Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Chem Chem Phys ; 23(23): 12926-12944, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34081066

ABSTRACT

Electrochemical impedance spectroscopy (EIS) is a versatile tool to understand complex processes in batteries. This technique can investigate the effects of battery components like the electrode and electrolyte, electrochemical reactions, interfaces, and interphases forming in the electrochemical systems. The interpretation of the EIS data is typically made using models expressed in terms of the so-called electrical equivalent circuits (EECs) to fit the impedance spectra. Therefore, the EECs must unambiguously represent the electrochemistry of the system. EEC models with a physical significance are more relevant than the empirical ones with their inherent imperfect description of the ongoing processes. This review aims to present the readers with the importance of physical EEC modeling within the context of battery research. A general introduction to EIS and EEC models along with a brief description of the mathematical formalism is provided, followed by showcasing the importance of physical EEC models for EIS on selected examples from the research on traditional, aqueous, and newer all-solid-state battery systems.

2.
ACS Appl Mater Interfaces ; 15(19): 23951-23962, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37145973

ABSTRACT

Prussian blue analogues are considered as promising candidates for aqueous sodium-ion batteries providing a decently high energy density for stationary energy storage. However, suppose the operation of such materials under high-power conditions could be facilitated. In that case, their application might involve fast-response power grid stabilization and enable short-distance urban mobility due to fast re-charging. In this work, sodium nickel hexacyanoferrate thin-film electrodes are synthesized via a facile electrochemical deposition approach to form a model system for a robust investigation. Their fast-charging capability is systematically elaborated with regard to the electroactive material thickness in comparison to a ″traditional″ composite-type electrode. It is found that quasi-equilibrium kinetics allow extremely fast (dis)charging within a few seconds for sub-micron film thicknesses. Specifically, for a thickness below ≈ 500 nm, 90% of the capacity can be retained at a rate of 60C (1 min for full (dis)charge). A transition toward mass transport control is observed when further increasing the rate, with thicker films being dominated by this mode earlier than thinner films. This can be entirely attributed to the limiting effects of solid-state diffusion of Na+ within the electrode material. By presenting a PBA model cell yielding 25 Wh kg-1 at up to 10 kW kg-1, this work highlights a possible pathway toward the guided design of hybrid battery-supercapacitor systems. Furthermore, open challenges associated with thin-film electrodes are discussed, such as the role of parasitic side reactions, as well as increasing the mass loading.

3.
ACS Appl Mater Interfaces ; 14(2): 3515-3525, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34990115

ABSTRACT

Aqueous sodium-ion batteries based on Prussian Blue Analogues (PBA) are considered as promising and scalable candidates for stationary energy storage systems, where longevity and cycling stability are assigned utmost importance to maintain economic viability. Although degradation due to active material dissolution is a common issue of battery electrodes, it is hardly observable directly due to a lack of in operando techniques, making it challenging to optimize the performance of electrodes. By operating Na2Ni[Fe(CN)6] and Na2Co[Fe(CN)6] model electrodes in a flow-cell setup connected to an inductively coupled plasma mass spectrometer, in this work, the dynamics of constituent transition-metal dissolution during the charge-discharge cycles was monitored in real time. At neutral pHs, the extraction of nickel and cobalt was found to drive the degradation process during charge-discharge cycles. It was also found that the nature of anions present in the electrolytes has a significant impact on the degradation rate, determining the order ClO4- > NO3- > Cl- > SO42- with decreasing stability from the perchlorate to sulfate electrolytes. It is proposed that the dissolution process is initiated by detrimental specific adsorption of anions during the electrode oxidation, therefore scaling with their respective chemisorption affinity. This study involves an entire comparison of the effectiveness of common stabilization strategies for PBAs under very fast (dis)charging conditions at 300C, emphasizing the superiority of highly concentrated NaClO4 with almost no capacity loss after 10 000 cycles for Na2Ni[Fe(CN)6].

4.
ACS Appl Mater Interfaces ; 11(8): 8060-8071, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30715835

ABSTRACT

Ionic liquid (IL) post-treatment for thin films of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is employed for the simultaneous enhancement of Seebeck coefficients and electrical conductivities. Through systematic variation of the ILs, by changing the anions while keeping the cation unchanged, changes in thermoelectric, spectroscopic, and morphological properties are investigated by means of UV-vis spectroscopy and grazing-incidence wide-angle X-ray scattering (GIWAXS) as a function of the IL concentration. The simultaneous enhancement in the two important thermoelectric properties is ascribed to the binary nature of the ILs, which complements that of PEDOT:PSS. The anions of the ILs primarily interact with the positively charged, conducting PEDOT, while the cations interact with negatively charged insulating PSS. Therefore, post-treatment with ILs allows for primary and secondary doping of PEDOT:PSS at the same time. Differences in the obtained Seebeck coefficients for the investigated ILs are ascribed to the chemical properties of the anions. Additionally, the choice of the latter has implications on the morphology of the treated PEDOT:PSS films regarding average π-π-stacking distances of PEDOT chains, PEDOT-to-PSS ratios, and edge-on-to-face-on ratios, influencing charge transport properties macroscopically. A morphological model is presented, highlighting the influence of each IL in comparison with pristine PEDOT:PSS films.

SELECTION OF CITATIONS
SEARCH DETAIL