Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Publication year range
1.
Small ; 20(21): e2310327, 2024 May.
Article in English | MEDLINE | ID: mdl-38098433

ABSTRACT

The unique catalytic activities of high-entropy alloys (HEAs) emerge from the complex interaction among different elements in a single-phase solid solution. As a "green" nanofabrication technique, inert gas condensation (IGC) combined with laser source opens up a highly efficient avenue to develop HEA nanoparticles (NPs) for catalysis and energy storage. In this work, the novel N-doped non-noble HEA NPs are designed and successfully prepared by IGC. The N-doping effects of HEA NPs on oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are systematically investigated. The results show that N-doping is conducive to improving the OER, but unfavorable for HER activity. The FeCoNiCrN NPs achieve an overpotential of 269.7 mV for OER at a current density of 10 mA cm-2 in 1.0 M KOH solution, which is among the best reported values for non-noble HEA catalysts. The effects of the differences in electronegativity, ionization energy and electron affinity energy among mixed elements in N-doped HEAs are discussed as inducing electron transfer efficiency. Combined with X-ray photoelectron spectroscopy and the extended X-ray absorption fine structure analysis, an element-design strategy in N-doped HEAs electrocatalysts is proposed to improve the intrinsic activity and ameliorate water splitting performance.

2.
Mol Phylogenet Evol ; 196: 108084, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38688440

ABSTRACT

The tribe Collabieae (Epidendroideae, Orchidaceae) comprises approximately 500 species. Generic delimitation within Collabieae are confusing and phylogenetic interrelationships within the Collabieae have not been well resolved. Plastid genomes and nuclear internal transcribed spacer (ITS) sequences were used to estimate the phylogenetic relationships, ancestral ranges, and diversification rates of Collabieae. The results showed that Collabieae was subdivided into nine clades with high support. We proposed to combine Ancistrochilus and Pachystoma into Spathoglottis, merge Collabium and Chrysoglossum into Diglyphosa, and separate Pilophyllum and Hancockia as distinctive genera. The diversification of the nine clades of Collabieae might be associated with the uplift of the Himalayas during the Late Oligocene/Early Miocene. The enhanced East Asian summer monsoon in the Late Miocene may have promoted the rapid diversification of Collabieae at a sustained high diversification rate. The increased size of terrestrial pseudobulbs may be one of the drivers of Collabieae diversification. Our results suggest that the establishment and development of evergreen broadleaved forests facilitated the diversification of Collabieae.


Subject(s)
Orchidaceae , Phylogeny , Orchidaceae/genetics , Orchidaceae/classification , Forests , Genome, Plastid/genetics , Phylogeography , DNA, Ribosomal Spacer/genetics , Sequence Analysis, DNA , Asia , DNA, Plant/genetics
3.
Plant Mol Biol ; 113(4-5): 193-204, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37878187

ABSTRACT

Cymbidium ensifolium is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of C. ensifolium, this research conducted transcriptome and metabolome analyses on four different colored sepals of C. ensifolium. Metabolome analysis detected 204 flavonoid metabolites, including 17 polyphenols, 27 anthocyanins, 75 flavones, 34 flavonols, 25 flavonoids, 18 flavanones, and 8 isoflavones. Among them, purple-red and red sepals contain a lot of anthocyanins, including cyanidin, pelargonin, and paeoniflorin, while yellow-green and white sepals have less anthocyanins detected, and their metabolites are mainly flavonols, flavanones and flavonoids. Transcriptome sequencing analysis showed that the expression levels of the anthocyanin biosynthetic enzyme genes in red and purple-red sepals were significantly higher than those in white and yellow-green sepals of C. ensifolium. The experimental results showed that CeF3'H2, CeDFR, CeANS, CeF3H and CeUFGT1 may be the key genes involved in anthocyanin production in C. ensifolium sepals, and CeMYB104 has been proved to play an important role in the flower color formation of C. ensifolium. The results of transformation showed that the CeMYB104 is involved in the synthesis of anthocyanins and can form a purple-red color in the white perianth of Phalaenopsis. These findings provide a theoretical reference to understand the formation mechanism of flower color in C. ensifolium.


Subject(s)
Flavanones , Orchidaceae , Anthocyanins , Transcriptome , Flavonoids/metabolism , Flowers/genetics , Flowers/metabolism , Flavonols , Orchidaceae/genetics , Orchidaceae/metabolism , Flavanones/metabolism , Color , Gene Expression Regulation, Plant
4.
Small ; 19(33): e2300721, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37081277

ABSTRACT

Topologically disordered metallic glass nanoparticles (MGNPs) with highly active and tailorable surface chemistries have immense potential for functional uses. The synthesis of free-standing MGNPs is crucial and intensively pursued because their activity strongly depends on their exposed surfaces. Herein, a novel laser-evaporated inert-gas condensation method is designed and successfully developed for synthesizing free-standing MGNPs without substrates or capping agents, which is implemented via pulse laser-induced atomic vapor deposition under an inert helium atmosphere. In this way, the metallic atoms vaporized from the targets collide with helium atoms and then condense into short-range-order (SRO) clusters, which mutually assemble to form the MGNPs. Using this method, free-standing Pd40 Ni40 P20 MGNPs with a spherical morphology are synthesized, which demonstrates satisfactory electrocatalytic activity and durability in oxygen reduction reactions. Moreover, local structure investigations using synchrotron pair distribution function techniques reveal the transformation of SRO cluster connection motifs of the MGNPs from face-sharing to edge-sharing modes during cyclic voltammetry cycles, which enhances the electrochemical stability by blocking crystallization. This approach provides a general strategy for preparing free-standing MGNPs with high surface activities, which may have widespread functional applications.

5.
Mol Phylogenet Evol ; 184: 107797, 2023 07.
Article in English | MEDLINE | ID: mdl-37086913

ABSTRACT

Pleione is an orchid endemically distributed in high mountain areas across the Hengduan Mountains (HDM), Himalayas, Southeast Asia and South of China. The unique flower shapes, rich colors and immense medicinal importance of Pleione are valuable ornamental and economic resources. However, the phylogenetic relationships and evolutionary history of the genus have not yet been comprehensively resolved. Here, the evolutionary history of Pleione was investigated using single-copy gene single nucleotide polymorphisms and chloroplast genome datasets. The data revealed that Pleione could be divided into five clades. Discordance in topology between the two phylogenetic trees and network and D-statistic analyses indicated the occurrence of reticulate evolution in the genus. The evolution could be attributed to introgression and incomplete lineage sorting. Ancestral area reconstruction suggested that Pleione was originated from the HDM. Uplifting of the HDM drove rapid diversification by creating conditions favoring rapid speciation. This coincided with two periods of consolidation of the Asian monsoon climate, which caused the first rapid diversification of Pleione from 8.87 to 7.83 Mya, and a second rapid diversification started at around 4.05 Mya to Pleistocene. The interaction between Pleione and climate changes, especially the monsoons, led to the current distribution pattern and shaped the dormancy characteristic of the different clades. In addition to revealing the evolutionary relationship of Pleione with orogeny and climate changes, the findings of this study provide insights into the speciation and diversification mechanisms of plants in the East Asian flora.


Subject(s)
Genome, Chloroplast , Plants , Phylogeny , China , Flowers
6.
Nano Lett ; 22(15): 6229-6234, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35876496

ABSTRACT

Twins are generally regarded as obstacles to dislocations in face-centered cubic metals and can modify individual dislocations by locking them in twin boundaries or obliging them to dissociate. Through in situ tensile experiments on Al thin film in a transmission electron microscope, we report a dynamic process of dislocations being transported by twin lamella via periodic twinning and detwinning at the atomic scale. Following this process, a 60° dislocation first transforms into a sessile step of the twin boundary, then migrates under stress as a step and finally reverts back into a 60° dislocation. Our results reveal a novel evolution route of dislocations by a dislocation-twin interaction where the twins act as transport vehicles rather than as obstacles. The potential implications of this mechanism on toughening are also discussed.

7.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674776

ABSTRACT

Growth-regulating factor (GRF) is a kind of transcription factor unique to plants, playing an important role in the flowering regulation, growth, and development of plants. Melastoma dodecandrum is an important member of Melastomataceae, with ornamental, medicinal, and edible benefits. The identification of the GRF gene family in M. dodecandrum can help to improve their character of flavor and continuous flowering. The members of the GRF gene family were identified from the M. dodecandrum genome, and their bioinformatics, selective pressure, and expression patterns were analyzed. The results showed that there were 20 GRF genes in M. dodecandrum. Phylogenetic analysis showed that the 71 GRF genes from M. dodecandrum, Arabidopsis thaliana, Camellia sinensis, and Oryza sativa can be divided into three clades and six subclades. The 20 GRF genes of M. dodecandrum were distributed in twelve chromosomes and one contig. Furthermore, the gene structure and motif analysis showed that the intron and motif within each clade were very similar, but there were great differences among different clades. The promoter contained cis-acting elements related to hormone induction, stress, and growth and development. Different transcriptomic expression of MdGRFs indicated that MdGRFs may be involved in regulating the growth and development of M. dodecandrum. The results laid a foundation for further study on the function and molecular mechanism of the M. dodecandrum GRF gene family.


Subject(s)
Melastomataceae , Melastomataceae/chemistry , Phylogeny , Gene Expression Profiling , Gene Expression Regulation, Plant , Multigene Family , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835234

ABSTRACT

The basic helix-loop-helix (bHLH) transcription factors are widely distributed across eukaryotic kingdoms and participate in various physiological processes. To date, the bHLH family has been identified and functionally analyzed in many plants. However, systematic identification of bHLH transcription factors has yet to be reported in orchids. Here, 94 bHLH transcription factors were identified from the Cymbidium ensifolium genome and divided into 18 subfamilies. Most CebHLHs contain numerous cis-acting elements associated with abiotic stress responses and phytohormone responses. A total of 19 pairs of duplicated genes were found in the CebHLHs, of which 13 pairs were segmentally duplicated genes and six pairs were tandemly duplicated genes. Expression pattern analysis based on transcriptome data revealed that 84 CebHLHs were differentially expressed in four different color sepals, especially CebHLH13 and CebHLH75 of the S7 subfamily. The expression profiles of CebHLH13 and CebHLH75 in sepals, which are considered potential genes regulating anthocyanin biosynthesis, were confirmed through the qRT-PCR technique. Furthermore, subcellular localization results showed that CebHLH13 and CebHLH75 were located in the nucleus. This research lays a foundation for further exploration of the mechanism of CebHLHs in flower color formation.


Subject(s)
Anthocyanins , Basic Helix-Loop-Helix Transcription Factors , Basic Helix-Loop-Helix Transcription Factors/metabolism , Genome, Plant , Multigene Family , Phylogeny , Gene Expression Regulation, Plant , Plant Proteins/genetics
9.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835586

ABSTRACT

The YABBY gene family plays an important role in plant growth and development, such as response to abiotic stress and lateral organ development. YABBY TFs are well studied in numerous plant species, but no study has performed a genome-wide investigation of the YABBY gene family in Melastoma dodecandrum. Therefore, a genome-wide comparative analysis of the YABBY gene family was performed to study their sequence structures, cis-acting elements, phylogenetics, expression, chromosome locations, collinearity analysis, protein interaction, and subcellular localization analysis. A total of nine YABBY genes were found, and they were further divided into four subgroups based on the phylogenetic tree. The genes in the same clade of phylogenetic tree had the same structure. The cis-element analysis showed that MdYABBY genes were involved in various biological processes, such as cell cycle regulation, meristem expression, responses to low temperature, and hormone signaling. MdYABBYs were unevenly distributed on chromosomes. The transcriptomic data and real-time reverse transcription quantitative PCR (RT-qPCR) expression pattern analyses showed that MdYABBY genes were involved in organ development and differentiation of M. dodecandrum, and some MdYABBYs in the subfamily may have function differentiation. The RT-qPCR analysis showed high expression of flower bud and medium flower. Moreover, all MdYABBYs were localized in the nucleus. Therefore, this study provides a theoretical basis for the functional analysis of YABBY genes in M. dodecandrum.


Subject(s)
Flowers , Plant Proteins , Phylogeny , Plant Proteins/genetics , Flowers/genetics , Multigene Family , Meristem/metabolism , Gene Expression Regulation, Plant , Evolution, Molecular , Stress, Physiological , Gene Expression Profiling
10.
Int J Mol Sci ; 24(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175542

ABSTRACT

Apostasia shenzhenica belongs to the subfamily Apostasioideae and is a primitive group located at the base of the Orchidaceae phylogenetic tree. However, the A. shenzhenica mitochondrial genome (mitogenome) is still unexplored, and the phylogenetic relationships between monocots mitogenomes remain unexplored. In this study, we discussed the genetic diversity of A. shenzhenica and the phylogenetic relationships within its monocotyledon mitogenome. We sequenced and assembled the complete mitogenome of A. shenzhenica, resulting in a circular mitochondrial draft of 672,872 bp, with an average read coverage of 122× and a GC content of 44.4%. A. shenzhenica mitogenome contained 36 protein-coding genes, 16 tRNAs, two rRNAs, and two copies of nad4L. Repeat sequence analysis revealed a large number of medium and small repeats, accounting for 1.28% of the mitogenome sequence. Selection pressure analysis indicated high mitogenome conservation in related species. RNA editing identified 416 sites in the protein-coding region. Furthermore, we found 44 chloroplast genomic DNA fragments that were transferred from the chloroplast to the mitogenome of A. shenzhenica, with five plastid-derived genes remaining intact in the mitogenome. Finally, the phylogenetic analysis of the mitogenomes from A. shenzhenica and 28 other monocots showed that the evolution and classification of most monocots were well determined. These findings enrich the genetic resources of orchids and provide valuable information on the taxonomic classification and molecular evolution of monocots.


Subject(s)
Genome, Mitochondrial , Orchidaceae , Phylogeny , Mitochondria/genetics , RNA, Ribosomal/genetics , Orchidaceae/genetics
11.
BMC Plant Biol ; 22(1): 557, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36456919

ABSTRACT

Containing the largest number of species, the orchid family provides not only materials for studying plant evolution and environmental adaptation, but economically and culturally important ornamental plants for human society. Previously, we collected genome and transcriptome information of Dendrobium catenatum, Phalaenopsis equestris, and Apostasia shenzhenica which belong to two different subfamilies of Orchidaceae, and developed user-friendly tools to explore the orchid genetic sequences in the OrchidBase 4.0. The OrchidBase 4.0 offers the opportunity for plant science community to compare orchid genomes and transcriptomes and retrieve orchid sequences for further study.In the year 2022, two whole-genome sequences of Orchidoideae species, Platanthera zijinensis and Platanthera guangdongensis, were de novo sequenced, assembled and analyzed. In addition, systemic transcriptomes from these two species were also established. Therefore, we included these datasets to develop the new version of OrchidBase 5.0. In addition, three new functions including synteny, gene order, and miRNA information were also developed for orchid genome comparisons and miRNA characterization.OrchidBase 5.0 extended the genetic information to three orchid subfamilies (including five orchid species) and provided new tools for orchid researchers to analyze orchid genomes and transcriptomes. The online resources can be accessed at https://cosbi.ee.ncku.edu.tw/orchidbase5/.


Subject(s)
MicroRNAs , Orchidaceae , Gene Order , Knowledge Bases , MicroRNAs/genetics , Orchidaceae/genetics , Synteny
12.
Nat Mater ; 20(10): 1347-1352, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34017117

ABSTRACT

Amorphous materials have no long-range order, but there are ordered structures at short range (2-5 Å), medium range (5-20 Å) and even longer length scales1-5. While regular6,7 and semiregular polyhedra8-10 are often found as short-range ordering in amorphous materials, the nature of medium-range order has remained elusive11-14. Consequently, it is difficult to determine whether there exists any structural link at medium range or longer length scales between the amorphous material and its crystalline counterparts. Moreover, an amorphous material often crystallizes into a phase of different composition15, with very different underlying structural building blocks, further compounding the issue. Here, we capture an intermediate crystalline cubic phase in a Pd-Ni-P amorphous alloy and reveal the structure of the medium-range order, a six-membered tricapped trigonal prism cluster (6M-TTP) with a length scale of 12.5 Å. We find that the 6M-TTP can pack periodically to several tens of nanometres to form the cube phase. Our experimental observations provide evidence of a structural link between the amorphous and crystalline phases in a Pd-Ni-P alloy at the medium-range length scale and suggest that it is the connectivity of the 6M-TTP clusters that distinguishes the crystalline and amorphous phases. These findings will shed light on the structure of amorphous materials at extended length scales beyond that of short-range order.

13.
Mol Phylogenet Evol ; 167: 107362, 2022 02.
Article in English | MEDLINE | ID: mdl-34775057

ABSTRACT

Delimitation of the tribe Arethuseae has varied considerably since it was first defined. The relationships within Arethuseae, particularly within the subtribe Arethusinae, remain poorly elucidated. In this study, we reconstructed the phylogeny of Arethuseae, using six plastid markers (matK, ycf1, rbcL rpoc1, rpl32-trnL and trnL-F) from 83 taxa. The ancestral state reconstruction of 11 selected morphological characters was also conducted to identify synapomorphies and assess potential evolutionary transitions. Morphological character comparision between the distinct species Bletilla foliosa and other species are conducted. Our results unequivocally supported the monophyly of Arethuseae, which included highly supported clades and a clear synapomorphy of non-trichome-like lamellae. Furthermore, B. foliosa formed a separate clade in the subtribe Arethusinae, instead of clustering with the other Bletilla species in the subtribe Coelogyninae. The morphological characters comparision further showed that the B. foliosa clade could be distinguished from other genera in Arethuseae by multiple characters, including presence of lateral inflorescence, three lamellae with trichome-like apex and four pollinia. In light of these molecular and morphological evidences, we propose Mengzia as a new genus to accommodate B. foliosa and accordingly provide descriptions of this new genus and combination.


Subject(s)
Orchidaceae , DNA, Plant , Phylogeny , Plastids
14.
Nano Lett ; 21(3): 1419-1426, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33464087

ABSTRACT

Phase transformation is an effective means to increase the ductility of a material. However, even for a commonly observed face-centered-cubic to hexagonal-close-packed (fcc-to-hcp) phase transformation, the underlying mechanisms are far from being settled. In fact, different transformation pathways have been proposed, especially with regard to nucleation of the hcp phase at the nanoscale. In CrCoNi, a so-called medium-entropy alloy, an fcc-to-hcp phase transformation has long been anticipated. Here, we report an in situ loading study with neutron diffraction, which revealed a bulk fcc-to-hcp phase transformation in CrCoNi at 15 K under tensile loading. By correlating deformation characteristics of the fcc phase with the development of the hcp phase, it is shown that the nucleation of the hcp phase was triggered by intrinsic stacking faults. The confirmation of a bulk phase transformation adds to the myriads of deformation mechanisms available in CrCoNi, which together underpin the unusually large ductility at low temperatures.

15.
BMC Plant Biol ; 21(1): 371, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34384382

ABSTRACT

BACKGROUND: The Orchid family is the largest families of the monocotyledons and an economically important ornamental plant worldwide. Given the pivotal role of this plant to humans, botanical researchers and breeding communities should have access to valuable genomic and transcriptomic information of this plant. Previously, we established OrchidBase, which contains expressed sequence tags (ESTs) from different tissues and developmental stages of Phalaenopsis as well as biotic and abiotic stress-treated Phalaenopsis. The database includes floral transcriptomic sequences from 10 orchid species across all the five subfamilies of Orchidaceae. DESCRIPTION: Recently, the whole-genome sequences of Apostasia shenzhenica, Dendrobium catenatum, and Phalaenopsis equestris were de novo assembled and analyzed. These datasets were used to develop OrchidBase 4.0, including genomic and transcriptomic data for these three orchid species. OrchidBase 4.0 offers information for gene annotation, gene expression with fragments per kilobase of transcript per millions mapped reads (FPKM), KEGG pathways and BLAST search. In addition, assembled genome sequences and location of genes and miRNAs could be visualized by the genome browser. The online resources in OrchidBase 4.0 can be accessed by browsing or using BLAST. Users can also download the assembled scaffold sequences and the predicted gene and protein sequences of these three orchid species. CONCLUSIONS: OrchidBase 4.0 is the first database that contain the whole-genome sequences and annotations of multiple orchid species. OrchidBase 4.0 is available at http://orchidbase.itps.ncku.edu.tw/.


Subject(s)
Databases, Genetic , Orchidaceae/genetics , Genome, Plant
16.
Mol Phylogenet Evol ; 164: 107269, 2021 11.
Article in English | MEDLINE | ID: mdl-34324956

ABSTRACT

Goodyerinae are one of phylogenetically unresolved groups of Orchidaceae. The lack of resolution achieved through the analyses of previous molecular sequences from one or a few markers has long confounded phylogenetic estimation and generic delimitation. Here, we present large-scale phylogenomic data to compare the plastome structure of the two main clades (Goodyera and Cheirostylis) in this subtribe and further adopt two strategies, combining plastid coding sequences and the whole plastome, to investigate phylogenetic relationships. A total of 46 species in 16 genera were sampled, including 39 species in 15 genera sequenced in this study. The plastomes of heterotrophic species are not drastically reduced in overall size, but display a pattern congruent with a loss of photosynthetic function. The plastomes of autotrophic species ranged from 147 to 165 kb and encoded from 132 to 137 genes. Three unusual structural features were detected: a 1.0-kb inversion in the large single-copy region of Goodyera schlechtendaliana; the loss and/or pseudogenization of ndh genes only in two species, Cheirostylis chinensis and C. montana; and the expansion of inverted repeat regions and contraction of small single-copy region in Hetaeria oblongifolia. Phylogenomic analyses provided improved resolution for phylogenetic relationships. All genera were recovered as monophyletic, except for Goodyera and Hetaeria, which were each recovered as non-monophyletic. Nomenclatural changes are needed until the broader sampling and biparental inherited markers. This study provides a phylogenetic framework of Goodyerinae and insight into plastome evolution of Orchidaceae.


Subject(s)
Genome, Plastid , Orchidaceae , Base Sequence , Evolution, Molecular , Orchidaceae/genetics , Phylogeny , Plastids/genetics
17.
Mol Phylogenet Evol ; 145: 106729, 2020 04.
Article in English | MEDLINE | ID: mdl-31926307

ABSTRACT

The Cleisostoma-Gastrochilus clades are among the most speciose and diverse groups of Asian orchids and are a taxonomically problematic group. Phylogenetic relationships among the genera of these clades have remained unresolved with traditional sequences from one or a few markers. We present large-scale phylogenomic data sets, incorporating complete chloroplast genome sequences from 53 species (including 41 species sequenced in this study), to compare plastome structure and to resolve the phylogenetic relationships of these clades. The plastomes of Cleisostoma-Gastrochilus clades possessed the quadripartite structure and plastome genes of typical angiosperms with sizes ranging from 142 to 149 kb and encoding a set of 118-120 genes. Unusual structural features were detected in the plastome of Uncifera acuminata, including the presence of a large 17-kb inversion (19 genes) in the Large Single-Copy region and the loss of the rpl32 gene in Cleisostoma fuerstenbergianum. The pseudogenization of ndh genes was widespread in these clades. Phylogenomic analyses, including 68 plastid protein-coding genes, showed that these clades can be subdivided into three major groupings and six subgroupings: Vandopsis undulata, the Gastrochilus clade (including the Trichoglottis and Gastrochilus subclades) and the Cleisostoma clade (including the Vandopsis, Diploprora, Cleisostoma and Schoenorchis subclades). Two genera, Vandopsis and Cleisostoma, were not monophyletic. A new genus, Cymbilabia, was proposed to avoid non-monophyly of Vandopsis. Our results demonstrate the power of plastid phylogenomics to improve the phylogenetic relationships of intricate groups and provide new insight into plastome evolution in Orchidaceae.


Subject(s)
Orchidaceae/classification , Plastids/genetics , Evolution, Molecular , Likelihood Functions , Open Reading Frames/genetics , Orchidaceae/anatomy & histology , Orchidaceae/genetics , Phylogeny , Plant Leaves/genetics , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , RNA, Transfer/chemistry , RNA, Transfer/genetics
18.
Mol Phylogenet Evol ; 139: 106542, 2019 10.
Article in English | MEDLINE | ID: mdl-31229601

ABSTRACT

Goodyerinae are one of the most species-rich and widespread subtribes of Orchidaceae but notorious for their taxonomic difficulty. Here, a comprehensive molecular phylogenetic study of the subtribe is presented based on two nuclear (ITS, Xdh) and five plastid (matK, psaB, rbcL, trnL, trnL-F) regions. A total of 119 species were included representing all clades recovered by previous phylogenetic analyses as well as seven outgroups. Maximum parsimony, maximum likelihood and Bayesian inference methods were used to infer the phylogenetic relationships. The results show that the Goodyerinae subdivided into three major subdivisions and six groupings: Pachyplectron, Goodyera clade (including Goodyera procera, Microchilus subclade and Goodyera subclade) and Cheirostylis clade (including Gonatostylis, Cheirostylis subclade and Ludisia subclade). Four genera, Erythrodes, Goodyera, Myrmechis and Odontochilus, are not monophyletic. The results support Odontochilus s. l. to include Myrmechis and Kuhlhasseltia. The systematic positions of Goodyera procera and two isolated genera, Herpysma and Orchipedum, are difficult to determine.


Subject(s)
Orchidaceae/classification , Bayes Theorem , Cell Nucleus/genetics , Orchidaceae/genetics , Phylogeny , Plastids/genetics
19.
J Exp Bot ; 70(22): 6611-6619, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31625570

ABSTRACT

Members of the Orchidaceae, one of the largest families of flowering plants, evolved the crassulacean acid metabolism (CAM) photosynthesis strategy. It is thought that CAM triggers adaptive radiation into new niche spaces, yet very little is known about its origin and diversification on different continents. Here, we assess the prevalence of CAM in Dendrobium, which is one of the largest genera of flowering plants and found in a wide range of environments, from the high altitudes of the Himalayas to relatively arid habitats in Australia. Based on phylogenetic time trees, we estimated that CAM, as determined by δ 13C values less negative than -20.0‰, evolved independently at least eight times in Dendrobium. The oldest lineage appeared in the Asian clade during the middle Miocene, indicating the origin of CAM was associated with a pronounced climatic cooling that followed a period of aridity. Divergence of the four CAM lineages in the Asian clade appeared to be earlier than divergence of those in the Australasian clade. However, CAM species in the Asian clade are much less diverse (25.6%) than those in the Australasian clade (57.9%). These findings shed new light on CAM evolutionary history and the aridity levels of the paleoclimate on different continents.


Subject(s)
Biological Evolution , Carboxylic Acids/metabolism , Dendrobium/physiology , Photosynthesis , Bayes Theorem , Carbon Isotopes , Dendrobium/genetics , Genetic Loci , Phylogeny
20.
Nano Lett ; 18(7): 4188-4194, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29869884

ABSTRACT

One of the central themes in the amorphous materials research is to understand the nanoscale structural responses to mechanical and thermal agitations, the decoding of which is expected to provide new insights into the complex amorphous structural-property relationship. For common metallic glasses, their inherent atomic structural inhomogeneities can be rejuvenated and amplified by cryogenic thermal cycling, thus can be decoded from their responses to mechanical and thermal agitations. Here, we reported an anomalous mechanical response of a new kind of metallic glass (nanoglass) with nanoscale interface structures to cryogenic thermal cycling. As compared to those metallic glasses by liquid quenching, the Sc75Fe25 (at. %) nanoglass exhibits a decrease in the Young's modulus but a significant increase in the yield strength after cryogenic cycling treatments. The abnormal mechanical property change can be attributed to the complex atomic rearrangements at the short- and medium- range orders due to the intrinsic nonuniformity of the nanoglass architecture. The present work gives a new route for designing high-performance metallic glassy materials by manipulating their atomic structures and helps for understanding the complex atomic structure-property relationship in amorphous materials.

SELECTION OF CITATIONS
SEARCH DETAIL