Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Phys Chem Chem Phys ; 25(13): 9176-9187, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36943716

ABSTRACT

Halide-bridged polymers have gained significant interest due to their diverse properties and potential applications. Stacked Cu2L2X4 dimers, where L is an organic ligand and X can be Cl- or Br-, are of interest because a chloride analogue where L = 2-pyridone, had previously been reported to exhibit bulk ferromagnetism, which augured great potentiality for this class of compounds. The synthesis, structural characterization, magnetic susceptibility measurements, and computational studies of two isostructural CuClMI (MI = methylisothiazolinone) and CuBrMI polymers of Cu(II), along with a related CuClPYR (PYR = 2-pyridone) is reported. CuClMI and CuBrMI were found to exhibit AFM bulk properties, due to FM/AFM alternating chains along the halide-bridged polymer axis, while FM bulk properties were confirmed for CuClPYR exhibiting a FM spin ladder. In combination with a benzamide analogue, CuClBA, three O-donor amides, CuClMI, CuClBA and CuClPYR were analyzed and revealed that the kinetic exchange is affected by the identity, but more importantly, the orientation of the satellite ligands. The torsional angle of the ligand with the dimer plane is shown to significantly affect the magnetic exchange in the dimer, and between dimers, explaining the reported FM bulk properties of CuClPYR. This finding is exceedingly important, as it suggests that a spin device can be constructed to flip between singlet/triplet states by manipulating the orientation of the satellite/terminal ligand.

2.
Inorg Chem ; 59(9): 6319-6331, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32279485

ABSTRACT

The title compound H2L(CuCl3H2O)Cl (H2L = 1-(4'-pyridinium)pyridin-4-ol-ium), 1) was synthesized and investigated structurally and magnetically as well as via a first-principles, bottom-up theoretical analysis of the potential magnetic superexchange pathways. Compound 1 can be described structurally as a well-isolated, distorted 2D-honeycomb lattice with two potential exchange pathways: a dimeric interaction via hydrogen-bonded pairs of (CuCl3H2O) ions and a chain structure via bridging chloride ions. Surprisingly, the experimental magnetic data are best fitted using both a simple dimer model with a Curie-Weiss correction for interdimer exchange (Jdimer = -107.4(1) K, θ = -1.22(4) K) and a strong-rung ladder model (Jrung = -105.8(7) K, Jrail = 2(7) K). Theoretical analysis at the UB3LYP/6-31+G(d) level supports the strong exchange observed through the [CuCl4(H2O)]2- dimer moiety superexchange pathway (-102 K = -71 cm-1). However, the apparent vanishingly small exchange through the single halide bridge is merely a brute average of competing ferromagnetic (FM) (+24.8 K = +17.0 cm-1) and antiferromagnetic (AFM) (-21.0 K = -14.6 cm-1) exchange interactions. Our computational study shows that these fitting parameters carry no physical meaning since a honeycomb plaquette must be taken as magnetic building block for 1. The competition between FM and AFM pair interactions leads to geometrical frustration in 1 and could induce interesting magnetic response at low temperatures, if the magnetic exchange is adequately tuned by modifying substituents in ligands and, in turn, interactions within the crystal packing.

3.
Inorg Chem ; 59(4): 2127-2135, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32009403

ABSTRACT

We measured the infrared vibrational properties of two copper-containing coordination polymers, [Cu(pyz)2(2-HOpy)2](PF6)2 and [Cu(pyz)1.5(4-HOpy)2](ClO4)2, under different external stimuli in order to explore the microscopic aspects of spin-lattice coupling. While the temperature and pressure control hydrogen bonding, an applied field drives these materials from the antiferromagnetic → fully saturated state. Analysis of the pyrazine (pyz)-related vibrational modes across the magnetic quantum-phase transition provides a superb local probe of magnetoelastic coupling because the pyz ligand functions as the primary exchange pathway and is present in both systems. Strikingly, the PF6- compound employs several pyz-related distortions in support of the magnetically driven transition, whereas the ClO4- system requires only a single out-of-plane pyz bending mode. Bringing these findings together with magnetoinfrared spectra from other copper complexes reveals spin-lattice coupling across the magnetic quantum-phase transition as a function of the structural and magnetic dimensionality. Coupling is maximized in [Cu(pyz)1.5(4-HOpy)2](ClO4)2 because of its ladderlike character. Although spin-lattice interactions can also be explored under compression, differences in the local structure and dimensionality drive these materials to unique high-pressure phases. Symmetry analysis suggests that the high-pressure phase of the ClO4- compound may be ferroelectric.

4.
Inorg Chem ; 56(9): 5441-5454, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28406628

ABSTRACT

The synthesis, structure, magnetic properties, and theoretical analysis of a new phase of dichloro(2-chloro-3-methylpyridine)copper(II) (2) and its isomorphous analogue dichloro(2-bromo-3-methylpyridine)copper(II) (3) are reported. Both complexes crystallize in the orthorhombic space group Pbca and present square pyramidal Cu(II) ions bridged into chains by chloride ions with each copper(II) bearing a single pyridine ligand. Variable temperature magnetic susceptibility measurements were well fit by a uniform one-dimensional ferromagnetic chain model with 2, J = 69.0(7) K, C = 0.487 emu-K/mol-Oe; 3, J = 73.9(4) K, C = 0.463 emu-K/mol-Oe (H = -JΣSi·Sj Hamiltonian). The experimental J-values were confirmed via theoretical calculations. Comparison to a known disordered polymorph of dichloro(2-chloro-3-methylpyridine)copper(II), 1, shows marked differences as there are significant antiferromagnetic next-nearest neighbor interactions in 1 in addition to randomness induced by the disorder which provide a distinctly different magnetic response. The differences in magnetic behavior are attributed principally to the structural difference in the Cu(II) coordination sphere, 1 being significantly closer to trigonal-bipyramidal, whose difference changes both the nearest and next-nearest neighbor interactions.

5.
Chemistry ; 20(27): 8355-62, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24889698

ABSTRACT

The synthesis, crystal structure, and magnetic properties (from a combined experimental and First-Principles Bottom-Up theoretical study) of the new compound catena-dichloro(2-Cl-3Mpy)copper(II), 1, [2-Cl-3Mpy=2-chloro-3-methylpyridine] are described and rationalized. Crystals of 1 present well isolated magnetic 1D chains (no 3D order was experimentally observed down to 1.8 K) and magnetic frustration stemming from competing ferromagnetic nearest-neighbor (J(NN)) interactions and antiferromagnetic next-nearest neighbor (J(NNN)) interactions, in which α=J(NNN)/J(NN) <-0.25. These magnetic interactions give rise to a unique magnetic topology: a two-leg zigzag ladder composed of edge-sharing up-down triangles with antiferromagnetic interactions along the rails and ferromagnetic interactions along the zigzag chain that connects the rails. Crystals of 1 also present a random distribution of the 2-Cl-3Mpy groups, which are arranged in two different orientations, each with a 50 % occupancy. This translates into a random static structural disorder within each chain by virtue of which the value of the J(NN) magnetic interactions can randomly take one of the following three values: 53, 36, and 16 cm(-1). The structural disorder does not affect the J(NNN) value, which in all cases is approximately -9 cm(-1). A proper statistical treatment of this disorder provides a computed magnetic susceptibility curve that reproduces the main features of the experimental data.

6.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 4): m229-30, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23634020

ABSTRACT

The crystal structure of the title compound, [Cu(H2O)6](BF4)2·3C4H4N2O2, comprises discrete [Cu(H2O)6](2+) cations and BF4 (-) anions along with three equivalents of pyrazine 1,4-dioxide (pzdo). The hexa-aqua-copper(II) ion and all three pzdo mol-ecules lie about crystallographic inversion centers. The lattice is supported by an extensive hydrogen-bonding network. O-H⋯O hydrogen bonding between the [Cu(H2O)6](2+) and pzdo units creates a pseudo-hexa-gonal lattice parallel to the bc plane. The BF4 (-) anions lie in the voids of that lattice, held in place by O-H⋯F hydrogen bonds, and also generate BF4 (-)-pzdo-BF4 (-)-pzdo stacks via short F⋯N contacts [2.866 (3)-3.283 (4) Å].

7.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 4): o471, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23634029

ABSTRACT

The crystal structure of the title salt, C12H9N2 (+)·HSO4 (-)·H2O, comprises inversion-related pairs of phenazinium ions linked by C-H⋯N hydrogen bonds. The phenazinium N-H atoms are hydrogen bonded to the bis-ulfate anions. The bis-ulfate anions and water mol-ecules are linked by O-H⋯O hydrogen-bonding inter-actions into a structural ladder motif parallel to the a axis.

8.
Inorg Chem ; 51(11): 6315-25, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22620715

ABSTRACT

The synthesis, structure, and magnetic behavior of the complexes Cu(qnx)Br(2) (1), Cu(2,3-dmpz)Br(2) (2), Cu(qnx)Cl(2) (3), and Cu(2,3-dmpz)Cl(2) (4) (qnx = quinoxaline, dmpz = dimethylpyrazine) are described. Both X-ray structural data and fitting of the magnetic data suggest that the compounds are well-described as strong-rung, two-leg magnetic ladders with J(rung) ranging from -30 K to -37 K, and J(rail) ranging from -14 K to -24 K. An unexpected decrease in the exchange constant for J(rail) (through the diazine ligand) is observed when the halide ion is changed from bromide to chloride, along with a small decrease in the magnetic exchange through the halide ion. Theoretical calculations on 2 and 4 via a first-principles bottom-up approach confirmed the description of the complexes as two-leg magnetic ladders. Furthermore, the calculations provide an explanation for the experimentally observed change in the value of the magnetic exchange through the dmpz ligand when the halide ion is changed from bromide to chloride, and for the very small change observed in the exchange through the different halide ions themselves via a combination of changes in geometry, bond lengths, and anion volume.

9.
Inorg Chem ; 51(4): 2121-9, 2012 Feb 20.
Article in English | MEDLINE | ID: mdl-22296451

ABSTRACT

The structural and magnetic properties of the newly crystallized CuX(2)(pyzO)(H(2)O)(2) (X = Cl, Br; pyzO = pyrazine-N,N'-dioxide) coordination polymers are reported. These isostructural compounds crystallize in the monoclinic space group C2/c with, at 150 K, a = 17.0515(7) Å, b = 5.5560(2) Å, c = 10.4254(5) Å, ß = 115.400(2)°, and V = 892.21(7) Å(3) for X = Cl and a = 17.3457(8) Å, b = 5.6766(3) Å, c = 10.6979(5) Å, ß = 115.593(2)°, and V = 950.01(8) Å(3) for X = Br. Their crystal structure is characterized by one-dimensional chains of Cu(2+) ions linked through bidentate pyzO ligands. These chains are joined together through OH···O hydrogen bonds between the water ligands and pyzO oxygen atoms and Cu-X···X-Cu contacts. Bulk magnetic susceptibility measurements at ambient pressure show a broad maximum at 7 (Cl) and 28 K (Br) that is indicative of short-range magnetic correlations. The dominant spin exchange is the Cu-X···X-Cu supersuperexchange because the magnetic orbital of the Cu(2+) ion is contained in the CuX(2)(H(2)O)(2) plane and the X···X contact distances are short. The magnetic data were fitted to a Heisenberg 1D uniform antiferromagnetic chain model with J(1D)/k(B) = -11.1(1) (Cl) and -45.9(1) K (Br). Magnetization saturates at fields of 16.1(3) (Cl) and 66.7(5) T (Br), from which J(1D) is determined to be -11.5(2) (Cl) and -46.4(5) K (Br). For the Br analog the pressure dependence of the magnetic susceptibility indicates a gradual increase in the magnitude of J(1D)/k(B) up to -51.2 K at 0.84 GPa, suggesting a shortening of the Br···Br contact distance under pressure. At higher pressure X-ray powder diffraction data indicates a structural phase transition at ∼3.5 GPa. Muon-spin relaxation measurements indicate that CuCl(2)(pyzO)(H(2)O)(2) is magnetically ordered with T(N) = 1.06(1) K, while the signature for long-range magnetic order in CuBr(2)(pyzO)(H(2)O)(2) was much less definitive down to 0.26 K. The results for the CuX(2)(pyzO)(H(2)O)(2) complexes are compared to the related CuX(2)(pyrazine) materials.

10.
Dalton Trans ; 51(12): 4653-4667, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35212329

ABSTRACT

The crystal structure and magnetic properties of two all-pyrazine-bridged antiferromagnetic spin ladders are reported. The complexes, catena-(bis(3-X-4-pyridone)(µ-pyrazine)copper(II)(-µ-pyrazine)diperchlorate ([Cu(pz)1.5(L)2](ClO4)2 where L = 3-X-4-pyridone and X = Br (1) or Cl (2)), contain copper(II)-based ladders in which both the rung and rail bridges are pyrazine molecules bonded through the x2-y2 orbital of the copper(II) ions. This structural scaffold is proposed to approach the isotropic spin-ladder regime. 1 and 2 crystallize in the monoclinic space group P21/c. Due to the bulk of the 3-X-4-HOpy ligands, the ladders are well isolated in the a-direction (1, 15.6 Å; 2, 15.5 Å). The ladders, which run in the b-direction, are stacked in the c-direction with the separation (1, 7.87 Å; 2, 7.82 Å) between copper(II) ions caused by the bulk of a semi-coordinate perchlorate ion coordinated in the axial position. Computational evaluation of magnetic JAB couplings between Cu-moieties of 2 supports the experimentally proposed magnetic topology and agrees with an isolated isotropic spin-ladder (Jrail = -4.04 cm-1 (-5.77 K) and Jrung = -3.89 cm-1 (-5.56 K)). These complexes introduce a convenient scaffold for synthesizing isotropic spin-ladders with modest superexchange interactions, the strength of which may be tuned by variations in L. The magnetic susceptibility down to 1.8 K, for both compounds, is well described by the strong-rung ladder model giving nearly isotropic exchange with Jrung ≈ Jrail ≈ -5.5 K (1) and -5.9 K (2) using the Hamiltonian. Theoretical simulations of the magnetic response of 2 using the isotropic ladder model are in excellent agreement with experiment. The measured magnetization to 5 T indicates a quantum-dominated magnetic spectrum. Again, calculated lower and saturation (4.3 and 24 T, respectively) critical fields for 2 are consistent with experimental measurements, and magnetization data at very low temperatures indeed suggest the presence of quantum effects. Further, the computational study of short- and long-range spin ordering indicates that a 2D-to-3D crossover might be feasible at lower temperatures. Analysis of the Boltzmann population corroborates the presence of accessible triplet states above the singlet ground state enabling the aforementioned 2D-to-3D crossover.

11.
Dalton Trans ; 50(12): 4167-4178, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33681874

ABSTRACT

The two complexes Cu(2ip)X2 were prepared (where 2ip = 2-iodopyridine and X = Cl or Br), and their crystal structures were determined. The two complexes are isomorphous and form a magnetic chain based on the two-halide exchange pathway. The powder and single crystal magnetic susceptibility data were measured down to 1.8 K. The exchange is antiferromagnetic along the chain; the exchange is stronger in the bromide complex than in the corresponding chloride complex. In the ordered state, weak moments appear along some of the axes, indicative of spin-canting. The calculated spin densities and the mapped surface of spin density on total electron density were used to rationalize qualitatively the observed magnetic behavior. Low temperature structures are compared with the room temperature data; the C-IX-Cu and Cu-XX-Cu distances are shorter at low temperatures; in contrast, the covalent bonds of the organic ligand (2-iodopyridine) are longer (negative thermal expansion of the covalent bonds). The anomalous behavior is rationalized using charge transfer from Cu-X group to the anti-bonding orbital of the organic ligand. Quantum theory of atoms in molecules was used to analyze C-IX halogen bonding interactions.

12.
Inorg Chem ; 49(17): 8017-24, 2010 Sep 06.
Article in English | MEDLINE | ID: mdl-20695455

ABSTRACT

In order to determine if its magnetic topology is actually two- or three-dimensional (2D or 3D), the mechanism of the magnetic interaction in (5MAP)(2)CuBr(4), a previously thought quasi-2D antiferromagnet, is re-examined using the first-principles bottom-up methodology. Once the magnitude and sign of all unique magnetic interactions present in the room-temperature (5MAP)(2)CuBr(4) crystal are evaluated, it is found that, even at room temperature, the magnetic topology of the crystal corresponds to a 3D antiferromagnet. Such 3D nature cannot be determined by examination of the magnetic susceptibility curve, chi(T), because it is found that the chi(T) curve computed using this 3D magnetic topology is very similar to that obtained using a 2D model where all interplane interactions have been deleted. However, its 3D magnetic dimensionality can be confirmed by examination of the shape of the magnetization curve, M(H); the computed curve is similar to the experimental one for the 3D case.

13.
Inorg Chem ; 49(2): 427-34, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-20014795

ABSTRACT

Reaction of quinoline with HBr and CuBr(2) generates a mixture of two compounds, (quinolinium)(2)CuBr(4).2H(2)O (1) and (quinolinium)(2)CuBr(4) (2) for which single-crystal X-ray structures have been solved. Compound 1 crystallizes in the monoclinic space group C2/c as layers of tetrabromocuprate ions which are separated by intervening layers of quinolinium ions. Compound 2 crystallizes in the triclinic space group P1. Magnetic data analysis reveals that 1 behaves as a 2D-quantum Heisenberg antiferromagnet with 2J/k(B) = -6.17(3) K within the layers. High field magnetization data at low temperatures suggests that T(N) must be less than 1.8 K for 1, yielding a figure of merit |k(B)T(N)/2J| < 0.29, which indicates excellent isolation between the layers. Magnetic exchange in compound 2 was much weaker and was fit to a linear chain antiferromagnet with 2J/k(B) = -1.59(3) K.

14.
Dalton Trans ; 49(39): 13693-13703, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32996511

ABSTRACT

A family of pyrazine-bridged, linear chain complexes of Cu(ii) of the formula [CuL2(H2O)2(pz)](ClO4)2 [pz = pyrazine; L = n-methyl-2(1H)-pyridone, n = 3 (1), 5 (2), and 6 (3)] has been prepared. Single-crystal X-ray diffraction shows six-coordinate, pyrazine-bridged chains with trans-pairs of ancillary ligands. The substituted pyridine molecules exist in their pyridone tautomers and are coordinated through the carbonyl oxygen atom. The structure is stabilized by intramolecular hydrogen bonds between the pyridone and water molecule, and via hydrogen bonds between the water molecules and perchlorate ions. 2 undergoes a crystallographic phase transition between C2/c (high temperature phase) and P1[combining macron] (low temperature phase). Powder EPR spectra reveal that all complexes are rhombic, although differences between gx and gy can only be seen clearly at Q-band. Variable temperature magnetic susceptibility data show antiferromagnetic interactions and the data were fit to the uniform chain model yielding J/kB = -9.8, -9.2 and -11 K for 1-3 respectively. Attempts to model an interchain interaction strength indicate that the chains are very well isolated.

15.
Chem Commun (Camb) ; (11): 1359-61, 2009 Mar 21.
Article in English | MEDLINE | ID: mdl-19259587

ABSTRACT

An unprecedented antiferromagnetic exchange of -234 K in Cu(2,5-dimethylpyrazine)Br(2) is shown experimentally and theoretically to propagate via through-space interactions between Br ions rather than through-bond interactions.

16.
Inorg Chem ; 47(20): 9327-32, 2008 Oct 20.
Article in English | MEDLINE | ID: mdl-18816048

ABSTRACT

The mixed cation salts, (dimethylammonium)(3,5-dimethylpyridinium)CuX4 (X = Cl, Br), henceforth (DMA)(35DMP)CuX4, are new examples of spin-ladders based on nonbonded halide...halide interactions between CuX4(2-) anions. In these structures, double rows of the CuX4(2-) anions are sheathed by the 35DMP(+) cations, while the edges are capped by the DMA(+) cations. For the Br salt, the Br...Br contacts that define the rungs of the ladder are 4.017 A in length, while those that define the rails are 3.983 A. For the Cl salt, the corresponding lengths are 3.967 and 4.045 A. The susceptibility data for the Br salt exhibits a maximum at approximately 5.5 K, and fitting the data to the spin 1/2 antiferromagnetic ladder model yields 2J(rail)/k = -7.95 K and 2J(rung)/k = -4.07 K. The exchange coupling is much weaker in the Cl salt, no maximum in chi is observed down to 1.8 K, and the corresponding exchange constants are -1.59 and -1.25 K, respectively. An analysis is made of the structural factors involved in the J(rung) pathway.

17.
Dalton Trans ; 40(16): 4242-52, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21384007

ABSTRACT

An isocoordinate family of compounds has been generated with the general formula (2-X-3-methylpyridine)(2)CuX'(2), where X, X' = Cl or Br. While each forms trans-ligand compounds, they vary in copper coordination geometry, canting of the pyridine rings and magnetic behavior. The copper bromide analogues exhibit weak ferromagnetic interactions whereas the copper chloride analogues exhibit antiferromagnetic interactions. Each compound has been characterized by IR, powder X-ray diffraction, single-crystal X-ray diffraction, and temperature dependent magnetic susceptibility.

18.
Dalton Trans ; 39(11): 2785-97, 2010 Mar 21.
Article in English | MEDLINE | ID: mdl-20200704

ABSTRACT

The investigation into synthesizing new metal organic compounds with the general formula Cu(S-pyrazine)X(2) using monosubstituted pyrazines has led to the generation of a new family of compounds Cu(S-pyrazine)(2)X(2) with similar structure and magnetic properties. The bis(S-pyrazine)dihalocopper(II) compounds [where S = Cl, CN, OCH(3), and OCH(2)CH(3) and halide = Cl or Br] have been characterized by IR, powder X-ray diffraction, single-crystal X-ray diffraction, and temperature dependent magnetic susceptibility. The bis(chloropyrazine)dihalocopper(II) compounds crystallize in the monoclinic space group P2(1)/n while the methoxy and ethoxy analogues crystallize in the triclinic space group P1. This structurally related family of compounds exhibit antiferromagnetic interactions with exchange constants of approximately -25 K for the chloride analogues and -50 K for the bromide analogues.

19.
Dalton Trans ; (47): 10518-26, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-20023875

ABSTRACT

A family of bis(2-amino-3,5-dihalopyridinium)tetrahalocuprate(II) compounds has been synthesized, including (3,5-diCAPH)2CuCl4 (1), (3,5-diCAPH)2CuBr4 (2), (3,5-diBAPH)2CuCl4 (3), and (3,5-diBAPH)2CuBr4 (4) [3,5-diCAPH = 2-amino-3,5-dichloropyridinium; 3,5-diBAPH = 2-amino-3,5-dibromopyridinium]. These complexes have been analyzed through single crystal X-ray diffraction and temperature dependent magnetic susceptibility. Compound 1 crystallizes in the P-1 space group and the tetrachlorocuprate ion is best described as possessing a distorted square planar geometry. Compounds 2-4 are structurally similar and crystallized in the P2(1)/n, P2(1)/c, and P2(1)/n space groups respectively. The tetrahalocuprate ions are best described as distorted tetrahedra. All four compounds show antiferromagnetic interactions and were fit to the uniform chain Heisenberg model with resulting 2J/kB values of -11.71(2) K, -2.21(1) K, -12.43 (2) K, and -1.36(1) K, respectively. The exchange values correlate well with the two-halide exchange pathway parameters. The unusual observation that the chloride complexes show stronger magnetic exchange than the bromide complexes provides strong support that the exchange can be strongly dependent upon the Cu-X...X angles and Cu-X...X-Cu torsion angles.

20.
Inorg Chem ; 46(19): 7756-66, 2007 Sep 17.
Article in English | MEDLINE | ID: mdl-17718477

ABSTRACT

A series of diradical containing salts CxF2x(CNSSS)2(**2+0(AsF6-)2 {x = 2, 1[AsF6]2; x = 3, 3[AsF6]2; x = 4, 2[AsF6]2} have been prepared. 1[AsF6]2 and 2[AsF6]2 were fully characterized by X-ray, variable-temperature magnetic susceptibility, and solid-state EPR measurements, further allowing us to extend the number of examples of the family of rare 7pi RCNSSS(*+) radical cations. 1[AsF6]2: a = 6.5314(7) A, b = 7.5658(9) A, c = 9.6048(11) A, alpha = 100.962(2) degrees , beta = 96.885(2) degrees , gamma = 107.436(2) degrees , triclinic, space group P, Z = 1, T = 173 K. 2[AsF6]2: a = 10.6398(16) A, b = 7.9680(11) A, c = 12.7468(19) A, beta = 99.758(2) degrees , monoclinic, space group P21/c, Z = 2, T = 173 K. In the solid-state, CxF2x(CNSSS)2(**2+) (x = 2, 4) formed one-dimensional polymeric chains of dications containing discrete centrosymmetric radical pairs in which radicals were linked by four centered two-electron pi*-pi* bonds [12+, d(S...S) = 3.455(1) A; 22+, d(S...S) = 3.306(2) A]. The exchange interactions in these bonds were determined to be -500 +/- 30 and -900 +/- 90 cm-1, by variable temperature magnetic susceptibility measurements, respectively, providing rare experimental data on the singlet-triplet gaps in the field of thiazyl radicals. For 2[AsF6]2, the thermally excited triplet state was unambiguously characterized by EPR techniques [/D/ = 0.0254(8) cm(-1), /E/ = 0.0013(8) cm(-1)]. These experimental data implied a weakly associated nature of the radical moieties contained in the solids 1[AsF6]2 and 2[AsF6]2. Computational analysis of the dimerization process is presented, and we show that the 2c 4 electron pi*-pi* bonds in 1[AsF6]2 and 2[AsF6]2 have ca. 50% and 40% diradical character, respectively. In contrast, 3[AsF6]2.SO2, containing diradical C3F6(CNSSS)2(**2+) with an odd number of CF2 spacers, showed magnetic behavior that was consistent with the presence of monomeric radical centers in the solid state.

SELECTION OF CITATIONS
SEARCH DETAIL