Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Mol Genet ; 22(2): 226-38, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23049073

ABSTRACT

Mitochondrial DNA (mtDNA) mutations leading to the disruption of respiratory complex I (CI) have been shown to exhibit anti-tumorigenic effects, at variance with those impairing only the function but not the assembly of the complex, which appear to contribute positively to cancer development. Owing to the challenges in the analysis of the multi-copy mitochondrial genome, it is yet to be determined whether tumour-associated mtDNA lesions occur as somatic modifying factors or as germ-line predisposing elements. Here we investigated the whole mitochondrial genome sequence of 20 pituitary adenomas with oncocytic phenotype and identified pathogenic and/or novel mtDNA mutations in 60% of the cases. Using highly sensitive techniques, namely fluorescent PCR and allele-specific locked nucleic acid quantitative PCR, we identified the most likely somatic nature of these mutations in our sample set, since none of the mutations was detected in the corresponding blood tissue of the patients analysed. Furthermore, we have subjected a series of 48 pituitary adenomas to a high-resolution array comparative genomic hybridization analysis, which revealed that CI disruptive mutations, and the oncocytic phenotype, significantly correlate with low number of chromosomal aberrations in the nuclear genome. We conclude that CI disruptive mutations in pituitary adenomas are somatic modifiers of tumorigenesis most likely contributing not only to the development of oncocytic change, but also to a less aggressive tumour phenotype, as indicated by a stable karyotype.


Subject(s)
Adenoma/genetics , Cell Transformation, Neoplastic/genetics , DNA, Mitochondrial/genetics , Electron Transport Complex I/genetics , Genomic Instability , Mutation , Pituitary Neoplasms/genetics , Adenoma/pathology , Amino Acid Sequence , Cell Transformation, Neoplastic/metabolism , DNA Copy Number Variations , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Sequence Data , Nucleic Acid Conformation , Phenotype , Pituitary Neoplasms/pathology , Sequence Alignment
2.
Breast Cancer Res Treat ; 132(1): 15-28, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21509527

ABSTRACT

Oncocytic carcinomas are composed of mitochondrion-rich cells. Though recognised by the WHO classification as a histological special type of breast cancer, their status as a discrete pathological entity remains a matter of contention. Given that oncocytic tumours of other anatomical sites display distinct clinico-pathological and molecular features, we sought to define the molecular genetic features of mitochondrion-rich breast tumours and to compare them with a series of histological grade- and oestrogen receptor status-matched invasive ductal carcinomas of no special type. Seventeen mitochondrion-rich breast carcinomas, including nine bona fide oncocytic carcinomas, were profiled with antibodies against oestrogen, progesterone and androgen receptors, HER2, Ki67, GCDFP-15, chromogranin, epithelial membrane antigen, cytokeratin 7, cytokeratin 14, CD68 and mitochondria antigen. These tumours were microdissected and DNA extracted from samples with >70% of tumour cells. Fourteen cases yielded DNA of sufficient quality/quantity and were subjected to high-resolution microarray comparative genomic hybridisation analysis. The genomic profiles were compared to those of 28 grade- and oestrogen receptor status-matched invasive ductal carcinomas of no special type. Oncocytic and other mitochondrion-rich tumours did not differ significantly between themselves. As a group, mitochondrion-rich carcinomas were immunophenotypically heterogenous. Recurrent copy number changes were similar to those described in unselected breast cancers. However, unsupervised and supervised analysis identified a subset of mitochondrion-rich cancers, which often displayed gains of 11q13.1-q13.2 and 19p13. Changes in the latter two chromosomal regions have been shown to be associated with oncocytic tumours of the kidney and thyroid, respectively, and host several nuclear genes with specific mitochondrial function. Our results indicate that in a way akin to oncocytic tumours of other anatomical sites, at least a subset of mitochondrion-rich breast carcinomas may be underpinned by a distinct pattern of chromosomal changes potentially relevant for mitochondria accumulation and constitute a discrete molecular entity.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Carcinoma/genetics , Chromosome Aberrations , Mitochondria/pathology , Adult , Aged , Aged, 80 and over , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma/metabolism , Carcinoma/pathology , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Ductal, Breast/pathology , Chromosomes, Human/genetics , Chromosomes, Human/metabolism , Cluster Analysis , Comparative Genomic Hybridization , Female , Humans , Middle Aged , Mitochondrial Proteins/genetics , Neoplasm Grading , Phenotype , Receptors, Estrogen/metabolism
3.
Histopathology ; 60(6B): E115-30, 2012 May.
Article in English | MEDLINE | ID: mdl-22486256

ABSTRACT

AIMS: Microglandular adenosis (MGA) is a proliferative breast lesion, which has been proposed to be a potential precursor of triple-negative breast cancers. The aims of this study were to determine whether MGAs harbour genetic alterations and if any such genetic aberrations found in MGAs are similar to those found in matched invasive carcinomas. METHODS AND RESULTS: Twelve cases of MGA and/or atypical MGA (AMGA), 10 of which were associated with invasive carcinoma, were evaluated. Immunohistochemical profiling revealed that all invasive carcinomas were of triple-negative phenotype and expressed S100, cytokeratins 8/18 and 'basal' markers. The morphologically distinct components of each case (MGA, AMGA and/or invasive carcinoma) were microdissected and subjected to microarray comparative genomic hybridization. Apart from three typical MGAs, all samples harboured genetic alterations. The percentage of the genome affected by copy number aberrations in MGA/AMGA ranged from 0.5 to 61.9%, indicating varying levels of genetic instability. In three cases, MGA/AMGA displayed copy number aberrations similar to those found in matched invasive components, providing strong circumstantial evidence that MGA may constitute the substrate for the invasive carcinoma development. CONCLUSIONS: Our results support the contention that MGA can be a clonal lesion and non-obligate precursor of triple-negative breast cancer.


Subject(s)
Fibrocystic Breast Disease/pathology , Precancerous Conditions/pathology , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Cluster Analysis , Comparative Genomic Hybridization , Female , Fibrocystic Breast Disease/metabolism , Humans , Precancerous Conditions/metabolism
4.
Lab Invest ; 91(10): 1491-501, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21808235

ABSTRACT

Fusion genes have pivotal roles in the development and progression of human cancer and offer potential for rational drug design. Massively parallel sequencing has identified a panoply of in-frame expressed fusion genes, but early reports suggest that the majority of these are present at very low prevalence or are private events. Conventional methods for the identification of recurrent expressed fusion genes in large cohorts of cancers (eg fluorescence in situ hybridization (FISH) and reverse transcriptase PCR (RT-PCR)) are time consuming and prone to artifacts. Here, we describe a novel high-throughput strategy for the detection of recurrent fusion genes in cancer based on the Sequenom MassARRAY platform. Fusion genes were initially identified by massively parallel sequencing of breast cancer cell lines. For each fusion gene, two Sequenom probes were designed. Primary human breast cancers and cancer cell lines were interrogated for 10 fusion genes. Sensitivity, specificity, and predictive values of the MassARRAY method were then determined using FISH and qRT-PCR as the 'gold standard.' By combining two probes per fusion gene, the negative and positive predictive values were 100 and 71.4%, respectively. All fusion genes identified by massively parallel sequencing were accurately detected. No recurrent fusion genes were found. The MassARRAY-based approach described here may, therefore, be employed as a high-throughput screening tool for known fusion genes in human cancer. In keeping with other highly sensitive assays, further refinement of this technique is necessary to reduce the number of false-positive results.


Subject(s)
Breast Neoplasms/genetics , High-Throughput Nucleotide Sequencing/methods , Microarray Analysis/methods , Oncogene Proteins, Fusion , Cell Line, Tumor , Female , Genetic Testing/standards , HeLa Cells , High-Throughput Nucleotide Sequencing/standards , Humans , In Situ Hybridization, Fluorescence , Microarray Analysis/standards , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
5.
J Pathol ; 220(5): 562-73, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20099298

ABSTRACT

Cancers may be composed of multiple populations of submodal clones sharing the same initiating genetic lesions, followed by the acquisition of divergent genetic hits. Intra-tumour genetic heterogeneity has profound implications for cancer clinical management. To determine the extent of intra-tumour genetic heterogeneity in breast cancers, and whether the morphological diversity of breast cancers is underpinned by divergent genetic aberrations, we analysed the genomic profiles of microdissected, morphologically distinct components of six metaplastic breast carcinomas, tumours characterized by the presence of morphological areas with divergent differentiation. Each morphologically distinct component was separately microdissected and subjected to high-resolution microarray-based comparative genomic hybridization. Each component was also analysed by immunohistochemistry and in situ hybridization. Clonal relationship between the distinct components was tested by TP53 sequencing and human androgen receptor (HUMARA) X-chromosome inactivation assay. In the majority of cases, all morphologically distinct components from each case were clonal and displayed remarkably similar genetic profiles. In two cases, however, morphologically distinct components harboured specific genetic aberrations. In an adenosquamous carcinoma, the differences were such that only 20% of the genome harboured similar copy number changes. The squamous component displayed EGFR gene amplification, EGFR over-expression and lack of expression of hormone receptors, whereas the lobular component displayed the reverse pattern. The components of a biphasic spindle cell carcinoma harboured similar gains, losses, amplifications of 9p23 and 17q12 (HER2) and identical TP53 mutations, suggesting that these were relatively early events in the development of this tumour; however, each component displayed divergent focal amplifications. Importantly, the metastatic deposit of this case, despite harbouring a TP53 mutation identical to that found in the primary tumour, harboured additional specific focal amplifications. This proof-of-principle study provides direct evidence of intra-tumour genetic heterogeneity in breast cancers, and shows that in some cases morphological diversity may be underpinned by distinct genetic aberrations.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Chromosome Aberrations , Cluster Analysis , Comparative Genomic Hybridization , Evolution, Molecular , Female , Genes, p53/genetics , Humans , In Situ Hybridization/methods , Metaplasia/genetics , Microdissection/methods , Mutation , Neoplastic Stem Cells/pathology , Phenotype , Reverse Transcriptase Polymerase Chain Reaction/methods
6.
Eur Urol ; 79(6): 736-746, 2021 06.
Article in English | MEDLINE | ID: mdl-33678520

ABSTRACT

BACKGROUND: CD38, a druggable ectoenzyme, is involved in the generation of adenosine, which is implicated in tumour immune evasion. Its expression and role in prostate tumour-infiltrating immune cells (TIICs) have not been elucidated. OBJECTIVE: To characterise CD38 expression on prostate cancer (PC) epithelial cells and TIICs, and to associate this expression with clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS: RNAseq from 159 patients with metastatic castration-resistant prostate cancer (mCRPC) in the International Stand Up To Cancer/Prostate Cancer Foundation (SU2C/PCF) cohort and 171 mCRPC samples taken from 63 patients in the Fred Hutchinson Cancer Research Centre cohort were analysed. CD38 expression was immunohistochemically scored by a validated assay on 51 castration-resistant PC (CRPC) and matching, same-patient castration-sensitive PC (CSPC) biopsies obtained between 2016 and 2018, and was associated with retrospectively collected clinical data. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: mCRPC transcriptomes were analysed for associations between CD38 expression and gene expression signatures. Multiplex immunofluorescence determined CD38 expression in PC biopsies. Differences in CD38+ TIIC densities between CSPC and CRPC biopsies were analysed using a negative binomial mixed model. Differences in the proportions of CD38+ epithelial cells between non-matched benign prostatic epithelium and PC were compared using Fisher's exact test. Differences in the proportions of biopsies containing CD38+ tumour epithelial cells between matched CSPC and CRPC biopsies were compared by McNemar's test. Univariable and multivariable survival analyses were performed using Cox regression models. RESULTS AND LIMITATIONS: CD38 mRNA expression in mCRPC was most significantly associated with upregulated immune signalling pathways. CD38 mRNA expression was associated with interleukin (IL)-12, IL-23, and IL-27 signalling signatures as well as immunosuppressive adenosine signalling and T cell exhaustion signatures. CD38 protein was frequently expressed on phenotypically diverse TIICs including B cells and myeloid cells, but largely absent from tumour epithelial cells. CD38+ TIIC density increased with progression to CRPC and was independently associated with worse overall survival. Future studies are required to dissect TIIC CD38 function. CONCLUSIONS: CD38+ prostate TIICs associate with worse survival and immunosuppressive mechanisms. The role of CD38 in PC progression warrants investigation as insights into its functions may provide rationale for CD38 targeting in lethal PC. PATIENT SUMMARY: CD38 is expressed on the surface of white blood cells surrounding PC cells. These cells may impact PC growth and treatment resistance. Patients with PC with more CD38-expressing white blood cells are more likely to die earlier.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Adenosine , Humans , Male , Prostate , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , RNA, Messenger , Retrospective Studies
7.
Breast Cancer Res Treat ; 124(3): 653-66, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20213079

ABSTRACT

Amplification of 11q13 is found in approximately 15% of breast cancers. Cyclin D1 (CCND1) has been reported to be the 'driver' of this amplicon, however, multiple genes map to the smallest region of amplification of 11q13. Out of these genes, cortactin (CTTN) has been shown to be consistently overexpressed at the mRNA level in tumours harbouring 11q13 amplification. The aims of this study are to define whether CTTN is consistently co-amplified with the main core of the 11q13 amplicon, whether it is consistently overexpressed when amplified and to determine correlations between CTTN amplification and overexpression with clinicopathological features of breast cancers and survival of breast cancer patients. CTTN and CCND1 chromogenic in situ hybridisation (CISH) probes and a validated monoclonal antibody against CTTN were applied to a tissue microarray of a cohort of breast cancers from patients treated with anthracycline-based chemotherapy. CTTN and CCND1 amplifications were found in 12.3 and 12.4% of cases, respectively. All cases harbouring CTTN amplification also displayed CCND1 amplification. High expression of CTTN was found in 10.8% of cases and was associated with CTTN amplification, expression of 'basal' markers and topoisomerase IIα. Exploratory subgroup analysis of tumours devoid of 11q13 amplification revealed that high expression of CTTN in the absence of CTTN gene amplification was associated with lymph node negative disease, lack of hormone receptors and FOXA1, expression of 'basal' markers, high Ki-67 indices, p53 nuclear expression, and basal-like and triple negative phenotypes. CTTN expression and CTTN gene amplification were not associated with disease-, metastasis-free and overall survival. In conclusion, CTTN is consistently co-amplified with CCND1 and expressed at higher levels in breast cancers harbouring 11q13 amplification, suggesting that CTTN may also constitute one of the drivers of this amplicon. CTTN expression is not associated with the outcome of breast cancer patients treated with anthracycline-based chemotherapy.


Subject(s)
Biomarkers, Tumor/analysis , Breast Neoplasms/chemistry , Breast Neoplasms/genetics , Chromosomes, Human, Pair 11 , Cortactin/analysis , Gene Amplification , Immunohistochemistry , In Situ Hybridization , Tissue Array Analysis/methods , Biomarkers, Tumor/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Chemotherapy, Adjuvant , Chromogenic Compounds , Cortactin/genetics , Cyclin D1/genetics , Digoxigenin , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , London , Mastectomy , Neoplasm Staging , Predictive Value of Tests , Retrospective Studies , Time Factors , Treatment Outcome , Up-Regulation
8.
Mod Pathol ; 23(7): 951-60, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20453835

ABSTRACT

Breast adenosquamous carcinomas are rare tumours characterized by well-developed gland formation intimately admixed with solid nests of squamous cells immersed in a highly cellular spindle cell stroma. A low-grade variant has been described that is associated with a better prognosis. Here we studied five cases of adenosquamous carcinomas to determine their genetic profiles and to investigate whether the spindle cell component of these cancers could at least in part stem from the glandular/epithelial components. Five adenosquamous carcinomas of the breast were subjected to (1) immunohistochemical analysis, (2) microdissection and genetic analysis with a high-resolution microarray comparative genomic hybridization platform, and (3) chromogenic in situ hybridization. All cases displayed a triple-negative immunophenotype, consistently expressed 'basal' keratins and showed variable levels of epidermal growth factor receptor expression. Microarray comparative genomic hybridization analysis of two of the cases revealed multiple low-level gains and losses affecting several chromosomal arms. Case 1 displayed gains of the whole of chromosome 7, and case 2 harboured a focal, high-level amplification of 7p12, encompassing the epidermal growth factor receptor gene, which was associated with strong and intense membranous epidermal growth factor receptor expression. Chromogenic in situ hybridization revealed that the genetic features found in the epithelial cells were also present in a minority of the spindle cells of the stromal component, in particular in those near the epithelial clusters, indicating that some of the spindle cells are clonal and derived from the epithelial component of the tumour. In conclusion, breast adenosquamous carcinomas are triple-negative cancers that express 'basal' keratins. These tumours harbour complex genetic profiles. Some of the spindle cells in adenosquamous carcinomas are derived from the epithelial component, suggesting that adenosquamous carcinomas may also be part of the group of metaplastic breast carcinomas with spindle cell metaplastic elements.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Adenosquamous/genetics , Carcinoma, Adenosquamous/pathology , Aged , Biomarkers, Tumor/analysis , Breast Neoplasms/metabolism , Carcinoma, Adenosquamous/metabolism , Comparative Genomic Hybridization , Female , Humans , Immunohistochemistry , In Situ Hybridization , Microdissection , Middle Aged , Oligonucleotide Array Sequence Analysis
9.
J Pathol ; 218(3): 301-15, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19479727

ABSTRACT

Micropapillary carcinomas (MPCs) can present as a rare histological special type of breast cancer; however, this histological type is more frequently found admixed with invasive ductal carcinomas of no special type (IDC-NSTs). We have previously demonstrated that pure MPCs constitute a distinct entity at the morphological and genetic levels. Here, we sought to determine whether mixed MPCs have genomic aberrations similar to those found in pure MPCs, and to investigate whether the distinct morphological components of MPCs harbour different genetic aberrations. Using high-resolution microarray comparative genomic hybridization (aCGH), we profiled a series of 10 MPCs of mixed histology and 20 IDC-NSTs matched for grade and oestrogen receptor (ER) status. In addition, we generated tissue microarrays containing a series of 24 pure and 40 mixed MPCs and performed immunohistochemical analysis with ER, progesterone receptor (PR), Ki-67, HER2, cytokeratin (CK) 5/6, CK14, CK17, EGFR, topoisomerase-IIalpha, cyclin D1, caveolin-1 and E-cadherin antibodies. In situ hybridization was employed to evaluate the prevalence of HER2, TOP2A, EGFR, CCND1, MYC and FGFR1 gene amplification. Our results demonstrate that mixed MPCs harbour similar patterns of genomic aberrations and phenotype (82.5% luminal and 17.5% HER2) compared to pure MPCs. A comparison between the distinct morphological components of mixed MPCs in a pairwise fashion revealed that both components harbour strikingly similar genomic profiles. When compared to grade- and ER-matched IDC-NSTs, mixed MPCs significantly more frequently harboured amplification of multiple regions on 8q (adjusted Fisher's p value < 0.05). Furthermore, mixed MPCs displayed higher proliferative rates than grade- and ER-matched IDC-NSTs. Our results suggest that micropapillary differentiation in breast cancer may identify a subgroup of more aggressive ER-positive breast carcinomas, even in those featuring a mixed histology, and that mixed MPCs are more closely related to pure MPCs than to IDC-NSTs.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Carcinoma, Papillary/genetics , Neoplasms, Complex and Mixed/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Ductal, Breast/pathology , Carcinoma, Papillary/metabolism , Carcinoma, Papillary/pathology , Chromosome Aberrations , Comparative Genomic Hybridization , Female , Humans , Immunophenotyping , Neoplasm Proteins/metabolism , Neoplasms, Complex and Mixed/metabolism , Neoplasms, Complex and Mixed/pathology , Oligonucleotide Array Sequence Analysis
10.
Clin Cancer Res ; 15(7): 2269-80, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19293255

ABSTRACT

PURPOSE: To identify therapeutic targets in ovarian clear cell carcinomas, a chemoresistant and aggressive type of ovarian cancer. EXPERIMENTAL DESIGN: Twelve ovarian clear cell carcinoma cell lines were subjected to tiling path microarray comparative genomic hybridization and genome-wide expression profiling analysis. Regions of high-level amplification were defined and genes whose expression levels were determined by copy number and correlated with gene amplification were identified. The effects of inhibition of PPM1D were assessed using short hairpin RNA constructs and a small-molecule inhibitor (CCT007093). The prevalence of PPM1D amplification and mRNA expression was determined using chromogenic in situ hybridization and quantitative real-time reverse transcription-PCR in a cohort of pure ovarian clear cell carcinomas and on an independent series of unselected epithelial ovarian cancers. RESULTS: Array-based comparative genomic hybridization analysis revealed regions of high-level amplification on 1q32, 1q42, 2q11, 3q24-q26, 5p15, 7p21-p22, 11q13.2-q13.4, 11q22, 17q21-q22, 17q23.2, 19q12-q13, and 20q13.2. Thirty-four genes mapping to these regions displayed expression levels that correlated with copy number gains/amplification. PPM1D had significantly higher levels of mRNA expression in ovarian clear cell carcinoma cell lines harboring gains/amplifications of 17q23.2. PPM1D inhibition revealed that PPM1D expression and phosphatase activity are selectively required for the survival of ovarian clear cell carcinoma cell lines with 17q23.2 amplification. PPM1D amplification was significantly associated with ovarian clear cell carcinoma histology (P = 0.0003) and found in 10% of primary ovarian clear cell carcinomas. PPM1D expression levels were significantly correlated with PPM1D gene amplification in primary ovarian clear cell carcinomas. CONCLUSION: Our data provide strong circumstantial evidence that PPM1D is a potential therapeutic target for a subgroup of ovarian clear cell carcinomas.


Subject(s)
Adenocarcinoma, Clear Cell/genetics , Cyclopentanes/pharmacology , Gene Amplification , Ovarian Neoplasms/genetics , Phosphoprotein Phosphatases/genetics , Thiophenes/pharmacology , Adenocarcinoma, Clear Cell/drug therapy , Adenocarcinoma, Clear Cell/enzymology , Cell Line, Tumor , Chromosome Aberrations , Chromosomes, Human, Pair 17 , Comparative Genomic Hybridization , Enzyme Inhibitors/pharmacology , Female , Gene Expression Profiling , Genes, p53 , Humans , Mutation , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/enzymology , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphoprotein Phosphatases/metabolism , Protein Phosphatase 2C , RNA Interference , p38 Mitogen-Activated Protein Kinases/metabolism
11.
Genes Chromosomes Cancer ; 48(4): 351-65, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19156836

ABSTRACT

Loss of the long arm of chromosome 16 (16q) is observed in the vast majority of low grade/grade I (GI) invasive ductal carcinomas of no special type (IDC-NSTs), whereas this event is uncommonly seen in high grade/grade III (GIII) IDC-NSTs. Together with data on the pathology and genetics of breast cancer recurrences, this has led to the proposal that GI and GIII breast cancers evolve through distinct genetic pathways and that progression from GI to GIII is an unlikely biological phenomenon. We compared the genomic profiles of GIII-IDC-NSTs with 16q whole arm loss (16qWL) according to estrogen receptor (ER) status. 16qWL was found in 36.5% of cases and was significantly associated with ER expression and luminal phenotype. ER+ GIII-IDC-NSTs with 16qWL displayed significantly higher levels of genomic instability than ER+ IDC-NSTs without 16qWL. Furthermore, ER+ and ER- IDC-NSTs stratified according to the presence of 16qWL harbored distinct patterns of genetic aberrations. Interestingly, ER+/16qWL tumors displayed genetic features usually found in tumors with homologous DNA repair defects and significantly more frequently harbored heterozygous loss of BRCA2 than the remaining ER+ cancers. Our results demonstrate that approximately one third of GIII tumors harbor 16qWL, confirming that progression from low to high grade breast cancer is not found in the majority of breast cancers. 16qWL was significantly more prevalent in ER+/luminal GIII-IDC-NSTs. Given that GI breast cancers harbor a luminal phenotype, our results suggest that if progression from GI to GIII breast cancer does happen, it may preferentially occur in breast cancers of luminal phenotype.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/metabolism , Chromosomes, Human, Pair 16/genetics , Receptors, Estrogen/metabolism , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Chromosome Aberrations , Chromosome Deletion , Cluster Analysis , Comparative Genomic Hybridization , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Genomic Instability , Humans , Immunohistochemistry , Male , Receptors, Estrogen/genetics
12.
Eur Urol ; 76(4): 469-478, 2019 10.
Article in English | MEDLINE | ID: mdl-31345636

ABSTRACT

BACKGROUND: Prostate-specific membrane antigen (PSMA; folate hydrolase) prostate cancer (PC) expression has theranostic utility. OBJECTIVE: To elucidate PC PSMA expression and associate this with defective DNA damage repair (DDR). DESIGN, SETTING, AND PARTICIPANTS: Membranous PSMA (mPSMA) expression was scored immunohistochemically from metastatic castration-resistant PC (mCRPC) and matching, same-patient, diagnostic biopsies, and correlated with next-generation sequencing (NGS) and clinical outcome data. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Expression of mPSMA was quantitated by modified H-score. Patient DNA was tested by NGS. Gene expression and activity scores were determined from mCRPC transcriptomes. Statistical correlations utilised Wilcoxon signed rank tests, survival was estimated by Kaplan-Meier test, and sample heterogeneity was quantified by Shannon's diversity index. RESULTS AND LIMITATIONS: Expression of mPSMA at diagnosis was associated with higher Gleason grade (p=0.04) and worse overall survival (p=0.006). Overall, mPSMA expression levels increased at mCRPC (median H-score [interquartile range]: castration-sensitive prostate cancer [CSPC] 17.5 [0.0-60.0] vs mCRPC 55.0 [2.8-117.5]). Surprisingly, 42% (n=16) of CSPC and 27% (n=16) of mCRPC tissues sampled had no detectable mPSMA (H-score <10). Marked intratumour heterogeneity of mPSMA expression, with foci containing no detectable PSMA, was observed in all mPSMA expressing CSPC (100%) and 37 (84%) mCRPC biopsies. Heterogeneous intrapatient mPSMA expression between metastases was also observed, with the lowest expression in liver metastases. Tumours with DDR had higher mPSMA expression (p=0.016; 87.5 [25.0-247.5] vs 20 [0.3-98.8]; difference in medians 60 [5.0-95.0]); validation cohort studies confirmed higher mPSMA expression in patients with deleterious aberrations in BRCA2 (p<0.001; median H-score: 300 [165-300]; difference in medians 195.0 [100.0-270.0]) and ATM (p=0.005; 212.5 [136.3-300]; difference in medians 140.0 [55.0-200]) than in molecularly unselected mCRPC biopsies (55.0 [2.75-117.5]). Validation studies using mCRPC transcriptomes corroborated these findings, also indicating that SOX2 high tumours have low PSMA expression. CONCLUSIONS: Membranous PSMA expression is upregulated in some but not all PCs, with mPSMA expression demonstrating marked inter- and intrapatient heterogeneity. DDR aberrations are associated with higher mPSMA expression and merit further evaluation as predictive biomarkers of response for PSMA-targeted therapies in larger, prospective cohorts. PATIENT SUMMARY: Through analysis of prostate cancer samples, we report that the presence of prostate-specific membrane antigen (PSMA) is extremely variable both within one patient and between different patients. This may limit the usefulness of PSMA scans and PSMA-targeted therapies. We show for the first time that prostate cancers with defective DNA repair produce more PSMA and so may respond better to PSMA-targeting treatments.


Subject(s)
Antigens, Surface/biosynthesis , DNA Repair , Glutamate Carboxypeptidase II/biosynthesis , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Antigens, Surface/analysis , Glutamate Carboxypeptidase II/analysis , Humans , Male , Prostatic Neoplasms, Castration-Resistant/chemistry , Retrospective Studies
13.
Eur Urol ; 76(5): 676-685, 2019 11.
Article in English | MEDLINE | ID: mdl-31036442

ABSTRACT

BACKGROUND: Detection of androgen receptor splice variant-7 (AR-V7) mRNA in circulating tumour cells (CTCs) is associated with worse outcome in metastatic castration-resistant prostate cancer (mCRPC). However, studies rarely report comparisons with CTC counts and biopsy AR-V7 protein expression. OBJECTIVE: To determine the reproducibility of AdnaTest CTC AR-V7 testing, and associations with clinical characteristics, CellSearch CTC counts, tumour biopsy AR-V7 protein expression and overall survival (OS). DESIGN, SETTING, AND PARTICIPANTS: CTC AR-V7 status was determined for 227 peripheral blood samples, from 181 mCRPC patients with CTC counts (202 samples; 136 patients) and matched mCRPC biopsies (65 samples; 58 patients). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: CTC AR-V7 status was associated with clinical characteristics, CTC counts, and tissue biopsy AR-V7 protein expression. The association of CTC AR-V7 status and other baseline variables with OS was determined. RESULTS AND LIMITATIONS: Of the samples, 35% were CTC+/AR-V7+. CTC+/AR-V7+ samples had higher CellSearch CTC counts (median CTC; interquartile range [IQR]: 60, 19-184 vs 9, 2-64; Mann-Whitney test p<0.001) and biopsy AR-V7 protein expression (median H-score, IQR: 100, 63-148 vs 15, 0-113; Mann-Whitney test p=0.004) than CTC+/AR-V7- samples. However, both CTC- (63%) and CTC+/AR-V7- (62%) patients had detectable AR-V7 protein in contemporaneous biopsies. After accounting for baseline characteristics, there was shorter OS in CTC+/AR-V7+ patients than in CTC- patients (hazard ratio [HR] 2.13; 95% confidence interval [CI] 1.23-3.71; p=0.02); surprisingly, there was no evidence that CTC+/AR-V7+ patients had worse OS than CTC+/AR-V7- patients (HR 1.26; 95% CI 0.73-2.17; p=0.4). A limitation of this study was the heterogeneity of treatment received. CONCLUSIONS: Studies reporting the prognostic relevance of CTC AR-V7 status must account for CTC counts. Discordant CTC AR-V7 results and AR-V7 protein expression in matched, same-patient biopsies are reported. PATIENT SUMMARY: Liquid biopsies that determine circulating tumour cell androgen receptor splice variant-7 status have the potential to impact treatment decisions in metastatic castration-resistant prostate cancer patients. Robust clinical qualification of these assays is required before their routine use.


Subject(s)
Neoplastic Cells, Circulating , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen/genetics , Alternative Splicing , Biopsy/methods , Cell Count/methods , Drug Resistance, Neoplasm , Genetic Techniques , Humans , Male , Middle Aged , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/genetics , Neoplasm Staging , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Prognosis , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Isoforms/genetics , Reproducibility of Results
14.
Clin Cancer Res ; 13(1): 90-101, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17200343

ABSTRACT

PURPOSE: The distribution and significance of caveolin 1 (CAV1) expression in different breast cell types and role in breast carcinogenesis remain poorly understood. Both tumor-suppressive and oncogenic roles have been proposed for this protein. The aims of this study were to characterize the distribution of CAV1 in normal breast, benign breast lesions, breast cancer precursors, and metaplastic breast carcinomas; to assess the prognostic significance of CAV1 expression in invasive breast carcinomas; and to define whether CAV1 gene amplification is the underlying genetic mechanism driving CAV1 overexpression in breast carcinomas. EXPERIMENTAL DESIGN: CAV1 distribution in frozen and paraffin-embedded whole tissue sections of normal breast was evaluated using immunohistochemistry, immunofluorescence, and immunoelectron microscopy. CAV1 expression was immunohistochemically analyzed in benign lesions, breast cancer precursors, and metaplastic breast carcinomas and in a cohort of 245 invasive breast carcinomas from patients treated with surgery followed by anthracycline-based chemotherapy. In 25 cases, CAV1 gene amplification was assessed by chromogenic in situ hybridization. RESULTS: In normal breast, CAV1 was expressed in myoepithelial cells, endothelial cells, and a subset of fibroblasts. Luminal epithelial cells showed negligible staining. CAV1 was expressed in 90% of 39 metaplastic breast carcinomas and in 9.4% of 245 invasive breast cancers. In the later cohort, CAV1 expression was significantly associated with 'basal-like' immunophenotype and with shorter disease-free and overall survival on univariate analysis. CAV1 gene amplification was found in 13% of cases with strong CAV1 expression. CONCLUSIONS: The concurrent CAV1 amplification and overexpression call into question its tumor-suppressive effects in basal-like breast carcinomas.


Subject(s)
Breast Neoplasms/pathology , Breast Neoplasms/ultrastructure , Breast/metabolism , Carcinoma/pathology , Carcinoma/ultrastructure , Caveolin 1/biosynthesis , Gene Expression Regulation, Neoplastic , Immunohistochemistry/methods , In Situ Hybridization , Breast/pathology , Breast Neoplasms/metabolism , Carcinoma/metabolism , Cell Line, Tumor , Female , Humans , Immunophenotyping , Microscopy, Fluorescence , Microscopy, Immunoelectron , Neoplasm Invasiveness , Neoplasm Metastasis , Prognosis , Treatment Outcome
15.
Breast Cancer Res ; 9(2): R23, 2007.
Article in English | MEDLINE | ID: mdl-17397528

ABSTRACT

BACKGROUND: The amplicon on 8p11.2 is reported to be found in up to 10% of breast carcinomas. It has been demonstrated recently that this amplicon has four separate cores. The second core encompasses important oncogene candidates, including the fibroblast growth factor receptor 1 (FGFR1) gene. Recent studies have demonstrated that specific FGFR1 amplification correlates with gene expression and that FGFR1 activity is required for the survival of a FGFR1 amplified breast cancer cell line. METHODS: FGFR1 amplification was analysed in tissue microarrays comprising a cohort of 880 unselected breast tumours by means of chromogenic in situ hybridisation using inhouse-generated FGFR1-specific probes. Chromogenic in situ hybridisation signals were counted in a minimum 30 morphologically unequivocal neoplastic cells. Amplification was defined as >5 signals per nucleus in more than 50% of cancer cells or when large gene copy clusters were seen. RESULTS: FGFR1 amplification was observed in 8.7% of the tumours and was significantly more prevalent in patients >50 years of age and in tumours that lacked HER2 expression. No association was found with other histological parameters. Survival analysis revealed FGFR1 amplification as an independent prognostic factor for overall survival in the whole cohort. Subgroup analysis demonstrated that the independent prognostic impact of FGFR1 amplification was only seen in patients with oestrogen-receptor-positive tumours, where FGFR1 amplification was the strongest independent predictor of poor outcome. CONCLUSION: Given that up to 8.7% of all breast cancers harbour FGFR1 amplification and that this amplification is an independent predictor of overall survival, further studies analysing the FGFR1 as a potential therapeutic target for breast cancer patients are warranted.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma/genetics , Carcinoma/metabolism , Gene Expression Regulation, Neoplastic , Receptor, Fibroblast Growth Factor, Type 1/biosynthesis , Receptor, Fibroblast Growth Factor, Type 1/genetics , Adult , Aged , Cell Line, Tumor , Cohort Studies , Female , Humans , In Situ Hybridization , Middle Aged , Oligonucleotide Array Sequence Analysis , Prognosis , Proportional Hazards Models
16.
Hum Pathol ; 38(8): 1105-22, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17640550

ABSTRACT

Fluorescent (FISH) and chromogenic (CISH) in situ hybridization have recently become part of the diagnostic armamentarium of breast pathologists. HER2 gene testing by FISH and/or CISH has become an integral part of the diagnostic workup for patients with breast cancer. In this era of high throughput technologies, these techniques have proven instrumental for the validation of results from microarray-based comparative genomic hybridization and for the identification of novel oncogenes and tumor suppressor genes. Furthermore, FISH and CISH applied to tissue microarrays have expedited the characterization of genomic changes associated with specific breast cancer molecular subtypes and the identification of novel prognostic and predictive markers. In this review, we provide in this review a critical assessment of CISH and FISH and the impact of the analysis of amplification of specific oncogenes (eg, HER2, EGFR, MYC, CCND1, and FGFR1) and deletion of tumor suppressor genes (eg, BRCA1 and BRCA2) on our understanding of breast cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Chromogenic Compounds/metabolism , In Situ Hybridization, Fluorescence , Molecular Diagnostic Techniques , DNA, Neoplasm/analysis , Female , Humans , Tissue Array Analysis
17.
J Clin Pathol ; 60(9): 1017-23, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17158641

ABSTRACT

AIMS: To analyse the correlation between MYC amplification and various clinicopathological features and outcome in a cohort of 245 patients with invasive breast carcinoma treated with surgery followed by anthracycline-based chemotherapy. Given the high prevalence of MYC amplification in tumours of BRCA1 mutation carriers and the similarities between these and sporadic "basal-like" carcinomas, the prevalence of MYC amplification in "basal-like" breast carcinomas was investigated. METHODS: MYC gene copy number was assessed on tissue microarrays containing duplicate cores of 245 invasive breast carcinomas by means of chromogenic in situ hybridisation using SpotLight C-MYC amplification probe and chromosome 8 centromeric probe (CEP8). Signals were evaluated at 400x magnification; 30 morphologically unequivocal neoplastic cells in each core were counted for the presence of the gene and CEP8 probes. RESULTS: Amplification was defined as a MYC:CEP8 ratio >2. Signals for both MYC and CEP8 were assessable in 196/245 (80%) tumours. MYC amplification was found in 19/196 cases (9.7%) and was not associated with tumour size, histological grade, positivity for oestrogen receptor, progesterone receptor, HER2, epidermal growth factor, cytokeratins 14, 5/6 and 17, MIB1 or p53. Only 4% of basal-like carcinomas showed MYC amplification, compared to 8.75% and 10.7% of luminal and HER2 tumours respectively. On univariate analysis, MYC amplification displayed a significant association with shorter metastasis-free and overall survival and proved to be an independent prognostic factor on multivariate survival analysis. CONCLUSION: MYC amplification is not associated with "basal-like" phenotype and proved to be an independent prognostic factor for breast cancer patients treated with anthracycline-based chemotherapy.


Subject(s)
Breast Neoplasms/genetics , Genes, myc , Anthracyclines/therapeutic use , Antineoplastic Agents/therapeutic use , Breast Neoplasms/therapy , Chemotherapy, Adjuvant , Chromogenic Compounds , Female , Gene Amplification/genetics , Humans , Mastectomy , Prognosis , Survival Analysis , Tissue Array Analysis/methods , Treatment Outcome
18.
J Clin Pathol ; 60(5): 492-9, 2007 May.
Article in English | MEDLINE | ID: mdl-16467165

ABSTRACT

BACKGROUND: Cells with oncocytic change (OC) are a common finding in salivary glands (SGs) and in SG tumours. When found within pleomorphic adenomas (PAs), cells with OC may be perceived as evidence of malignancy, and lead to a misdiagnosis of carcinoma ex pleomorphic adenoma (CaExPa). AIM: To describe a case of PA with atypical OC, resembling a CaExPa. A genomewide molecular analysis was carried out to compare the molecular genetic features of the two components and to determine whether the oncocytic cells originated from PA cells, entrapped normal cells, or whether these cells constitute an independent tumour. MATERIALS AND METHODS: Representative blocks were immunohistochemically analysed with antibodies raised against cytokeratin (Ck) 5/6, Ck8/18, Ck14, vimentin, p63, alpha-smooth muscle actin (ASMA), S100 protein, anti-mitochondria antibody, beta-catenin, HER2, Ki67, p53 and epidermal growth factor receptor. Typical areas of PA and OC were microdissected and subjected to microarray-based comparative genomic hybridisation (aCGH). Chromogenic in situ hybridisation (CISH) was performed with in-house generated probes to validate the aCGH findings. RESULTS: PA cells showed the typical immunohistochemical profile, including positivity for Ck5/6, Ck8/18, Ck14, vimentin, ASMA, S100 protein, p63, epidermal growth factor receptor and beta-catenin, whereas oncocytic cells showed a luminal phenotype, expression of anti-mitochondria antibody and reduced beta-catenin staining. Both components showed low proliferation rates and lacked p53 reactivity. aCGH revealed a similar amplification in both components, mapping to 12q13.3-q21.1, which was further validated by CISH. No HER2 gene amplification or overexpression was observed. The foci of oncocytic metaplasia showed an additional low-level gain of 6p25.2-p21.31. CONCLUSION: The present data demonstrate that the bizarre atypical cells of the present case show evidence of clonality but no features of malignancy. In addition, owing to the presence of a similar genome amplification pattern in both components, it is proposed that at least in some cases, OC may originate from PA cells.


Subject(s)
Adenoma, Pleomorphic/pathology , Oxyphil Cells/pathology , Parotid Neoplasms/pathology , Adenoma, Pleomorphic/genetics , Adenoma, Pleomorphic/metabolism , Adult , Chromosomes, Human, Pair 12/genetics , Female , Humans , Microdissection/methods , Neoplasm Proteins/metabolism , Nucleic Acid Hybridization/methods , Parotid Neoplasms/genetics , Parotid Neoplasms/metabolism
19.
Cell Oncol ; 29(5): 399-408, 2007.
Article in English | MEDLINE | ID: mdl-17726262

ABSTRACT

Gliomas are the most common and devastating primary brain tumours. Despite therapeutic advances, the majority of gliomas do not respond either to chemo or radiotherapy. KIT, a class III receptor tyrosine kinase (RTK), is frequently involved in tumourigenic processes. Currently, KIT constitutes an attractive therapeutic target. In the present study we assessed the frequency of KIT overexpression in gliomas and investigated the genetic mechanisms underlying KIT overexpression. KIT (CD117) immunohistochemistry was performed in a series of 179 gliomas of various grades. KIT activating gene mutations (exons 9, 11, 13 and 17) and gene amplification analysis, as defined by chromogenic in situ hybridization (CISH) and quantitative real-time PCR (qRT-PCR) were performed in CD117 positive cases. Tumour cell immunopositivity was detected in 15.6% (28/179) of cases, namely in 25% (1/4) of pilocytic astrocytomas, 25% (5/20) of diffuse astrocytomas, 20% (1/5) of anaplastic astrocytomas, 19.5% (15/77) of glioblastomas and one third (3/9) of anaplastic oligoastrocytomas. Only 5.7% (2/35) of anaplastic oligodendrogliomas showed CD117 immunoreactivity. No association was found between tumour CD117 overexpression and patient survival. In addition, we also observed CD117 overexpression in endothelial cells, which varied from 0-22.2% of cases, being more frequent in high-grade lesions. No KIT activating mutations were identified. Interestingly, CISH and/or qRT-PCR analysis revealed the presence of KIT gene amplification in 6 glioblastomas and 2 anaplastic oligoastrocytomas, corresponding to 33% (8/24) of CD117 positive cases. In conclusion, our results demonstrate that KIT gene amplification rather than gene mutation is a common genetic mechanism underlying KIT expression in subset of malignant gliomas. Further studies are warranted to determine whether glioma patients exhibiting KIT overexpression and KIT gene amplification may benefit from therapy with anti-KIT RTK inhibitors.


Subject(s)
Gene Expression Regulation, Neoplastic , Glioma/genetics , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Glioma/pathology , Humans , Immunohistochemistry , Male , Middle Aged
20.
Breast Cancer Res ; 7(6): R1028-35, 2005.
Article in English | MEDLINE | ID: mdl-16280056

ABSTRACT

INTRODUCTION: Metaplastic breast carcinomas constitute a heterogeneous group of neoplasms, accounting for less than 1% of all invasive mammary carcinomas. Approximately 70-80% of metaplastic breast carcinomas overexpress the epidermal growth factor receptor (EGFR). Human epidermal growth factor receptor (HER)2 and EGFR have attracted much attention in the medical literature over the past few years owing to the fact that humanized monoclonal antibodies against HER2 and therapies directed against the extracellular ligand-binding domain or the intracellular tyrosine kinase domain of EGFR have proven successful in treating certain types of human cancer. We investigated whether HER2 and EGFR overexpression was present and evaluated gene amplification in a series of metaplastic breast carcinomas. METHOD: Twenty-five metaplastic breast carcinomas were immunohistochemically analyzed using a monoclonal antibody (31G7) for EGFR and two antibodies for HER2 (Herceptest and CB11) and scored using the Herceptest scoring system. Gene amplification was evaluated by chromogenic in situ hybridization using Zymed Spot-Light EGFR and HER2 amplification probe. The results were evaluated by bright field microscopy under 40x and 63x objective lenses. RESULTS: Nineteen (76%) metaplastic breast carcinomas exhibited EGFR ovexpression, and among these EGFR amplification (defined either by large gene clusters or >5 signals/nucleus in >50% of neoplastic cells) was detected in seven cases (37%): three carcinomas with squamous differentiation and four spindle cell carcinomas. One case exhibited HER2 overexpression of grade 2+ (>10% of cells with weak to moderate complete membrane staining), but HER2 gene amplification was not detected. CONCLUSION: Metaplastic breast carcinomas frequently overexpressed EGFR, which was associated with EGFR gene amplification in one-third of cases. Our findings suggest that some patients with metaplastic breast carcinomas might benefit from novel therapies targeting EGFR. Because most metaplastic breast carcinomas overexpress EGFR without gene amplification, further studies to evaluate EGFR activating mutations are warranted.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , ErbB Receptors/biosynthesis , Gene Amplification , Receptor, ErbB-2/biosynthesis , ErbB Receptors/genetics , Female , Gene Expression Profiling , Humans , Immunohistochemistry , In Situ Hybridization , Metaplasia , Receptor, ErbB-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL