Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Mol Cell ; 58(6): 1001-14, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26004228

ABSTRACT

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that, beyond its apoptotic function, is required for the normal expression of major respiratory chain complexes. Here we identified an AIF-interacting protein, CHCHD4, which is the central component of a redox-sensitive mitochondrial intermembrane space import machinery. Depletion or hypomorphic mutation of AIF caused a downregulation of CHCHD4 protein by diminishing its mitochondrial import. CHCHD4 depletion sufficed to induce a respiratory defect that mimicked that observed in AIF-deficient cells. CHCHD4 levels could be restored in AIF-deficient cells by enforcing its AIF-independent mitochondrial localization. This modified CHCHD4 protein reestablished respiratory function in AIF-deficient cells and enabled AIF-deficient embryoid bodies to undergo cavitation, a process of programmed cell death required for embryonic morphogenesis. These findings explain how AIF contributes to the biogenesis of respiratory chain complexes, and they establish an unexpected link between the vital function of AIF and the propensity of cells to undergo apoptosis.


Subject(s)
Apoptosis Inducing Factor/metabolism , Electron Transport Chain Complex Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Amino Acid Sequence , Animals , Apoptosis Inducing Factor/genetics , Cell Line, Tumor , Electron Transport/genetics , Electron Transport Chain Complex Proteins/genetics , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Humans , Immunoblotting , Mice, Knockout , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Molecular Sequence Data , Protein Binding , Protein Transport/genetics , RNA Interference , Time Factors
2.
Oncotarget ; 7(47): 76496-76507, 2016 Nov 22.
Article in English | MEDLINE | ID: mdl-27738311

ABSTRACT

Mitochondrial apoptosis inducing factor (AIF) is a redox-active enzyme that participates to the biogenesis/maintenance of complex I of the respiratory chain, yet also contributes to catabolic reactions in the context of regulated cell death when AIF translocates to the cytosol and to the nucleus. Here we explore the contribution of AIF to cell death induced by menadione (2-methyl-1,4-naphtoquinone; also called vitamin K3) in conditions in which this pro-oxidant does not cause the mitochondrial release of AIF, yet causes caspase-independent cell killing. Depletion of AIF from human cancer cells reduced the cytotoxicity of menadione. This cytoprotective effect was accompanied by the maintenance of high levels of reduced glutathione (GSH), which are normally depleted by menadione. In addition, AIF depletion reduced the arylation of cellular proteins induced by menadione. This menadione-triggered arylation, which can be measured by a fluorescence assay, is completely suppressed by addition of exogenous glutathione or N-acetyl cysteine. Complex I inhibition by Rotenone did not mimic the cytoprotective action of AIF depletion. Altogether, these results are compatible with the hypothesis that mitochondrion-sessile AIF facilitates lethal redox cycling of menadione, thereby precipitating protein arylation and glutathione depletion.


Subject(s)
Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Oxidative Stress/genetics , Vitamin K 3/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Gene Expression , Glutathione/metabolism , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Vitamin K 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL