mechanisms of disease variants. We developed a novel consensus approach that overlays evolutionary, and population based genomic scores to identify 3D essential sites (Essential3D) on protein structures. After extensive benchmarking of AlphaFold predicted and experimentally solved protein structures, we generated the currently largest expert curated protein structure set for 242 NDDs and identified 14 377 Essential3D sites across 189 gene disorders associated proteins. We demonstrate that the consensus annotation of Essential3D sites improves prioritization of disease mutations over single annotations. The identified Essential3D sites were enriched for functional features such as intermembrane regions or active sites and discovered key inter-molecule interactions in protein complexes that were otherwise not annotated. Using the currently largest autism, developmental disorders, and epilepsies exome sequencing studies including >360 000 NDD patients and population controls, we found that missense variants at Essential3D sites are 8-fold enriched in patients. In summary, we developed a comprehensive protein structure set for 242 NDDs and identified 14 377 Essential3D sites in these. All data are available at https://es-ndd.broadinstitute.org for interactive visual inspection to enhance variant interpretation and development of mechanistic hypotheses for 242 NDDs genes. The provided resources will enhance clinical variant interpretation and in silico drug target development for NDD-associated genes and encoded proteins.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Humans , Child , Neurodevelopmental Disorders/genetics , Genetic Testing , Mutation/genetics , Intellectual Disability/genetics , Mutation, Missense
9.
Brain ; 146(3): 923-934, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36036558

ABSTRACT

Clinically identified genetic variants in ion channels can be benign or cause disease by increasing or decreasing the protein function. As a consequence, therapeutic decision-making is challenging without molecular testing of each variant. Our biophysical knowledge of ion-channel structures and function is just emerging, and it is currently not well understood which amino acid residues cause disease when mutated. We sought to systematically identify biological properties associated with variant pathogenicity across all major voltage and ligand-gated ion-channel families. We collected and curated 3049 pathogenic variants from hundreds of neurodevelopmental and other disorders and 12 546 population variants for 30 ion channel or channel subunits for which a high-quality protein structure was available. Using a wide range of bioinformatics approaches, we computed 163 structural features and tested them for pathogenic variant enrichment. We developed a novel 3D spatial distance scoring approach that enables comparisons of pathogenic and population variant distribution across protein structures. We discovered and independently replicated that several pore residue properties and proximity to the pore axis were most significantly enriched for pathogenic variants compared to population variants. Using our 3D scoring approach, we showed that the strongest pathogenic variant enrichment was observed for pore-lining residues and alpha-helix residues within 5Å distance from the pore axis centre and not involved in gating. Within the subset of residues located at the pore, the hydrophobicity of the pore was the feature most strongly associated with variant pathogenicity. We also found an association between the identified properties and both clinical phenotypes and functional in vitro assays for voltage-gated sodium channels (SCN1A, SCN2A, SCN8A) and N-methyl-D-aspartate receptor (GRIN1, GRIN2A, GRIN2B) encoding genes. In an independent expert-curated dataset of 1422 neurodevelopmental disorder pathogenic patient variants and 679 electrophysiological experiments, we show that pore axis distance is associated with seizure age of onset and cognitive performance as well as differential gain versus loss-of-channel function. In summary, we identified biological properties associated with ion-channel malfunction and show that these are correlated with in vitro functional readouts and clinical phenotypes in patients with neurodevelopmental disorders. Our results suggest that clinical decision support algorithms that predict variant pathogenicity and function are feasible in the future.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Seizures , Humans , Virulence , Phenotype , Receptors, N-Methyl-D-Aspartate/genetics , Biophysics
10.
Brain ; 146(4): 1342-1356, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36226386

ABSTRACT

Understanding the exact molecular mechanisms involved in the aetiology of epileptogenic pathologies with or without tumour activity is essential for improving treatment of drug-resistant focal epilepsy. Here, we characterize the landscape of somatic genetic variants in resected brain specimens from 474 individuals with drug-resistant focal epilepsy using deep whole-exome sequencing (>350×) and whole-genome genotyping. Across the exome, we observe a greater number of somatic single-nucleotide variants in low-grade epilepsy-associated tumours (7.92 ± 5.65 single-nucleotide variants) than in brain tissue from malformations of cortical development (6.11 ± 4 single-nucleotide variants) or hippocampal sclerosis (5.1 ± 3.04 single-nucleotide variants). Tumour tissues also had the largest number of likely pathogenic variant carrying cells. low-grade epilepsy-associated tumours had the highest proportion of samples with one or more somatic copy-number variants (24.7%), followed by malformations of cortical development (5.4%) and hippocampal sclerosis (4.1%). Recurring somatic whole chromosome duplications affecting Chromosome 7 (16.8%), chromosome 5 (10.9%), and chromosome 20 (9.9%) were observed among low-grade epilepsy-associated tumours. For germline variant-associated malformations of cortical development genes such as TSC2, DEPDC5 and PTEN, germline single-nucleotide variants were frequently identified within large loss of heterozygosity regions, supporting the recently proposed 'second hit' disease mechanism in these genes. We detect somatic variants in 12 established lesional epilepsy genes and demonstrate exome-wide statistical support for three of these in the aetiology of low-grade epilepsy-associated tumours (e.g. BRAF) and malformations of cortical development (e.g. SLC35A2 and MTOR). We also identify novel significant associations for PTPN11 with low-grade epilepsy-associated tumours and NRAS Q61 mutated protein with a complex malformation of cortical development characterized by polymicrogyria and nodular heterotopia. The variants identified in NRAS are known from cancer studies to lead to hyperactivation of NRAS, which can be targeted pharmacologically. We identify large recurrent 1q21-q44 duplication including AKT3 in association with focal cortical dysplasia type 2a with hyaline astrocytic inclusions, another rare and possibly under-recognized brain lesion. The clinical-genetic analyses showed that the numbers of somatic single-nucleotide variant across the exome and the fraction of affected cells were positively correlated with the age at seizure onset and surgery in individuals with low-grade epilepsy-associated tumours. In summary, our comprehensive genetic screen sheds light on the genome-scale landscape of genetic variants in epileptic brain lesions, informs the design of gene panels for clinical diagnostic screening and guides future directions for clinical implementation of epilepsy surgery genetics.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epilepsy , Malformations of Cortical Development , Humans , Epilepsy/pathology , Brain/pathology , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/metabolism , Genomics , Malformations of Cortical Development/complications , Malformations of Cortical Development/genetics , Malformations of Cortical Development/metabolism , Epilepsies, Partial/metabolism , Nucleotides/metabolism
11.
Brain ; 146(12): 5198-5208, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37647852

ABSTRACT

Genetic variants in the SLC6A1 gene can cause a broad phenotypic disease spectrum by altering the protein function. Thus, systematically curated clinically relevant genotype-phenotype associations are needed to understand the disease mechanism and improve therapeutic decision-making. We aggregated genetic and clinical data from 172 individuals with likely pathogenic/pathogenic (lp/p) SLC6A1 variants and functional data for 184 variants (14.1% lp/p). Clinical and functional data were available for a subset of 126 individuals. We explored the potential associations of variant positions on the GAT1 3D structure with variant pathogenicity, altered molecular function and phenotype severity using bioinformatic approaches. The GAT1 transmembrane domains 1, 6 and extracellular loop 4 (EL4) were enriched for patient over population variants. Across functionally tested missense variants (n = 156), the spatial proximity from the ligand was associated with loss-of-function in the GAT1 transporter activity. For variants with complete loss of in vitro GABA uptake, we found a 4.6-fold enrichment in patients having severe disease versus non-severe disease (P = 2.9 × 10-3, 95% confidence interval: 1.5-15.3). In summary, we delineated associations between the 3D structure and variant pathogenicity, variant function and phenotype in SLC6A1-related disorders. This knowledge supports biology-informed variant interpretation and research on GAT1 function. All our data can be interactively explored in the SLC6A1 portal (https://slc6a1-portal.broadinstitute.org/).


Subject(s)
GABA Plasma Membrane Transport Proteins , Genetic Association Studies , Mutation, Missense , Humans , GABA Plasma Membrane Transport Proteins/genetics , GABA Plasma Membrane Transport Proteins/metabolism , Phenotype
12.
Epilepsy Behav ; 153: 109692, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394790

ABSTRACT

OBJECTIVE: Demographic and disease factors are associated with cognitive deficits and postoperative cognitive declines in adults with pharmacoresistant temporal lobe epilepsy (TLE), but the role of genetic factors in cognition in TLE is not well understood. Polygenic scores (PGS) for neurological and neuropsychiatric disorders and IQ have been associated with cognition in patient and healthy populations. In this exploratory study, we examined the relationship between PGS for Alzheimer's disease (AD), depression, and IQ and cognitive outcomes in adults with TLE. METHODS: 202 adults with pharmacoresistant TLE had genotyping and completed neuropsychological evaluations as part of a presurgical work-up. A subset (n = 116) underwent temporal lobe resection and returned for postoperative cognitive testing. Logistic regression was used to determine if PGS for AD, depression, and IQ predicted baseline domain-specific cognitive function and cognitive phenotypes as well as postoperative language and memory decline. RESULTS: No significant findings survived correction for multiple comparisons. Prior to correction, higher PGS for AD and depression (i.e., increased genetic risk for the disorder), but lower PGS for IQ (i.e., decreased genetic likelihood of high IQ) appeared possibly associated with baseline cognitive impairment in TLE. In comparison, higher PGS for AD and IQ appeared as possible risk factors for cognitive decline following temporal lobectomy, while the possible relationship between PGS for depression and post-operative cognitive outcome was mixed. SIGNIFICANCE: We did not observe any relationships of large effect between PGS and cognitive function or postsurgical outcome; however, results highlight several promising trends in the data that warrant future investigation in larger samples better powered to detect small genetic effects.


Subject(s)
Alzheimer Disease , Epilepsy, Temporal Lobe , Adult , Humans , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/surgery , Cognition , Temporal Lobe/surgery , Neuropsychological Tests , Language
13.
Nucleic Acids Res ; 50(W1): W222-W227, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35524565

ABSTRACT

Estimating the functional effect of single amino acid variants in proteins is fundamental for predicting the change in the thermodynamic stability, measured as the difference in the Gibbs free energy of unfolding, between the wild-type and the variant protein (ΔΔG). Here, we present the web-server of the DDGun method, which was previously developed for the ΔΔG prediction upon amino acid variants. DDGun is an untrained method based on basic features derived from evolutionary information. It is antisymmetric, as it predicts opposite ΔΔG values for direct (A → B) and reverse (B → A) single and multiple site variants. DDGun is available in two versions, one based on only sequence information and the other one based on sequence and structure information. Despite being untrained, DDGun reaches prediction performances comparable to those of trained methods. Here we make DDGun available as a web server. For the web server version, we updated the protein sequence database used for the computation of the evolutionary features, and we compiled two new data sets of protein variants to do a blind test of its performances. On these blind data sets of single and multiple site variants, DDGun confirms its prediction performance, reaching an average correlation coefficient between experimental and predicted ΔΔG of 0.45 and 0.49 for the sequence-based and structure-based versions, respectively. Besides being used for the prediction of ΔΔG, we suggest that DDGun should be adopted as a benchmark method to assess the predictive capabilities of newly developed methods. Releasing DDGun as a web-server, stand-alone program and docker image will facilitate the necessary process of method comparison to improve ΔΔG prediction.


Subject(s)
Amino Acids , Protein Stability , Proteins , Amino Acids/genetics , Computers , Databases, Protein , Proteins/genetics , Proteins/chemistry
14.
Neurobiol Dis ; 184: 106208, 2023 08.
Article in English | MEDLINE | ID: mdl-37343892

ABSTRACT

Lesional epilepsy is a common and severe disease commonly associated with malformations of cortical development, including focal cortical dysplasia and hemimegalencephaly. Recent advances in sequencing and variant calling technologies have identified several genetic causes, including both short/single nucleotide and structural somatic variation. In this review, we aim to provide a comprehensive overview of the methodological advancements in this field while highlighting the unresolved technological and computational challenges that persist, including ultra-low variant allele fractions in bulk tissue, low availability of paired control samples, spatial variability of mutational burden within the lesion, and the issue of false-positive calls and validation procedures. Information from genetic testing in focal epilepsy may be integrated into clinical care to inform histopathological diagnosis, postoperative prognosis, and candidate precision therapies.


Subject(s)
Epilepsy , Hemimegalencephaly , Malformations of Cortical Development , Humans , Brain/pathology , Mosaicism , Mutation , Epilepsy/genetics , Epilepsy/pathology , Hemimegalencephaly/genetics , Hemimegalencephaly/pathology , Malformations of Cortical Development/genetics
15.
Genome Res ; 30(1): 62-71, 2020 01.
Article in English | MEDLINE | ID: mdl-31871067

ABSTRACT

Missense variant interpretation is challenging. Essential regions for protein function are conserved among gene-family members, and genetic variants within these regions are potentially more likely to confer risk to disease. Here, we generated 2871 gene-family protein sequence alignments involving 9990 genes and performed missense variant burden analyses to identify novel essential protein regions. We mapped 2,219,811 variants from the general population into these alignments and compared their distribution with 76,153 missense variants from patients. With this gene-family approach, we identified 465 regions enriched for patient variants spanning 41,463 amino acids in 1252 genes. As a comparison, by testing the same genes individually, we identified fewer patient variant enriched regions, involving only 2639 amino acids and 215 genes. Next, we selected de novo variants from 6753 patients with neurodevelopmental disorders and 1911 unaffected siblings and observed an 8.33-fold enrichment of patient variants in our identified regions (95% C.I. = 3.90-Inf, P-value = 2.72 × 10-11). By using the complete ClinVar variant set, we found that missense variants inside the identified regions are 106-fold more likely to be classified as pathogenic in comparison to benign classification (OR = 106.15, 95% C.I = 70.66-Inf, P-value < 2.2 × 10-16). All pathogenic variant enriched regions (PERs) identified are available online through "PER viewer," a user-friendly online platform for interactive data mining, visualization, and download. In summary, our gene-family burden analysis approach identified novel PERs in protein sequences. This annotation can empower variant interpretation.


Subject(s)
Chromosome Mapping , Genetic Predisposition to Disease , Genetic Variation , Multigene Family , Alleles , Amino Acid Sequence , Amino Acid Substitution , Computational Biology/methods , Female , Genome-Wide Association Study , Humans , Male , Mutation, Missense , Software , User-Computer Interface
16.
Nat Immunol ; 12(5): 441-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21423173

ABSTRACT

Subcompartments of the plasma membrane are believed to be critical for lymphocyte responses, but few genetic tools are available to test their function. Here we describe a previously unknown X-linked B cell-deficiency syndrome in mice caused by mutations in Atp11c, which encodes a member of the P4 ATPase family thought to serve as 'flippases' that concentrate aminophospholipids in the cytoplasmic leaflet of cell membranes. Defective ATP11C resulted in a lower rate of phosphatidylserine translocation in pro-B cells and much lower pre-B cell and B cell numbers despite expression of pre-rearranged immunoglobulin transgenes or enforced expression of the prosurvival protein Bcl-2 to prevent apoptosis and abolished pre-B cell population expansion in response to a transgene encoding interleukin 7. The only other abnormalities we noted were anemia, hyperbilirubinemia and hepatocellular carcinoma. Our results identify an intimate connection between phospholipid transport and B lymphocyte function.


Subject(s)
Adenosine Triphosphatases/immunology , B-Lymphocytes/immunology , Cell Differentiation/immunology , Endocytosis/immunology , Phosphoserine/immunology , Adenosine Triphosphatases/genetics , Animals , B-Lymphocytes/enzymology , Base Sequence , Female , Flow Cytometry , Genes, bcl-2/immunology , Interleukin-7/genetics , Interleukin-7/immunology , Liver/cytology , Liver/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Mutagenesis/immunology , RNA, Messenger/chemistry , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
17.
Acta Neuropathol ; 145(6): 815-827, 2023 06.
Article in English | MEDLINE | ID: mdl-36973520

ABSTRACT

Exome-wide sequencing studies recently described PTPN11 as a novel brain somatic epilepsy gene. In contrast, germline mutations of PTPN11 are known to cause Noonan syndrome, a multisystem disorder characterized by abnormal facial features, developmental delay, and sporadically, also brain tumors. Herein, we performed a deep phenotype-genotype analysis of a comprehensive series of ganglioglioma (GG) with brain somatic alterations of the PTPN11/KRAS/NF1 genes compared to GG with common MAP-Kinase signaling pathway alterations, i.e., BRAFV600E. Seventy-two GG were submitted to whole exome sequencing and genotyping and 84 low grade epilepsy associated tumors (LEAT) to DNA-methylation analysis. In 28 tumours, both analyses were available from the same sample. Clinical data were retrieved from hospital files including disease onset, age at surgery, brain localization, and seizure outcome. A comprehensive histopathology staining panel was available in all cases. We identified eight GG with PTPN11 alterations, copy number variant (CNV) gains of chromosome 12, and the commonality of additional CNV gains in NF1, KRAS, FGFR4 and RHEB, as well as BRAFV600E alterations. Histopathology revealed an atypical glio-neuronal phenotype with subarachnoidal tumor spread and large, pleomorphic, and multinuclear cellular features. Only three out of eight patients with GG and PTPN11/KRAS/NF1 alterations were free of disabling-seizures 2 years after surgery (38% had Engel I). This was remarkably different from our series of GG with only BRAFV600E mutations (85% had Engel I). Unsupervised cluster analysis of DNA methylation arrays separated these tumours from well-established LEAT categories. Our data point to a subgroup of GG with cellular atypia in glial and neuronal cell components, adverse postsurgical outcome, and genetically characterized by complex alterations in PTPN11 and other RAS-/MAP-Kinase and/or mTOR signaling pathways. These findings need prospective validation in clinical practice as they argue for an adaptation of the WHO grading system in developmental, glio-neuronal tumors associated with early onset focal epilepsy.


Subject(s)
Epilepsy , Ganglioglioma , Humans , Epilepsy/pathology , Ganglioglioma/genetics , Ganglioglioma/pathology , Mutation/genetics , Phenotype , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Genes, ras , MAP Kinase Signaling System
18.
Epilepsia ; 64(11): 2909-2913, 2023 11.
Article in English | MEDLINE | ID: mdl-37562820

ABSTRACT

The recent explosion of epilepsy genetic testing has created challenges for interpretation of gene variants. Assessments of the functional consequences of genetic variants either by predictive or experimental strategies can contribute to estimating pathogenicity, but there is no consensus on which approach is best. The Special Interest Group on Epilepsy Genetics hosted a session during the Annual American Epilepsy Society Meeting in December 2022 to discuss this topic. The session featured a debate of the relative advantages and limitations of predicting (prophecy) versus experimentally determining (empiricism) variant function using ion channel gene variants as examples. This commentary summarizes these discussions.


Subject(s)
Epilepsy , Genetic Variation , Humans , Genetic Variation/genetics , Empiricism , Genetic Testing , Epilepsy/diagnosis , Epilepsy/genetics
19.
Brain ; 145(12): 4275-4286, 2022 12 19.
Article in English | MEDLINE | ID: mdl-35037686

ABSTRACT

Pathogenic variants in the voltage-gated sodium channel gene family lead to early onset epilepsies, neurodevelopmental disorders, skeletal muscle channelopathies, peripheral neuropathies and cardiac arrhythmias. Disease-associated variants have diverse functional effects ranging from complete loss-of-function to marked gain-of-function. Therapeutic strategy is likely to depend on functional effect. Experimental studies offer important insights into channel function but are resource intensive and only performed in a minority of cases. Given the evolutionarily conserved nature of the sodium channel genes, we investigated whether similarities in biophysical properties between different voltage-gated sodium channels can predict function and inform precision treatment across sodium channelopathies. We performed a systematic literature search identifying functionally assessed variants in any of the nine voltage-gated sodium channel genes until 28 April 2021. We included missense variants that had been electrophysiologically characterized in mammalian cells in whole-cell patch-clamp recordings. We performed an alignment of linear protein sequences of all sodium channel genes and correlated variants by their overall functional effect on biophysical properties. Of 951 identified records, 437 sodium channel-variants met our inclusion criteria and were reviewed for functional properties. Of these, 141 variants were epilepsy-associated (SCN1/2/3/8A), 79 had a neuromuscular phenotype (SCN4/9/10/11A), 149 were associated with a cardiac phenotype (SCN5/10A) and 68 (16%) were considered benign. We detected 38 missense variant pairs with an identical disease-associated variant in a different sodium channel gene. Thirty-five out of 38 of those pairs resulted in similar functional consequences, indicating up to 92% biophysical agreement between corresponding sodium channel variants (odds ratio = 11.3; 95% confidence interval = 2.8 to 66.9; P < 0.001). Pathogenic missense variants were clustered in specific functional domains, whereas population variants were significantly more frequent across non-conserved domains (odds ratio = 18.6; 95% confidence interval = 10.9-34.4; P < 0.001). Pore-loop regions were frequently associated with loss-of-function variants, whereas inactivation sites were associated with gain-of-function (odds ratio = 42.1, 95% confidence interval = 14.5-122.4; P < 0.001), whilst variants occurring in voltage-sensing regions comprised a range of gain- and loss-of-function effects. Our findings suggest that biophysical characterisation of variants in one SCN-gene can predict channel function across different SCN-genes where experimental data are not available. The collected data represent the first gain- versus loss-of-function topological map of SCN proteins indicating shared patterns of biophysical effects aiding variant analysis and guiding precision therapy. We integrated our findings into a free online webtool to facilitate functional sodium channel gene variant interpretation (http://SCN-viewer.broadinstitute.org).


Subject(s)
Channelopathies , Epilepsy , Peripheral Nervous System Diseases , Voltage-Gated Sodium Channels , Animals , Channelopathies/genetics , Voltage-Gated Sodium Channels/genetics , Epilepsy/genetics , Phenotype , Mammals
20.
Brain ; 145(5): 1839-1853, 2022 06 03.
Article in English | MEDLINE | ID: mdl-34919654

ABSTRACT

CACNA1I is implicated in the susceptibility to schizophrenia by large-scale genetic association studies of single nucleotide polymorphisms. However, the channelopathy of CACNA1I in schizophrenia is unknown. CACNA1I encodes CaV3.3, a neuronal voltage-gated calcium channel that underlies a subtype of T-type current that is important for neuronal excitability in the thalamic reticular nucleus and other regions of the brain. Here, we present an extensive functional characterization of 57 naturally occurring rare and common missense variants of CACNA1I derived from a Swedish schizophrenia cohort of more than 10 000 individuals. Our analysis of this allelic series of coding CACNA1I variants revealed that reduced CaV3.3 channel current density was the dominant phenotype associated with rare CACNA1I coding alleles derived from control subjects, whereas rare CACNA1I alleles from schizophrenia patients encoded CaV3.3 channels with altered responses to voltages. CACNA1I variants associated with altered current density primarily impact the ionic channel pore and those associated with altered responses to voltage impact the voltage-sensing domain. CaV3.3 variants associated with altered voltage dependence of the CaV3.3 channel and those associated with peak current density deficits were significantly segregated across affected and unaffected groups (Fisher's exact test, P = 0.034). Our results, together with recent data from the SCHEMA (Schizophrenia Exome Sequencing Meta-Analysis) cohort, suggest that reduced CaV3.3 function may protect against schizophrenia risk in rare cases. We subsequently modelled the effect of the biophysical properties of CaV3.3 channel variants on thalamic reticular nucleus excitability and found that compared with common variants, ultrarare CaV3.3-coding variants derived from control subjects significantly decreased thalamic reticular nucleus excitability (P = 0.011). When all rare variants were analysed, there was a non-significant trend between variants that reduced thalamic reticular nucleus excitability and variants that either had no effect or increased thalamic reticular nucleus excitability across disease status. Taken together, the results of our functional analysis of an allelic series of >50 CACNA1I variants in a schizophrenia cohort reveal that loss of function of CaV3.3 is a molecular phenotype associated with reduced disease risk burden, and our approach may serve as a template strategy for channelopathies in polygenic disorders.


Subject(s)
Calcium Channels, T-Type , Channelopathies , Schizophrenia , Alleles , Calcium Channels, T-Type/genetics , Channelopathies/genetics , Humans , Mutation, Missense , Schizophrenia/genetics , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL