Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Theranostics ; 13(7): 2176-2191, 2023.
Article in English | MEDLINE | ID: mdl-37153731

ABSTRACT

Background: Currently, the prognosis and survival rate for patients bearing non-small cell lung cancer (NSCLC) is still quite poor, mainly due to lack of efficient theranostic paradigms to exert in time diagnostics and therapeutics. Methods: Herein, for NSCLC treatment, we offer a customized theranostic paradigm, termed NIR-IIb fluorescence diagnosis and synergistic surgery/starvation/chemodynamic therapeutics, with a newly designed theranostic nanoplatform PEG/MnCuDCNPs@GOx. The nanoplatform is composed of brightly NIR-II emissive downconversion nanoparticles (DCNPs)-core and Mn/Cu-silica shell loaded with glucose oxidase (GOx) to achieve synergistic starvation and chemodynamic therapy (CDT). Results: It is found that 10% Ce3+ doped in the core and 100% Yb3+ doped in the middle shell greatly improves the NIR-IIb emission up to even 20.3 times as compared to the core-shell DCNPs without Ce3+ doping and middle shell. The bright NIR-IIb emission of the nanoplatform contributes to sensitive margin delineation of early-stage NSCLC (diameter < 1 mm) with a signal-to-background ratio (SBR) of 2.18, and further assists in visualizing drug distribution and guiding surgery/starvation/chemodynamic therapy. Notably, the starvation therapy mediated by GOx-driven oxidation reaction efficiently depletes intratumoral glucose, and supplies H2O2 to boost the CDT mediated by the Mn2+ and Cu2+, which consequently realized a highly effective synergistic treatment for NSCLC. Conclusion: This research demonstrates an efficient treatment paradigm for NSCLC with NIR-IIb fluorescence diganosis and image-guided synergistic surgery/starvation/chemodynamic therapeutics.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Nanoparticles , Neoplasms , Small Cell Lung Carcinoma , Starvation , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Fluorescence , Hydrogen Peroxide , Lung Neoplasms/drug therapy , Glucose Oxidase , Cell Line, Tumor , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL