Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Chem ; 300(7): 107480, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38897568

ABSTRACT

Phospholipase A2 receptor 1 (PLA2R1) is a 180-kDa transmembrane protein that plays a role in inflammation and cancer and is the major autoantigen in membranous nephropathy, a rare but severe autoimmune kidney disease. A soluble form of PLA2R1 has been detected in mouse and human serum. It is likely produced by proteolytic shedding of membrane-bound PLA2R1 but the mechanism is unknown. Here, we show that human PLA2R1 is cleaved by A Disintegrin And Metalloprotease 10 (ADAM10) and ADAM17 in HEK293 cells, mouse embryonic fibroblasts, and human podocytes. By combining site-directed mutagenesis and sequencing, we determined the exact cleavage site within the extracellular juxtamembrane stalk of human PLA2R1. Orthologs and paralogs of PLA2R1 are also shed. By using pharmacological inhibitors and genetic approaches with RNA interference and knock-out cellular models, we identified a major role of ADAM10 in the constitutive shedding of PLA2R1 and a dual role of ADAM10 and ADAM17 in the stimulated shedding. We did not observe evidence for cleavage by ß- or γ-secretase, suggesting that PLA2R1 may not be a substrate for regulated intramembrane proteolysis. PLA2R1 shedding occurs constitutively and can be triggered by the calcium ionophore ionomycin, the protein kinase C activator PMA, cytokines, and lipopolysaccharides, in vitro and in vivo. Altogether, our results show that PLA2R1 is a novel substrate for ADAM10 and ADAM17, producing a soluble form that is increased in inflammatory conditions and likely exerts various functions in physiological and pathophysiological conditions including inflammation, cancer, and membranous nephropathy.


Subject(s)
ADAM10 Protein , ADAM17 Protein , Amyloid Precursor Protein Secretases , Membrane Proteins , Receptors, Phospholipase A2 , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Humans , ADAM17 Protein/metabolism , ADAM17 Protein/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , HEK293 Cells , Receptors, Phospholipase A2/metabolism , Receptors, Phospholipase A2/genetics , Podocytes/metabolism , Proteolysis , Protein Domains , Ionomycin/pharmacology
2.
Kidney Int ; 103(2): 251-253, 2023 02.
Article in English | MEDLINE | ID: mdl-36681452

ABSTRACT

The major form of membranous nephropathy is characterized by autoantibodies to phospholipase A2 receptor 1 (PLA2R1). The study by Tomas et al. describes the first animal model where human PLA2R1 is ectopically expressed in mouse podocytes. Intriguingly, the transgenic mice spontaneously develop anti-human PLA2R1 antibodies and membranous nephropathy-like features, including immune deposits and nephrotic syndrome. The model raises questions about the spontaneous production of anti-human PLA2R1 antibodies and the additional steps to establish a bona fide animal model of membranous nephropathy.


Subject(s)
Glomerulonephritis, Membranous , Nephrotic Syndrome , Podocytes , Humans , Animals , Mice , Glomerulonephritis, Membranous/genetics , Receptors, Phospholipase A2/genetics , Models, Animal , Autoantibodies
3.
Kidney Int ; 104(6): 1092-1102, 2023 12.
Article in English | MEDLINE | ID: mdl-37795587

ABSTRACT

Membranous nephropathy (MN) is a pattern of injury caused by autoantibodies binding to specific target antigens, with accumulation of immune complexes along the subepithelial region of glomerular basement membranes. The past 20 years have brought revolutionary advances in the understanding of MN, particularly via the discovery of novel target antigens and their respective autoantibodies. These discoveries have challenged the traditional classification of MN into primary and secondary forms. At least 14 target antigens have been identified, accounting for 80%-90% of cases of MN. Many of the forms of MN associated with these novel MN target antigens have distinctive clinical and pathologic phenotypes. The Mayo Clinic consensus report on MN proposes a 2-step classification of MN. The first step, when possible, is identification of the target antigen, based on a multistep algorithm and using a combination of serology, staining of the kidney biopsy tissue by immunofluorescence or immunohistochemistry, and/or mass spectrometry methodology. The second step is the search for a potential underlying disease or associated condition, which is particularly relevant when knowledge of the target antigen is available to direct it. The meeting acknowledges that the resources and equipment required to perform the proposed testing may not be generally available. However, the meeting consensus was that the time has come to adopt an antigen-based classification of MN because this approach will allow for accurate and specific MN diagnosis, with significant implications for patient management and targeted treatment.


Subject(s)
Glomerulonephritis, Membranous , Humans , Glomerulonephritis, Membranous/diagnosis , Glomerulonephritis, Membranous/therapy , Consensus , Autoantibodies , Nephrectomy , Glomerular Basement Membrane/pathology , Receptors, Phospholipase A2
4.
FASEB J ; 35(10): e21881, 2021 10.
Article in English | MEDLINE | ID: mdl-34478587

ABSTRACT

Group IIA secreted phospholipase A2 (PLA2G2A) hydrolyzes glycerophospholipids at the sn-2 position resulting in the release of fatty acids and lysophospholipids. C57BL/6 mice do not express Pla2g2a due to a frameshift mutation (wild-type [WT] mice). We previously reported that transgenic expression of human PLA2G2A in C57BL/6 mice (IIA+ mice) protects against weight gain and insulin resistance, in part by increasing total energy expenditure. Additionally, we found that brown and white adipocytes from IIA+ mice have increased expression of mitochondrial uncoupling markers, such as uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor-gamma coactivator, and PR domain containing 16, suggesting that the energy expenditure phenotype might be due to an increased thermogenic capacity in adipose tissue. Here, we further characterize the impact of PLA2G2A on thermogenic mechanisms in adipose tissue. Metabolic analysis of WT and IIA+ mice revealed that even when housed within their thermoneutral zone, IIA+ mice have elevated energy expenditure compared to WT littermates. Increased energy expenditure in IIA+ mice is associated with increased citrate synthase activity in brown adipose tissue (BAT) and increased mitochondrial respiration in both brown and white adipocytes. We also observed that direct addition of recombinant PLA2G2A enzyme to in vitro cultured adipocytes results in the marked induction of UCP1 protein expression. Finally, we report that PLA2G2A induces the expression of numerous transcripts related to energy substrate transport and metabolism in BAT, suggestive of an increase in substrate flux to fuel BAT activity. These data demonstrate that PLA2G2A enhances adipose tissue thermogenesis, in part, through elevated substrate delivery and increased mitochondrial content in BAT.


Subject(s)
Adipose Tissue, Brown/physiopathology , Energy Metabolism , Group II Phospholipases A2/physiology , Mitochondria/pathology , Thermogenesis , Uncoupling Protein 1/metabolism , Adipose Tissue, White/physiopathology , Animals , Biological Transport , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism
5.
Int J Mol Sci ; 23(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35887380

ABSTRACT

The group X secreted phospholipase A2 (PLA2G10) is present at high levels in mouse sperm acrosome. The enzyme is secreted during capacitation and amplifies the acrosome reaction and its own secretion via an autocrine loop. PLA2G10 also improves the rate of fertilization. In in vitro fertilization (IVF) experiments, sperm from Pla2g10-deficient mice produces fewer two-cell embryos, and the absence of PLA2G10 is rescued by adding recombinant enzymes. Moreover, wild-type (WT) sperm treated with recombinant PLA2G10 produces more two-cell embryos. The effects of PLA2G10 on mouse fertility are inhibited by sPLA2 inhibitors and rescued by products of the enzymatic reaction such as free fatty acids, suggesting a role of catalytic activity. However, PLA2G10 also binds to mouse PLA2R1, which may play a role in fertility. To determine the relative contribution of enzymatic activity and PLA2R1 binding in the profertility effect of PLA2G10, we tested H48Q-PLA2G10, a catalytically-inactive mutant of PLA2G10 with low enzymatic activity but high binding properties to PLA2R1. Its effect was tested in various mouse strains, including Pla2r1-deficient mice. H48Q-PLA2G10 did not trigger the acrosome reaction but was as potent as WT-PLA2G10 to improve IVF in inbred C57Bl/6 mice; however, this was not the case in OF1 outbred mice. Using gametes from these mouse strains, the effect of H48Q-PLA2G10 appeared dependent on both spermatozoa and oocytes. Moreover, sperm from C57Bl/6 Pla2r1-deficient mice were less fertile and lowered the profertility effects of H48Q-PLA2G10, which were completely suppressed when sperm and oocytes were collected from Pla2r1-deficient mice. Conversely, the effect of WT-PLA2G10 was not or less sensitive to the absence of PLA2R1, suggesting that the effect of PLA2G10 is polymodal and complex, acting both as an enzyme and a ligand of PLA2R1. This study shows that the action of PLA2G10 on gametes is complex and can simultaneously activate the catalytic pathway and the PLA2R1-dependent receptor pathway. This work also shows for the first time that PLA2G10 binding to gametes' PLA2R1 participates in fertilization optimization.


Subject(s)
Semen , Spermatozoa , Animals , Fertilization , Fertilization in Vitro , Group X Phospholipases A2/metabolism , Group X Phospholipases A2/pharmacology , Ligands , Male , Mice , Mice, Inbred C57BL , Semen/metabolism , Spermatozoa/metabolism
6.
Kidney Int ; 99(4): 986-998, 2021 04.
Article in English | MEDLINE | ID: mdl-33166580

ABSTRACT

A cyclical corticosteroid-cyclophosphamide regimen is recommended for patients with primary membranous nephropathy at high risk of progression. We hypothesized that sequential therapy with tacrolimus and rituximab is superior to cyclical alternating treatment with corticosteroids and cyclophosphamide in inducing persistent remission in these patients. This was tested in a randomized, open-label controlled trial of 86 patients with primary membranous nephropathy and persistent nephrotic syndrome after six-months observation and assigned 43 each to receive six-month cyclical treatment with corticosteroid and cyclophosphamide or sequential treatment with tacrolimus (full-dose for six months and tapering for another three months) and rituximab (one gram at month six). The primary outcome was complete or partial remission of nephrotic syndrome at 24 months. This composite outcome occurred in 36 patients (83.7%) in the corticosteroid-cyclophosphamide group and in 25 patients (58.1%) in the tacrolimus-rituximab group (relative risk 1.44; 95% confidence interval 1.08 to 1.92). Complete remission at 24 months occurred in 26 patients (60%) in the corticosteroid-cyclophosphamide group and in 11 patients (26%) in the tacrolimus-rituximab group (2.36; 1.34 to 4.16). Anti-PLA2R titers showed a significant decrease in both groups but the proportion of anti-PLA2R-positive patients who achieved immunological response (depletion of anti-PLA2R antibodies) was significantly higher at three and six months in the corticosteroid-cyclophosphamide group (77% and 92%, respectively), as compared to the tacrolimus-rituximab group (45% and 70%, respectively). Relapses occurred in one patient in the corticosteroid-cyclophosphamide group, and three patients in the tacrolimus-rituximab group. Serious adverse events were similar in both groups. Thus, treatment with corticosteroid-cyclophosphamide induced remission in a significantly greater number of patients with primary membranous nephropathy than tacrolimus-rituximab.


Subject(s)
Glomerulonephritis, Membranous , Tacrolimus , Adrenal Cortex Hormones/adverse effects , Cyclophosphamide/adverse effects , Glomerulonephritis, Membranous/drug therapy , Humans , Immunosuppressive Agents/adverse effects , Rituximab/adverse effects , Tacrolimus/adverse effects , Treatment Outcome
7.
Nat Chem Biol ; 15(5): 463-471, 2019 05.
Article in English | MEDLINE | ID: mdl-30936502

ABSTRACT

Cell wall glycopolymers on the surface of Gram-positive bacteria are fundamental to bacterial physiology and infection biology. Here we identify gacH, a gene in the Streptococcus pyogenes group A carbohydrate (GAC) biosynthetic cluster, in two independent transposon library screens for its ability to confer resistance to zinc and susceptibility to the bactericidal enzyme human group IIA-secreted phospholipase A2. Subsequent structural and phylogenetic analysis of the GacH extracellular domain revealed that GacH represents an alternative class of glycerol phosphate transferase. We detected the presence of glycerol phosphate in the GAC, as well as the serotype c carbohydrate from Streptococcus mutans, which depended on the presence of the respective gacH homologs. Finally, nuclear magnetic resonance analysis of GAC confirmed that glycerol phosphate is attached to approximately 25% of the GAC N-acetylglucosamine side-chains at the C6 hydroxyl group. This previously unrecognized structural modification impacts host-pathogen interaction and has implications for vaccine design.


Subject(s)
Glycerol/metabolism , Phosphates/metabolism , Polysaccharides, Bacterial/metabolism , Streptococcus/metabolism , Glycerol/chemistry , Phosphates/chemistry , Polysaccharides, Bacterial/chemistry , Streptococcus/chemistry
8.
Am J Physiol Lung Cell Mol Physiol ; 319(1): L95-L104, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32401671

ABSTRACT

Secreted phospholipase A2 hydrolyzes surfactant phospholipids and is crucial for the inflammatory cascade; preterm neonates are treated with exogenous surfactant, but the interaction between surfactant and phospholipase is unknown. We hypothesize that this interplay is complex and the enzyme plays a relevant role in neonates needing surfactant replacement. We aimed to: 1) identify phospholipases A2 isoforms expressed in preterm lung; 2) study the enzyme role on surfactant retreatment and function and the effect of exogenous surfactant on the enzyme system; and 3) verify whether phospholipase A2 is linked to respiratory outcomes. In bronchoalveolar lavages of preterm neonates, we measured enzyme activity (alone or with inhibitors), enzyme subtypes, surfactant protein-A, and inflammatory mediators. Surfactant function and phospholipid profile were also tested. Urea ratio was used to obtain epithelial lining fluid concentrations. Follow-up data were prospectively collected. Subtype-IIA is the main phospholipase isoform in preterm lung, although subtype-IB may be significantly expressed. Neonates needing surfactant retreatment have higher enzyme activity (P = 0.021) and inflammatory mediators (P always ≤ 0.001) and lower amounts of phospholipids (P always < 0.05). Enzyme activity was inversely correlated to surfactant adsorption (ρ = -0.6; P = 0.008; adjusted P = 0.009), total phospholipids (ρ = -0.475; P = 0.05), and phosphatidylcholine (ρ = -0.622; P = 0.017). Exogenous surfactant significantly reduced global phospholipase activity (P < 0.001) and subtype-IIA (P = 0.005) and increased dioleoylphosphatidylglycerol (P < 0.001) and surfactant adsorption (P < 0.001). Enzyme activity correlated with duration of ventilation (ρ = 0.679, P = 0.005; adjusted P = 0.04) and respiratory morbidity score at 12 mo postnatal age (τ-b = 0.349, P = 0.037; adjusted P = 0.043) but was not associated with mortality, bronchopulmonary dysplasia, or other long-term respiratory outcomes.


Subject(s)
Infant, Premature/physiology , Phospholipases A2, Secretory/metabolism , Pulmonary Surfactants/metabolism , Respiration , Bronchoalveolar Lavage Fluid , Epithelial Cells/metabolism , Female , Humans , Infant, Newborn , Male , Phospholipases A2, Secretory/antagonists & inhibitors , Phospholipids
9.
PLoS Pathog ; 14(10): e1007348, 2018 10.
Article in English | MEDLINE | ID: mdl-30321240

ABSTRACT

Human Group IIA secreted phospholipase A2 (hGIIA) is an acute phase protein with bactericidal activity against Gram-positive bacteria. Infection models in hGIIA transgenic mice have suggested the importance of hGIIA as an innate defense mechanism against the human pathogens Group A Streptococcus (GAS) and Group B Streptococcus (GBS). Compared to other Gram-positive bacteria, GAS is remarkably resistant to hGIIA activity. To identify GAS resistance mechanisms, we exposed a highly saturated GAS M1 transposon library to recombinant hGIIA and compared relative mutant abundance with library input through transposon-sequencing (Tn-seq). Based on transposon prevalence in the output library, we identified nine genes, including dltA and lytR, conferring increased hGIIA susceptibility. In addition, seven genes conferred increased hGIIA resistance, which included two genes, gacH and gacI that are located within the Group A Carbohydrate (GAC) gene cluster. Using GAS 5448 wild-type and the isogenic gacI mutant and gacI-complemented strains, we demonstrate that loss of the GAC N-acetylglucosamine (GlcNAc) side chain in the ΔgacI mutant increases hGIIA resistance approximately 10-fold, a phenotype that is conserved across different GAS serotypes. Increased resistance is associated with delayed penetration of hGIIA through the cell wall. Correspondingly, loss of the Lancefield Group B Carbohydrate (GBC) rendered GBS significantly more resistant to hGIIA-mediated killing. This suggests that the streptococcal Lancefield antigens, which are critical determinants for streptococcal physiology and virulence, are required for the bactericidal enzyme hGIIA to exert its bactericidal function.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Wall/metabolism , Group II Phospholipases A2/immunology , Immunity, Innate/drug effects , Polysaccharides, Bacterial/pharmacology , Streptococcal Infections/microbiology , Streptococcus/immunology , Blood Bactericidal Activity , Group II Phospholipases A2/blood , Group II Phospholipases A2/genetics , Host-Pathogen Interactions , Humans , Streptococcal Infections/blood , Streptococcal Infections/enzymology , Streptococcus/pathogenicity
10.
Infect Immun ; 87(11)2019 11.
Article in English | MEDLINE | ID: mdl-31405958

ABSTRACT

The level of human group IIA secreted phospholipase A2 (hGIIA sPLA2) is increased in the plasma of malaria patients, but its role is unknown. In parasite culture with normal plasma, hGIIA is inactive against Plasmodium falciparum, contrasting with hGIIF, hGV, and hGX sPLA2s, which readily hydrolyze plasma lipoproteins, release nonesterified fatty acids (NEFAs), and inhibit parasite growth. Here, we revisited the anti-Plasmodium activity of hGIIA under conditions closer to those of malaria physiopathology where lipoproteins are oxidized. In parasite culture containing oxidized lipoproteins, hGIIA sPLA2 was inhibitory, with a 50% inhibitory concentration value of 150.0 ± 40.8 nM, in accordance with its capacity to release NEFAs from oxidized particles. With oxidized lipoproteins, hGIIF, hGV, and hGX sPLA2s were also more potent, by 4.6-, 2.1-, and 1.9-fold, respectively. Using specific immunoassays, we found that hGIIA sPLA2 is increased in plasma from 41 patients with malaria over levels for healthy donors (median [interquartile range], 1.6 [0.7 to 3.4] nM versus 0.0 [0.0 to 0.1] nM, respectively; P < 0.0001). Other sPLA2s were not detected. Malaria plasma, but not normal plasma, contains oxidized lipoproteins and was inhibitory to P. falciparum when spiked with hGIIA sPLA2 Injection of recombinant hGIIA into mice infected with P. chabaudi reduced the peak of parasitemia, and this was effective only when the level of plasma peroxidation was increased during infection. In conclusion, we propose that malaria-induced oxidation of lipoproteins converts these into a preferential substrate for hGIIA sPLA2, promoting its parasite-killing effect. This mechanism may contribute to host defense against P. falciparum in malaria where high levels of hGIIA are observed.


Subject(s)
Antimalarials/pharmacology , Group II Phospholipases A2/pharmacology , Lipoproteins/metabolism , Plasmodium chabaudi/drug effects , Plasmodium falciparum/drug effects , Adolescent , Adult , Female , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Middle Aged , Oxidation-Reduction , Vietnam/epidemiology , Young Adult
11.
Kidney Int ; 95(3): 666-679, 2019 03.
Article in English | MEDLINE | ID: mdl-30784662

ABSTRACT

Autoantibodies against phospholipase A2 receptor 1 (PLA2R1) and thrombospondin type 1 domain-containing 7A (THSD7A) are emerging as biomarkers to classify membranous nephropathy (MN) and to predict outcome or response to treatment. Anti-THSD7A autoantibodies are detected by Western blot and indirect immunofluorescence test (IIFT). Here, we developed a sensitive enzyme-linked immunosorbent assay (ELISA) optimized for quantitative detection of anti-THSD7A autoantibodies. Among 1012 biopsy-proven MN patients from 6 cohorts, 28 THSD7A-positive patients were identified by ELISA, indicating a prevalence of 2.8%. By screening additional patients, mostly referred because of PLA2R1-unrelated MN, we identified 21 more cases, establishing a cohort of 49 THSD7A-positive patients. Twenty-eight patients (57%) were male, and male patients were older than female patients (67 versus 49 years). Eight patients had a history of malignancy, but only 3 were diagnosed with malignancy within 2 years of MN diagnosis. We compared the results of ELISA, IIFT, Western blot, and biopsy staining, and found a significant correlation between ELISA and IIFT titers. Anti-THSD7A autoantibodies were predominantly IgG4 in all patients. Eight patients were double positive for THSD7A and PLA2R1. Levels of anti-THSD7A autoantibodies correlated with disease activity and with response to treatment. Patients with high titer at baseline had poor clinical outcome. In a subgroup of patients with serial titers, persistently elevated anti-THSD7A autoantibodies were observed in patients who did not respond to treatment or did not achieve remission. We conclude that the novel anti-THSD7A ELISA can be used to identify patients with THSD7A-associated MN and to monitor autoantibody titers during treatment.


Subject(s)
Autoantibodies/analysis , Glomerulonephritis, Membranous/diagnosis , Immunosuppressive Agents/therapeutic use , Thrombospondins/immunology , Adult , Aged , Autoantibodies/immunology , Biomarkers/analysis , Biopsy , Drug Monitoring/methods , Enzyme-Linked Immunosorbent Assay/methods , Feasibility Studies , Female , Glomerulonephritis, Membranous/drug therapy , Glomerulonephritis, Membranous/immunology , HEK293 Cells , Humans , Male , Middle Aged , Receptors, Phospholipase A2/immunology , Retrospective Studies , Sensitivity and Specificity , Time Factors , Treatment Outcome
12.
J Am Soc Nephrol ; 29(2): 401-408, 2018 02.
Article in English | MEDLINE | ID: mdl-29114041

ABSTRACT

The phospholipase A2 receptor (PLA2R1) is the major autoantigen in primary membranous nephropathy. Several PLA2R1 epitopes have been characterized, and a retrospective study identified PLA2R1 epitope spreading as a potential indicator of poor prognosis. Here, we analyzed the predictive value of anti-PLA2R1 antibody (PLA2R1-Ab) titers and epitope spreading in a prospective cohort of 58 patients positive for PLA2R1-Ab randomly allocated to rituximab (n=29) or antiproteinuric therapy alone (n=29). At baseline, the epitope profile (CysR, CysRC1, CysRC7, or CysRC1C7) did not correlate with age, sex, time from diagnosis, proteinuria, or serum albumin, but epitope spreading strongly correlated with PLA2R1-Ab titer (P<0.001). Ten (58.8%) of the 17 patients who had epitope spreading at baseline and were treated with rituximab showed reversal of epitope spreading at month 6. In adjusted analysis, epitope spreading at baseline was associated with a decreased remission rate at month 6 (odds ratio, 0.16; 95% confidence interval, 0.04 to 0.72; P=0.02) and last follow-up (median, 23 months; odds ratio, 0.14; 95% confidence interval, 0.03 to 0.64; P=0.01), independently from age, sex, baseline PLA2R1-Ab level, and treatment group. We propose that epitope spreading at baseline be considered in the decision for early therapeutic intervention in patients with primary membranous nephropathy.


Subject(s)
Autoantibodies/blood , Glomerulonephritis, Membranous/blood , Receptors, Phospholipase A2/immunology , Adult , Autoantigens/immunology , Epitopes/drug effects , Female , Glomerulonephritis, Membranous/drug therapy , Humans , Immunologic Factors/therapeutic use , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Remission Induction , Rituximab/therapeutic use
13.
Infect Immun ; 86(8)2018 08.
Article in English | MEDLINE | ID: mdl-29784864

ABSTRACT

Human innate immunity employs cellular and humoral mechanisms to facilitate rapid killing of invading bacteria. The direct killing of bacteria by human serum is attributed mainly to the activity of the complement system, which forms pores in Gram-negative bacteria. Although Gram-positive bacteria are considered resistant to killing by serum, we uncover here that normal human serum effectively kills Enterococcus faecium Comparison of a well-characterized collection of commensal and clinical E. faecium isolates revealed that human serum specifically kills commensal E. faecium strains isolated from normal gut microbiota but not clinical isolates. Inhibitor studies show that the human group IIA secreted phospholipase A2 (hGIIA), but not complement, is responsible for killing of commensal E. faecium strains in human normal serum. This is remarkable since the hGIIA concentration in "noninflamed" serum was considered too low to be bactericidal against Gram-positive bacteria. Mechanistic studies showed that serum hGIIA specifically causes permeabilization of commensal E. faecium membranes. Altogether, we find that a normal concentration of hGIIA in serum effectively kills commensal E. faecium and that resistance of clinical E. faecium to hGIIA could have contributed to the ability of these strains to become opportunistic pathogens in hospitalized patients.


Subject(s)
Anti-Bacterial Agents/metabolism , Enterococcus faecium/drug effects , Enterococcus faecium/physiology , Microbial Viability/drug effects , Phospholipases A2/metabolism , Serum/enzymology , Serum/microbiology , Cell Membrane/drug effects , Enterococcus faecium/isolation & purification , Healthy Volunteers , Humans , Permeability/drug effects
14.
Proc Natl Acad Sci U S A ; 112(27): E3564-73, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26106157

ABSTRACT

Platelets are anucleated blood elements highly potent at generating extracellular vesicles (EVs) called microparticles (MPs). Whereas EVs are accepted as an important means of intercellular communication, the mechanisms underlying platelet MP internalization in recipient cells are poorly understood. Our lipidomic analyses identified 12(S)-hydroxyeicosatetranoic acid [12(S)-HETE] as the predominant eicosanoid generated by MPs. Mechanistically, 12(S)-HETE is produced through the concerted activity of secreted phospholipase A2 IIA (sPLA2-IIA), present in inflammatory fluids, and platelet-type 12-lipoxygenase (12-LO), expressed by platelet MPs. Platelet MPs convey an elaborate set of transcription factors and nucleic acids, and contain mitochondria. We observed that MPs and their cargo are internalized by activated neutrophils in the endomembrane system via 12(S)-HETE. Platelet MPs are found inside neutrophils isolated from the joints of arthritic patients, and are found in neutrophils only in the presence of sPLA2-IIA and 12-LO in an in vivo model of autoimmune inflammatory arthritis. Using a combination of genetically modified mice, we show that the coordinated action of sPLA2-IIA and 12-LO promotes inflammatory arthritis. These findings identify 12(S)-HETE as a trigger of platelet MP internalization by neutrophils, a mechanism highly relevant to inflammatory processes. Because sPLA2-IIA is induced during inflammation, and 12-LO expression is restricted mainly to platelets, these observations demonstrate that platelet MPs promote their internalization in recipient cells through highly regulated mechanisms.


Subject(s)
Arachidonate 12-Lipoxygenase/metabolism , Blood Platelets/metabolism , Cell-Derived Microparticles/metabolism , Group II Phospholipases A2/metabolism , Neutrophils/metabolism , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , Animals , Arachidonate 12-Lipoxygenase/genetics , Arthritis, Experimental/genetics , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Blood Platelets/enzymology , Cell Line , Cell-Derived Microparticles/enzymology , Cell-Derived Microparticles/ultrastructure , Cells, Cultured , Endocytosis , Group II Phospholipases A2/genetics , Humans , Immunoblotting , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Microscopy, Electron , Mitochondria/metabolism , Mitochondria/ultrastructure , Neutrophils/ultrastructure , RNA/genetics , RNA/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Synovial Fluid/metabolism
15.
J Biol Chem ; 291(6): 3076-89, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26655718

ABSTRACT

Phospholipase A2 (PLA2) activity has been shown to be involved in the sperm acrosome reaction (AR), but the molecular identity of PLA2 isoforms has remained elusive. Here, we have tested the role of two intracellular (iPLA2ß and cytosolic PLA2α) and one secreted (group X) PLA2s in spontaneous and progesterone (P4)-induced AR by using a set of specific inhibitors and knock-out mice. iPLA2ß is critical for spontaneous AR, whereas both iPLA2ß and group X secreted PLA2 are involved in P4-induced AR. Cytosolic PLA2α is dispensable in both types of AR. P4-induced AR spreads over 30 min in the mouse, and kinetic analyses suggest the presence of different sperm subpopulations, using distinct PLA2 pathways to achieve AR. At low P4 concentration (2 µm), sperm undergoing early AR (0-5 min post-P4) rely on iPLA2ß, whereas sperm undergoing late AR (20-30 min post-P4) rely on group X secreted PLA2. Moreover, the role of PLA2s in AR depends on P4 concentration, with the PLA2s being key actors at low physiological P4 concentrations (≤2 µm) but not at higher P4 concentrations (~10 µm).


Subject(s)
Acrosome Reaction/drug effects , Acrosome/enzymology , Exocytosis/drug effects , Group VI Phospholipases A2/metabolism , Group X Phospholipases A2/metabolism , Progesterone/pharmacology , Animals , Group VI Phospholipases A2/genetics , Group X Phospholipases A2/genetics , Male , Mice , Mice, Knockout , Progesterone/metabolism
16.
N Engl J Med ; 371(24): 2277-2287, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25394321

ABSTRACT

BACKGROUND: Idiopathic membranous nephropathy is an autoimmune disease. In approximately 70% of patients, it is associated with autoantibodies against the phospholipase A2 receptor 1 (PLA2R1). Antigenic targets in the remaining patients are unknown. METHODS: Using Western blotting, we screened serum samples from patients with idiopathic membranous nephropathy, patients with other glomerular diseases, and healthy controls for antibodies against human native glomerular proteins. We partially purified a putative new antigen, identified this protein by means of mass spectrometry of digested peptides, and validated the results by analysis of recombinant protein expression, immunoprecipitation, and immunohistochemical analysis. RESULTS: Serum samples from 6 of 44 patients in a European cohort and 9 of 110 patients in a Boston cohort with anti-PLA2R1-negative idiopathic membranous nephropathy recognized a glomerular protein that was 250 kD in size. None of the serum samples from the 74 patients with idiopathic membranous nephropathy who were seropositive for anti-PLA2R1 antibodies, from the 76 patients with other glomerular diseases, and from the 44 healthy controls reacted against this antigen. Although this newly identified antigen is clearly different from PLA2R1, it shares some biochemical features, such as N-glycosylation, membranous location, and reactivity with serum only under nonreducing conditions. Mass spectrometry identified this antigen as thrombospondin type-1 domain-containing 7A (THSD7A). All reactive serum samples recognized recombinant THSD7A and immunoprecipitated THSD7A from glomerular lysates. Moreover, immunohistochemical analyses of biopsy samples from patients revealed localization of THSD7A to podocytes, and IgG eluted from one of these samples was specific for THSD7A. CONCLUSIONS: In our cohort, 15 of 154 patients with idiopathic membranous nephropathy had circulating autoantibodies to THSD7A but not to PLA2R1, a finding that suggests a distinct subgroup of patients with this condition. (Funded by the French National Center for Scientific Research and others.).


Subject(s)
Autoantibodies/blood , Glomerulonephritis, Membranous/immunology , Receptors, Phospholipase A2/immunology , Thrombospondins/immunology , Blotting, Western , Case-Control Studies , Glomerulonephritis, Membranous/blood , Humans , Kidney Glomerulus/metabolism , Receptors, Phospholipase A2/blood , Receptors, Phospholipase A2/metabolism , Thrombospondins/blood , Thrombospondins/metabolism
17.
J Am Soc Nephrol ; 27(5): 1517-33, 2016 05.
Article in English | MEDLINE | ID: mdl-26567246

ABSTRACT

The phospholipase A2 receptor (PLA2R1) is the major autoantigen in idiopathic membranous nephropathy. However, the value of anti-PLA2R1 antibody titers in predicting patient outcomes is unknown. Here, we screened serum samples from 50 patients positive for PLA2R1 for immunoreactivity against a series of PLA2R1 deletion mutants covering the extracellular domains. We identified reactive epitopes in the cysteine-rich (CysR), C-type lectin domain 1 (CTLD1), and C-type lectin domain 7 (CTLD7) domains and confirmed the reactivity with soluble forms of each domain. We then used ELISAs to stratify 69 patients positive for PLA2R1 by serum reactivity to one or more of these domains: CysR (n=23), CysRC1 (n=14), and CysRC1C7 (n=32). Median ELISA titers measured using the full-length PLA2R1 antigens were not statistically different between subgroups. Patients with anti-CysR-restricted activity were younger (P=0.008), had less nephrotic range proteinuria (P=0.02), and exhibited a higher rate of spontaneous remission (P=0.03) and lower rates of renal failure progression (P=0.002) and ESRD (P=0.01) during follow-up. Overall, 31 of 69 patients had poor renal prognosis (urinary protein/creatinine ratio >4 g/g or eGFR<45 ml/min per 1.73 m(2) at end of follow-up). High anti-PLA2R1 activity and epitope spreading beyond the CysR epitope were independent risk factors of poor renal prognosis in multivariable Cox regression analysis. Epitope spreading during follow-up associated with disease worsening (n=3), whereas reverse spreading from a CysRC1C7 profile back to a CysR profile associated with favorable outcome (n=1). We conclude that analysis of the PLA2R1 epitope profile and spreading is a powerful tool for monitoring disease severity and stratifying patients by renal prognosis.


Subject(s)
Autoantibodies/immunology , Epitopes/immunology , Glomerulonephritis, Membranous/immunology , Receptors, Phospholipase A2/immunology , Female , Humans , Male , Middle Aged , Prognosis
18.
Am J Respir Cell Mol Biol ; 55(6): 825-836, 2016 12.
Article in English | MEDLINE | ID: mdl-27448109

ABSTRACT

Secreted phospholipase A2s (sPLA2s) regulate eicosanoid formation and have been implicated in asthma. Although sPLA2s function as enzymes, some of the sPLA2s bind with high affinity to a C-type lectin receptor, called PLA2R1, which has functions in both cellular signaling and clearance of sPLA2s. We sought to examine the expression of PLA2R1 in the airway epithelium of human subjects with asthma and the function of the murine Pla2r1 gene in a model of asthma. Expression of PLA2R1 in epithelial brushings was assessed in two distinct cohorts of children with asthma by microarray and quantitative PCR, and immunostaining for PLA2R1 was conducted on endobronchial tissue and epithelial brushings from adults with asthma. C57BL/129 mice deficient in Pla2r1 (Pla2r1-/-) were characterized in an ovalbumin (OVA) model of allergic asthma. PLA2R1 was differentially overexpressed in epithelial brushings of children with atopic asthma in both cohorts. Immunostaining for PLA2R1 in endobronchial tissue localized to submucosal glandular epithelium and columnar epithelial cells. After OVA sensitization and challenge, Pla2r1-/- mice had increased airway hyperresponsiveness, as well as an increase in cellular trafficking of eosinophils to the peribronchial space and bronchoalveolar lavage fluid, and an increase in airway permeability. In addition, Pla2r1-/- mice had more dendritic cells in the lung, higher levels of OVA-specific IgG, and increased production of both type-1 and type-2 cytokines by lung leukocytes. PLA2R1 is increased in the airway epithelium in asthma, and serves as a regulator of airway hyperresponsiveness, airway permeability, antigen sensitization, and airway inflammation.


Subject(s)
Asthma/metabolism , Asthma/therapy , Epithelial Cells/metabolism , Molecular Targeted Therapy , Receptors, Phospholipase A2/metabolism , Allergens/immunology , Animals , Antigens/immunology , Asthma/immunology , Asthma/physiopathology , Bronchoalveolar Lavage Fluid , Child , Cohort Studies , Cytokines/biosynthesis , Disease Models, Animal , Eosinophils/metabolism , Epithelial Cells/pathology , Humans , Immunoglobulin G/metabolism , Methacholine Chloride , Mice, Inbred C57BL , Mucins/metabolism , Pneumonia/metabolism , Pneumonia/pathology , Receptors, Phospholipase A2/deficiency , Receptors, Phospholipase A2/genetics , Respiratory Mechanics
19.
Blood ; 124(14): 2173-83, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-25082876

ABSTRACT

Mitochondrial DNA (mtDNA) is a highly potent inflammatory trigger and is reportedly found outside the cells in blood in various pathologies. Platelets are abundant in blood where they promote hemostasis. Although lacking a nucleus, platelets contain functional mitochondria. On activation, platelets produce extracellular vesicles known as microparticles. We hypothesized that activated platelets could also release their mitochondria. We show that activated platelets release respiratory-competent mitochondria, both within membrane-encapsulated microparticles and as free organelles. Extracellular mitochondria are found in platelet concentrates used for transfusion and are present at higher levels in those that induced acute reactions (febrile nonhemolytic reactions, skin manifestations, and cardiovascular events) in transfused patients. We establish that the mitochondrion is an endogenous substrate of secreted phospholipase A2 IIA (sPLA2-IIA), a phospholipase otherwise specific for bacteria, likely reflecting the ancestral proteobacteria origin of mitochondria. The hydrolysis of the mitochondrial membrane by sPLA2-IIA yields inflammatory mediators (ie, lysophospholipids, fatty acids, and mtDNA) that promote leukocyte activation. Two-photon microscopy in live transfused animals revealed that extracellular mitochondria interact with neutrophils in vivo, triggering neutrophil adhesion to the endothelial wall. Our findings identify extracellular mitochondria, produced by platelets, at the midpoint of a potent mechanism leading to inflammatory responses.


Subject(s)
Blood Platelets/metabolism , Group II Phospholipases A2/metabolism , Inflammation/metabolism , Mitochondria/metabolism , Animals , DNA, Mitochondrial/metabolism , Endothelium, Vascular/metabolism , Flow Cytometry , Humans , Male , Mice , Mice, Inbred C57BL , Platelet Activation , Rickettsia prowazekii/metabolism
20.
Infect Immun ; 83(6): 2453-65, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25824843

ABSTRACT

We have previously shown that secreted phospholipases A2 (sPLA2s) from animal venoms inhibit the in vitro development of Plasmodium falciparum, the agent of malaria. In addition, the inflammatory-type human group IIA (hGIIA) sPLA2 circulates at high levels in the serum of malaria patients. However, the role of the different human sPLA2s in host defense against P. falciparum has not been investigated. We show here that 4 out of 10 human sPLA2s, namely, hGX, hGIIF, hGIII, and hGV, exhibit potent in vitro anti-Plasmodium properties with half-maximal inhibitory concentrations (IC50s) of 2.9 ± 2.4, 10.7 ± 2.1, 16.5 ± 9.7, and 94.2 ± 41.9 nM, respectively. Other human sPLA2s, including hGIIA, are inactive. The inhibition is dependent on sPLA2 catalytic activity and primarily due to hydrolysis of plasma lipoproteins from the parasite culture. Accordingly, purified lipoproteins that have been prehydrolyzed by hGX, hGIIF, hGIII, and hGV are more toxic to P. falciparum than native lipoproteins. However, the total enzymatic activities of human sPLA2s on purified lipoproteins or plasma did not reflect their inhibitory activities on P. falciparum. For instance, hGIIF is 9-fold more toxic than hGV but releases a lower quantity of nonesterified fatty acids (NEFAs). Lipidomic analyses of released NEFAs from lipoproteins demonstrate that sPLA2s with anti-Plasmodium properties are those that release polyunsaturated fatty acids (PUFAs), with hGIIF being the most selective enzyme. NEFAs purified from lipoproteins hydrolyzed by hGIIF were more potent at inhibiting P. falciparum than those from hGV, and PUFA-enriched liposomes hydrolyzed by sPLA2s were highly toxic, demonstrating the critical role of PUFAs. The selectivity of sPLA2s toward low- and high-density (LDL and HDL, respectively) lipoproteins and their ability to directly attack parasitized erythrocytes further explain their anti-Plasmodium activity. Together, our findings indicate that 4 human sPLA2s are active against P. falciparum in vitro and pave the way to future investigations on their in vivo contribution in malaria pathophysiology.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Phospholipases A2/metabolism , Phospholipases A2/pharmacology , Plasmodium falciparum/drug effects , Antimalarials/metabolism , Antimalarials/pharmacology , Cells, Cultured , Erythrocytes/parasitology , Fatty Acids, Nonesterified , Humans , Lipoproteins/blood , Phospholipases A2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL