Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Nucleic Acids Res ; 51(21): 11770-11782, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37870428

ABSTRACT

Precision medicine depends on high-accuracy individual-level genotype data. However, the whole-genome sequencing (WGS) is still not suitable for gigantic studies due to budget constraints. It is particularly important to construct highly accurate haplotype reference panel for genotype imputation. In this study, we used 10 000 samples with medium-depth WGS to construct a reference panel that we named the CKB reference panel. By imputing microarray datasets, it showed that the CKB panel outperformed compared panels in terms of both the number of well-imputed variants and imputation accuracy. In addition, we have completed the imputation of 100 706 microarrays with the CKB panel, and the after-imputed data is the hitherto largest whole genome data of the Chinese population. Furthermore, in the GWAS analysis of real phenotype height, the number of tested SNPs tripled and the number of significant SNPs doubled after imputation. Finally, we developed an online server for offering free genotype imputation service based on the CKB reference panel (https://db.cngb.org/imputation/). We believe that the CKB panel is of great value for imputing microarray or low-coverage genotype data of Chinese population, and potentially mixed populations. The imputation-completed 100 706 microarray data are enormous and precious resources of population genetic studies for complex traits and diseases.


Subject(s)
Biological Specimen Banks , Genome , Humans , Haplotypes , Genotype , Genome-Wide Association Study , Polymorphism, Single Nucleotide , China
2.
Lancet Reg Health West Pac ; 36: 100779, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37547044

ABSTRACT

Background: Stroke ranks second worldwide and first in China as a leading cause of death and disability. It has a polygenic architecture and is influenced by environmental and lifestyle factors. However, it remains unknown as to whether and how much the genetic predisposition of stroke is associated with disease burden. Methods: Allele frequency from the whole genome sequencing data in the Chinese Millionome Database of 141,418 individuals and trait-specific polygenic risk score models were applied to estimate the provincial genetic predisposition to stroke, stroke-related risk factors and stroke-related drug response. Disease burden including mortality, disability-adjusted life years (DALYs), years of life lost(YLLs), years lived with disability (YLDs) and prevalence in China was collected from the Global Burden Disease study. The association between stroke genetic predisposition and the epidemiological burden was assessed and then quantified in both regression-based models and machine learning-based models at a provincial resolution. Findings: Among the 30 administrative divisions in China, the genetic predisposition of stroke was characterized by a north-higher-than-south gradient (p < 0.0001). Genetic predisposition to stroke, blood pressure, body mass index, and alcohol use were strongly intercorrelated (rho >0.6; p < 0.05 after Bonferroni correction for each comparison). Genetic risk imposed an independent effect of approximately 1-6% on mortality, DALYs and YLLs. Interpretation: The distribution pattern of stroke genetic predisposition is different at a macroscopic level, and it subtly but significantly impacts the epidemiological burden. Further research is warranted to identify the detailed aetiology and potential translation into public health measures. Funding: Beijing Municipal Science and Technology Commission (Z191100006619106), CAMS Innovation Fund for Medical Sciences (CAMS-I2M, 2023-I2M-1-001), the National High Level Hospital Clinical Research Funding (2022-GSP-GG-17), National Natural Science Foundation of China (32000398, 32171441 to X.J.), Natural Science Foundation of Guangdong Province, China (2017A030306026 to X.J.), and National Key R&D Program of China (2022YFC2502402).

3.
Nat Commun ; 12(1): 4543, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34315889

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) is a global health emergency. Various omics results have been reported for COVID-19, but the molecular hallmarks of COVID-19, especially in those patients without comorbidities, have not been fully investigated. Here we collect blood samples from 231 COVID-19 patients, prefiltered to exclude those with selected comorbidities, yet with symptoms ranging from asymptomatic to critically ill. Using integrative analysis of genomic, transcriptomic, proteomic, metabolomic and lipidomic profiles, we report a trans-omics landscape for COVID-19. Our analyses find neutrophils heterogeneity between asymptomatic and critically ill patients. Meanwhile, neutrophils over-activation, arginine depletion and tryptophan metabolites accumulation correlate with T cell dysfunction in critical patients. Our multi-omics data and characterization of peripheral blood from COVID-19 patients may thus help provide clues regarding pathophysiology of and potential therapeutic strategies for COVID-19.


Subject(s)
COVID-19/genetics , COVID-19/metabolism , Critical Illness , Genomics/methods , Humans , Lipidomics/methods , Metabolomics/methods , Neutrophils/metabolism , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL