Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Anal Chem ; 93(31): 10816-10824, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34324311

ABSTRACT

The tumor suppressor PTEN is the main negative regulator of PI3K/AKT/mTOR signaling and is commonly found downregulated in breast cancer (BC). Conflicting data from conventional immunoassays such as immunohistochemistry (IHC) has sparked controversy about PTEN's role as a prognostic and predictive biomarker in BC, which can be largely attributed to the lack of specificity, sensitivity, and interlaboratory standardization. Here, we present a fully standardized, highly sensitive, robust microflow immuno-MRM (iMRM) assay that enables precise quantitation of PTEN concentrations in cells and fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) tissues, down to 0.1 fmol/10 µg of extracted protein, with high interday and intraday precision (CV 6.3%). PTEN protein levels in BC PDX samples that were determined by iMRM correlate well with semiquantitative IHC and WB data. iMRM, however, allowed the precise quantitation of PTEN-even in samples that were deemed to be PTEN negative by IHC or western blot (WB)-while requiring substantially less tumor tissue than WB. This is particularly relevant because the extent of PTEN downregulation in tumors has been shown to correlate with severity. Our standardized and robust workflow includes an 11 min microflow LC-MRM analysis on a triple-quadrupole MS and thus provides a much needed tool for the study of PTEN as a potential biomarker for BC.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Breast Neoplasms/diagnosis , Female , Humans , Immunohistochemistry , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases
2.
Anal Chem ; 89(19): 10592-10600, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28853539

ABSTRACT

The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway is one of the most commonly dysregulated signaling pathways that is linked to cancer development and progression, and its quantitative protein analysis holds the promise to facilitate patient stratification for targeted therapies. Whereas immunohistochemistry (IHC) and immunoassays are routinely used for clinical analysis of signaling pathways, mass spectrometry-based approaches such as liquid chromatography/electrospray ionization multiple reaction monitoring mass spectrometry (LC/ESI-MRM-MS) are more commonly used in clinical research. Both technologies have certain disadvantages, namely, the nonspecificity of IHC and immunoassays, and potentially long analysis times per sample of LC/ESI-MRM-MS. To create a robust, fast, and sensitive protein quantification tool, we developed immuno-matrix-assisted laser desorption/ionization (iMALDI) assays with automated liquid handling. The assays are able to quantify AKT1 and AKT2 from breast cancer and colon cancer cell lines and flash-frozen tumor lysates with a linear range of 0.05-2.0 fmol/µg of total lysate protein and with coefficients of variation < 15%. Compared to other mass spectrometric methods, the developed assays require less sample per analysis-only 25 µg of total protein-and are therefore suitable for analysis of needle biopsies. Furthermore, the presented iMALDI technique is the first MS-based method for absolute quantitation of AKT peptides from cancer tissues. This study demonstrates the suitability of iMALDI for low limit-of-detection and reproducible quantitation of signaling pathway members using a benchtop MALDI mass spectrometer within approximately 6-7 h.


Subject(s)
Proto-Oncogene Proteins c-akt/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Amino Acid Sequence , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Chromatography, High Pressure Liquid/methods , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Humans , Limit of Detection , Peptides/analysis , Peptides/immunology , Proto-Oncogene Proteins c-akt/immunology , Proto-Oncogene Proteins c-akt/metabolism
3.
Mod Pathol ; 30(11): 1567-1576, 2017 11.
Article in English | MEDLINE | ID: mdl-28752846

ABSTRACT

One of the major challenges in biomarker development is the collection of tumor tissue of adequate quality for analysis. A prospective clinical trial was initiated to collect tissues from triple negative breast cancers prior to and after neoadjuvant chemotherapy in order to study the mechanisms of chemoresistance. Sixty patients had pre-chemotherapy biopsies performed by either a surgeon or a radiologist, while those with residual tumor after chemotherapy had research-only biopsies and/or surgical samples collected in liquid nitrogen, RNA-later and formalin. We examined each core for tumor cellularity, stromal content, and necrosis after which, RNA and DNA extraction was performed. We found that biopsies collected with ultrasound guidance were more likely to contain tumor than those collected by the surgeon. Patient reluctance to undergo research-only biopsies after chemotherapy was not a problem. Pre-chemotherapy tumor biopsies frequently did not contain any tumor cells (15%) or did not have ≥50% tumor content (63%). Indeed, 50% of patients had at least 2 pre-chemotherapy core biopsies with <50% tumor content. After chemotherapy, 30% of biopsy or surgical samples in patients with incomplete response did not contain any tumor. Finally, RNA-later not only made histopathological assessment of tumor content difficult, but yielded less DNA than fresh snap frozen samples. We recommend that high-quality tissue procurement can be best accomplished if at least three image-guided core biopsies be obtained per sample, each of these cores be examined for tumor cellularity and that at least some of them be freshly snap frozen in liquid nitrogen.


Subject(s)
Biomarkers, Tumor/analysis , Image-Guided Biopsy/methods , Triple Negative Breast Neoplasms/drug therapy , Ultrasonography, Interventional/methods , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biopsy/methods , Chemotherapy, Adjuvant , Female , Humans , Middle Aged , Neoadjuvant Therapy
4.
Mod Pathol ; 26(11): 1413-24, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23743930

ABSTRACT

Great advances in analytical technology coupled with accelerated new drug development and growing understanding of biological challenges, such as tumor heterogeneity, have required a change in the focus for biobanking. Most current banks contain samples of primary tumors, but linking molecular signatures to therapeutic questions requires serial biopsies in the setting of metastatic disease, next-generation of biobanking. Furthermore, an integration of multidimensional analysis of various molecular components, that is, RNA, DNA, methylome, microRNAome and post-translational modifications of the proteome, is necessary for a comprehensive view of a tumor's biology. While data using such biopsies are now regularly presented, the preanalytical variables in tissue procurement and processing in multicenter studies are seldom detailed and therefore are difficult to duplicate or standardize across sites and across studies. In the context of a biopsy-driven clinical trial, we generated a detailed protocol that includes morphological evaluation and isolation of high-quality nucleic acids from small needle core biopsies obtained from liver metastases. The protocol supports stable shipping of samples to a central laboratory, where biopsies are subsequently embedded in support media. Designated pathologists must evaluate all biopsies for tumor content and macrodissection can be performed if necessary to meet our criteria of >60% neoplastic cells and <20% necrosis for genomic isolation. We validated our protocol in 40 patients who participated in a biopsy-driven study of therapeutic resistance in metastatic colorectal cancer. To ensure that our protocol was compatible with multiplex discovery platforms and that no component of the processing interfered with downstream enzymatic reactions, we performed array comparative genomic hybridization, methylation profiling, microRNA profiling, splicing variant analysis and gene expression profiling using genomic material isolated from liver biopsy cores. Our standard operating procedures for next-generation biobanking can be applied widely in multiple settings, including multicentered and international biopsy-driven trials.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Genetic Testing , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Precision Medicine , Tissue Banks , Alternative Splicing , Biopsy, Large-Core Needle , Canada , Comparative Genomic Hybridization , DNA Methylation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Genetic Testing/methods , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/analysis , Oligonucleotide Array Sequence Analysis , Patient Selection , Phenotype , Precision Medicine/methods , Predictive Value of Tests , Prognosis , Reproducibility of Results , Specimen Handling , Workflow
5.
Genes (Basel) ; 15(1)2023 12 23.
Article in English | MEDLINE | ID: mdl-38254917

ABSTRACT

The response of triple-negative breast cancer (TNBC) patients to pre-operative (neoadjuvant chemotherapy) is a critical factor of their outcome. To determine the effects of chemotherapy on the tumor genome and to identify mutations associated with chemoresistance and sensitivity, we performed whole exome sequencing on pre/post-chemotherapy tumors and matched lymphocytes from 26 patients. We observed great inter-tumoral heterogeneity with no gene mutated recurrently in more than four tumors besides TP53. Although the degree of response to chemotherapy in residual tumors was associated with more subclonal changes during chemotherapy, there was minimal evolution between pre/post-tumors. Indeed, gene sets enriched for mutations in pre- and post-chemotherapy tumors were very similar and reflected genes involved in the biological process of neurogenesis. Somatically mutated genes present in chemosensitive tumors included COL1A2, PRMD15, APOBEC3B, PALB2 and histone protein encoding genes, while BRCA1, ATR, ARID1A, XRCC3 and genes encoding for tubulin-associated proteins were present in the chemoresistant tumors. We also found that the mutational spectrum of post-chemotherapy tumors was more reflective of matching metastatic tumor biopsies than pre-chemotherapy samples. These findings support a portrait of modest ongoing genomic instability with respect to single-nucleotide variants induced by or selected for by chemotherapy in TNBCs.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Neoadjuvant Therapy , Mutation , Histones , Genomic Instability , Cytidine Deaminase , Minor Histocompatibility Antigens
6.
Sci Rep ; 10(1): 14704, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32895401

ABSTRACT

Response to neoadjuvant chemotherapy (NAC) in triple negative breast cancer (TNBC) is highly prognostic and determines whether adjuvant chemotherapy is needed if residual tumor is found at surgery. To evaluate the predictive and prognostic values of circulating tumor DNA (ctDNA) in this setting, we analyzed tumor and serial bloods from 26 TNBC patients collected prior, during, and after NAC. Individual digital droplet PCR assays were developed for 121 variants (average 5/patient) identified from tumor sequencing, enabling ctDNA detection in 96% of patients at baseline. Mutant allele frequency at baseline was associated with clinical characteristics. Levels drastically fell after one cycle of NAC, especially in patients whose tumors would go on to have a pathological complete response (pCR), but then rose significantly before surgery in patients with significant residual tumor at surgery (p = 0.0001). The detection of ctDNA early during treatment and also late at the end of NAC before surgery was strongly predictive of residual tumor at surgery, but its absence was less predictive of pCR, especially when only TP53 variants are considered. ctDNA detection at the end of neoadjuvant chemotherapy indicated significantly worse relapse-free survival (HR = 0.29 (95% CI 0.08-0.98), p = 0.046), and overall survival (HR = 0.27 95% CI 0.075-0.96), p = 0.043). Hence, individualized multi-variant ctDNA testing during and after NAC prior to surgery has prognostic and predictive value in early TNBC patients.


Subject(s)
Circulating Tumor DNA/genetics , Triple Negative Breast Neoplasms/genetics , Chemotherapy, Adjuvant , Circulating Tumor DNA/blood , Female , Gene Frequency , Genes, p53 , Humans , Middle Aged , Mutation Rate , Neoadjuvant Therapy , Prognosis , Triple Negative Breast Neoplasms/blood , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/drug therapy
7.
Cancer Epidemiol Biomarkers Prev ; 28(5): 909-916, 2019 05.
Article in English | MEDLINE | ID: mdl-30824523

ABSTRACT

BACKGROUND: Circulating free DNA (cfDNA) is an exciting novel method to diagnose, monitor, and predict resistance and response to cancer therapies, with the potential to radically alter the management of cancer patients. To fulfill its potential, greater knowledge about preanalytical variables is required to optimize and standardize the collection process, and maximize the yield and utility of the small quantities of cfDNA extracted. METHODS: To this end, we have compared the cfDNA extraction efficiency of three different protocols, including a protocol developed in house (Jewish General Hospital). We evaluated the impact on cfDNA levels of preanalytical variables including speed and timing of the second centrifugation and the use of k-EDTA and CTAD blood collection tubes. Finally, we analyzed the impact on fractional abundance of targeted pre-amplification and whole genome amplification on tumor and circulating tumor DNA (ctDNA) from patients with breast cancer. RESULTS: Making use of a novel protocol for cfDNA extraction we increased cfDNA quantities, up to double that of commercial kits. We found that a second centrifugation at 3,000 g on frozen plasma is as efficient as a high-speed (16,000 g) centrifugation on fresh plasma and does not affect cfDNA levels. CONCLUSIONS: These results allow for the implementation of protocols more suitable to the clinical setting. Finally, we found that, unlike targeted gene amplification, whole genome amplification resulted in altered fractional abundance of selected ctDNA variants. IMPACT: Our study of the preanalytical variables affecting cfDNA recovery and testing will significantly enhance the quality and application of ctDNA testing in clinical oncology.


Subject(s)
Blood Specimen Collection/methods , Circulating Tumor DNA/analysis , Neoplasms/blood , Reagent Kits, Diagnostic/standards , Real-Time Polymerase Chain Reaction/standards , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Blood Specimen Collection/standards , Circulating Tumor DNA/blood , Circulating Tumor DNA/isolation & purification , Humans , Mutation , Neoplasms/genetics , Real-Time Polymerase Chain Reaction/instrumentation , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Tumor Cells, Cultured
8.
Mol Cancer Res ; 17(12): 2492-2507, 2019 12.
Article in English | MEDLINE | ID: mdl-31537618

ABSTRACT

The major obstacle in successfully treating triple-negative breast cancer (TNBC) is resistance to cytotoxic chemotherapy, the mainstay of treatment in this disease. Previous preclinical models of chemoresistance in TNBC have suffered from a lack of clinical relevance. Using a single high dose chemotherapy treatment, we developed a novel MDA-MB-436 cell-based model of chemoresistance characterized by a unique and complex morphologic phenotype, which consists of polyploid giant cancer cells giving rise to neuron-like mononuclear daughter cells filled with smaller but functional mitochondria and numerous lipid droplets. This resistant phenotype is associated with metabolic reprogramming with a shift to a greater dependence on fatty acids and oxidative phosphorylation. We validated both the molecular and histologic features of this model in a clinical cohort of primary chemoresistant TNBCs and identified several metabolic vulnerabilities including a dependence on PLIN4, a perilipin coating the observed lipid droplets, expressed both in the TNBC-resistant cells and clinical chemoresistant tumors treated with neoadjuvant doxorubicin-based chemotherapy. These findings thus reveal a novel mechanism of chemotherapy resistance that has therapeutic implications in the treatment of drug-resistant cancer. IMPLICATIONS: These findings underlie the importance of a novel morphologic-metabolic phenotype associated with chemotherapy resistance in TNBC, and bring to light novel therapeutic targets resulting from vulnerabilities in this phenotype, including the expression of PLIN4 essential for stabilizing lipid droplets in resistant cells.


Subject(s)
Cellular Reprogramming/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Perilipin-4/genetics , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Reprogramming/genetics , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lipid Droplets/drug effects , Metabolic Networks and Pathways/drug effects , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
9.
Cancer Res ; 66(4): 2279-86, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16489032

ABSTRACT

Inhibition of deregulated protein tyrosine kinases represents an attractive strategy for controlling cancer growth. However, target specificity is an essential aim of this strategy. In this report, pp60(c-Src) kinase and beta-catenin were found physically associated and constitutively activated on tyrosine residues in human colorectal cancer cells. The use of specific small-interfering RNAs (siRNA) validated pp60(c-Src) as the major kinase responsible for beta-catenin tyrosine phosphorylation in colorectal cancer. Src-dependent activation of beta-catenin was prevented by SKI-606, a novel Src family kinase inhibitor, which also abrogated beta-catenin nuclear function by impairing its binding to the TCF4 transcription factor and its trans-activating ability in colorectal cancer cells. These effects were seemingly specific, as cyclin D1, a crucial beta-catenin/TCF4 target gene, was also down-regulated by SKI-606 in a dose-dependent manner accounting, at least in part, for the reduced growth (IC50, 1.5-2.4 micromol/L) and clonogenic potential of colorectal cancer cells. Protein levels of beta-catenin remained substantially unchanged by SKI-606, which promoted instead a cytosolic/membranous retention of beta-catenin as judged by immunoblotting analysis of cytosolic/nuclear extracts and cell immunofluorescence staining. The SKI-606-mediated relocalization of beta-catenin increased its binding affinity to E-cadherin and adhesion of colorectal cancer cells, with ensuing reduced motility in a wound healing assay. Interestingly, the siRNA-driven knockdown of beta-catenin removed the effect of SKI-606 on cell-to-cell adhesion, which was associated with prolonged stability of E-cadherin protein in a pulse-chase experiment. Thus, our results show that SKI-606 operates a switch between the transcriptional and adhesive function of beta-catenin by inhibiting its pp60(c-Src)-dependent tyrosine phosphorylation; this could constitute a new therapeutic target in colorectal cancer.


Subject(s)
Aniline Compounds/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Nitriles/pharmacology , Proto-Oncogene Proteins pp60(c-src)/antagonists & inhibitors , Quinolines/pharmacology , beta Catenin/metabolism , Cadherins/metabolism , Cell Growth Processes/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/pathology , Humans , Intercellular Junctions/drug effects , Phosphorylation/drug effects , Proto-Oncogene Proteins pp60(c-src)/genetics , Proto-Oncogene Proteins pp60(c-src)/metabolism , Signal Transduction/drug effects , TCF Transcription Factors/metabolism , Transcription Factor 7-Like 2 Protein , Transcriptional Activation/drug effects , Tyrosine/metabolism
10.
Physiol Rep ; 6(12): e13726, 2018 06.
Article in English | MEDLINE | ID: mdl-29932505

ABSTRACT

Standard in vitro myotube culture conditions are nonphysiological and there is increasing evidence that this may distort adaptations to both catabolic and anabolic stimuli and hamper preclinical research into mechanisms and treatments for muscle atrophy in cancer and other chronic diseases. We tested a new model of myotube culture which mimics more accurately the basal conditions for muscle tissue in patients with chronic disease, such as cancer. Myotubes derived from C2C12 myoblasts, cultured under the modified conditions were thinner, more numerous, with more uniform morphology and an increased proportion of mature myotubes. Furthermore, modified conditions led to increased expression of mir-210-3p, genes related to slow-twitch, oxidative phenotype and resistance to commonly used experimental atrophy-inducing treatments. However, treatment with a combination of drugs used in anti-cancer treatment (doxorubicin and dexamethasone) under the modified culture conditions did lead to myotube atrophy which was only partially prevented by co-administration of curcumin. The results underline the importance and potential advantages of using physiological conditions for in vivo experiments investigating mechanisms of muscle atrophy and especially for preclinical screening of therapies for cancer-related muscle wasting.


Subject(s)
Muscle Fibers, Skeletal/cytology , Muscular Atrophy/pathology , Animals , Antibiotics, Antineoplastic/pharmacology , Cell Culture Techniques/methods , Cells, Cultured , Curcumin/therapeutic use , Dexamethasone/pharmacology , Doxorubicin/pharmacology , Gene Expression Regulation , Mice , MicroRNAs/biosynthesis , MicroRNAs/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle Proteins/biosynthesis , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Muscular Atrophy/prevention & control
11.
Cancer Res ; 70(18): 7253-63, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20823162

ABSTRACT

Colorectal carcinomas (CRC) harbor well-defined genetic abnormalities, including aberrant activation of ß-catenin (ß-cat) and KRAS, but independent targeting of these molecules seems to have limited therapeutic effect. In this study, we report therapeutic effects of combined targeting of different oncogenes in CRC. Inducible short hairpin RNA (shRNA)-mediated silencing of ß-cat, ITF2, or KRAS decreased proliferation by 88%, 72%, and 45%, respectively, with no significant apoptosis in any case. In contrast, combined blockade of ß-cat and ITF2 inhibited proliferation by 99% with massive apoptosis. Similar effects occurred after combined shRNA against ß-cat and KRAS. In vivo, single oncogene blockade inhibited the growth of established tumors by up to 30%, whereas dual ß-cat and ITF2 targeting caused 93% inhibition. Similar tumor growth suppression was achieved by double ß-cat/KRAS shRNA in vivo. Our findings illustrate an effective therapeutic principle in CRC based on a combination targeting strategy that includes the ITF2 oncogene, which represents a novel therapeutic target.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/antagonists & inhibitors , Colorectal Neoplasms/therapy , Proto-Oncogene Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , beta Catenin/antagonists & inhibitors , ras Proteins/antagonists & inhibitors , Animals , Apoptosis/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Down-Regulation , Doxycycline/pharmacology , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells , Humans , Mice , Mice, Nude , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins p21(ras) , RNA, Small Interfering/genetics , Signal Transduction , Transcription Factor 4 , Transcription Factors/genetics , Transcription Factors/metabolism , Transfection , Xenograft Model Antitumor Assays , beta Catenin/genetics , beta Catenin/metabolism , ras Proteins/genetics , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL