Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cell ; 184(18): 4734-4752.e20, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34450029

ABSTRACT

Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd individuals. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors. To discover hubs of interacting malignant and immune cells, we identified expression programs in different cell types that co-varied across tumors from affected individuals and used spatial profiling to localize coordinated programs. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage and an MMRd-enriched immune hub within the tumor, with activated T cells together with malignant and myeloid cells expressing T cell-attracting chemokines. By identifying interacting cellular programs, we reveal the logic underlying spatially organized immune-malignant cell networks.


Subject(s)
Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Bone Morphogenetic Proteins/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Compartmentation , Cell Line, Tumor , Chemokines/metabolism , Cohort Studies , Colorectal Neoplasms/genetics , DNA Mismatch Repair/genetics , Endothelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Humans , Immunity , Inflammation/pathology , Monocytes/pathology , Myeloid Cells/pathology , Neutrophils/pathology , Stromal Cells/metabolism , T-Lymphocytes/metabolism , Transcription, Genetic
2.
Immunity ; 56(5): 1115-1131.e9, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36917985

ABSTRACT

Intestinal IL-17-producing T helper (Th17) cells are dependent on adherent microbes in the gut for their development. However, how microbial adherence to intestinal epithelial cells (IECs) promotes Th17 cell differentiation remains enigmatic. Here, we found that Th17 cell-inducing gut bacteria generated an unfolded protein response (UPR) in IECs. Furthermore, subtilase cytotoxin expression or genetic removal of X-box binding protein 1 (Xbp1) in IECs caused a UPR and increased Th17 cells, even in antibiotic-treated or germ-free conditions. Mechanistically, UPR activation in IECs enhanced their production of both reactive oxygen species (ROS) and purine metabolites. Treating mice with N-acetyl-cysteine or allopurinol to reduce ROS production and xanthine, respectively, decreased Th17 cells that were associated with an elevated UPR. Th17-related genes also correlated with ER stress and the UPR in humans with inflammatory bowel disease. Overall, we identify a mechanism of intestinal Th17 cell differentiation that emerges from an IEC-associated UPR.


Subject(s)
Endoplasmic Reticulum Stress , Intestinal Mucosa , Th17 Cells , Endoplasmic Reticulum Stress/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Th17 Cells/cytology , Th17 Cells/metabolism , Cell Differentiation , Humans , Animals , Mice , Mice, Transgenic , Anti-Bacterial Agents/pharmacology
3.
Immunity ; 51(4): 709-723.e6, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31604686

ABSTRACT

Neuroimmune interactions have emerged as critical modulators of allergic inflammation, and type 2 innate lymphoid cells (ILC2s) are an important cell type for mediating these interactions. Here, we show that ILC2s expressed both the neuropeptide calcitonin gene-related peptide (CGRP) and its receptor. CGRP potently inhibited alarmin-driven type 2 cytokine production and proliferation by lung ILC2s both in vitro and in vivo. CGRP induced marked changes in ILC2 expression programs in vivo and in vitro, attenuating alarmin-driven proliferative and effector responses. A distinct subset of ILCs scored highly for a CGRP-specific gene signature after in vivo alarmin stimulation, suggesting CGRP regulated this response. Finally, we observed increased ILC2 proliferation and type 2 cytokine production as well as exaggerated responses to alarmins in mice lacking the CGRP receptor. Together, these data indicate that endogenous CGRP is a critical negative regulator of ILC2 responses in vivo.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Lymphocytes/physiology , Neuropeptides/metabolism , Receptors, Calcitonin Gene-Related Peptide/metabolism , Alarmins/metabolism , Animals , Calcitonin Gene-Related Peptide/genetics , Cell Proliferation , Cells, Cultured , Feedback, Physiological , Immunity, Innate , Interleukin-33/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroimmunomodulation , Neuropeptides/genetics , Receptors, Calcitonin Gene-Related Peptide/genetics , Signal Transduction , Th2 Cells/immunology
4.
Cell Rep Med ; 5(7): 101640, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38959885

ABSTRACT

CD8+ T cells must persist and function in diverse tumor microenvironments to exert their effects. Thus, understanding common underlying expression programs could better inform the next generation of immunotherapies. We apply a generalizable matrix factorization algorithm that recovers both shared and context-specific expression programs from diverse datasets to a single-cell RNA sequencing (scRNA-seq) compendium of 33,161 CD8+ T cells from 132 patients with seven human cancers. Our meta-single-cell analyses uncover a pan-cancer T cell dysfunction program that predicts clinical non-response to checkpoint blockade in melanoma and highlights CXCR6 as a pan-cancer marker of chronically activated T cells. Cxcr6 is trans-activated by AP-1 and repressed by TCF1. Using mouse models, we show that Cxcr6 deletion in CD8+ T cells increases apoptosis of PD1+TIM3+ cells, dampens CD28 signaling, and compromises tumor growth control. Our study uncovers a TCF1:CXCR6 axis that counterbalances PD1-mediated suppression of CD8+ cell responses and is essential for effective anti-tumor immunity.


Subject(s)
CD28 Antigens , CD8-Positive T-Lymphocytes , Hepatocyte Nuclear Factor 1-alpha , Receptors, CXCR6 , Animals , Humans , Mice , CD28 Antigens/metabolism , CD28 Antigens/genetics , CD28 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology , Receptors, CXCR6/metabolism , Receptors, CXCR6/genetics , Signal Transduction , Single-Cell Analysis/methods , Tumor Microenvironment/immunology
5.
Nat Genet ; 54(8): 1178-1191, 2022 08.
Article in English | MEDLINE | ID: mdl-35902743

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and treatment-refractory cancer. Molecular stratification in pancreatic cancer remains rudimentary and does not yet inform clinical management or therapeutic development. Here, we construct a high-resolution molecular landscape of the cellular subtypes and spatial communities that compose PDAC using single-nucleus RNA sequencing and whole-transcriptome digital spatial profiling (DSP) of 43 primary PDAC tumor specimens that either received neoadjuvant therapy or were treatment naive. We uncovered recurrent expression programs across malignant cells and fibroblasts, including a newly identified neural-like progenitor malignant cell program that was enriched after chemotherapy and radiotherapy and associated with poor prognosis in independent cohorts. Integrating spatial and cellular profiles revealed three multicellular communities with distinct contributions from malignant, fibroblast and immune subtypes: classical, squamoid-basaloid and treatment enriched. Our refined molecular and cellular taxonomy can provide a framework for stratification in clinical trials and serve as a roadmap for therapeutic targeting of specific cellular phenotypes and multicellular interactions.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Gene Expression Profiling , Humans , Neoadjuvant Therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Prognosis , Transcriptome/genetics , Pancreatic Neoplasms
6.
Cell Rep ; 33(8): 108433, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33238123

ABSTRACT

Interleukin-27 (IL-27) is an immunoregulatory cytokine that suppresses inflammation through multiple mechanisms, including induction of IL-10, but the transcriptional network mediating its diverse functions remains unclear. Combining temporal RNA profiling with computational algorithms, we predict 79 transcription factors induced by IL-27 in T cells. We validate 11 known and discover 5 positive (Cebpb, Fosl2, Tbx21, Hlx, and Atf3) and 2 negative (Irf9 and Irf8) Il10 regulators, generating an experimentally refined regulatory network for Il10. We report two central regulators, Prdm1 and Maf, that cooperatively drive the expression of signature genes induced by IL-27 in type 1 regulatory T cells, mediate IL-10 expression in all T helper cells, and determine the regulatory phenotype of colonic Foxp3+ regulatory T cells. Prdm1/Maf double-knockout mice develop spontaneous colitis, phenocopying ll10-deficient mice. Our work provides insights into IL-27-driven transcriptional networks and identifies two shared Il10 regulators that orchestrate immunoregulatory programs across T helper cell subsets.


Subject(s)
Gene Regulatory Networks/genetics , Interleukin-10/metabolism , Interleukin-27/metabolism , Th1 Cells/metabolism , Animals , Humans , Mice , Mice, Knockout
7.
JCI Insight ; 5(5)2020 03 12.
Article in English | MEDLINE | ID: mdl-32161196

ABSTRACT

CD137 (4-1BB) is a member of the TNFR superfamily that represents a promising target for cancer immunotherapy. Recent insights into the function of TNFR agonist antibodies implicate epitope, affinity, and IgG subclass as critical features, and these observations help explain the limited activity and toxicity seen with clinically tested CD137 agonists. Here, we describe the preclinical characterization of CTX-471, a fully human IgG4 agonist of CD137 that engages a unique epitope that is shared by human, cynomolgus monkey, and mouse and is associated with a differentiated pharmacology and toxicology profile. In vitro, CTX-471 increased IFN-γ production by human T cells in an Fcγ receptor-dependent (FcγR-dependent) manner, displaying an intermediate level of activity between 2 clinical-stage anti-CD137 antibodies. In mice, CTX-471 exhibited curative monotherapy activity in various syngeneic tumor models and showed a unique ability to cure mice of very large (~500 mm3) tumors compared with validated antibodies against checkpoints and TNFR superfamily members. Extremely high doses of CTX-471 were well tolerated, with no signs of hepatic toxicity. Collectively, these data demonstrate that CTX-471 is a unique CD137 agonist that displays an excellent safety profile and an unprecedented level of monotherapy efficacy against very large tumors.


Subject(s)
Antibodies, Monoclonal/immunology , Immunotherapy/methods , Neoplasms/therapy , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Epitope Mapping , Gene Expression Profiling , HEK293 Cells , Humans , Immunotherapy/adverse effects , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/metabolism , Macaca fascicularis , Mice , Mice, Nude , Neoplasms/immunology , T-Lymphocytes/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/chemistry , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL