Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 109(9): 1563-1571, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055208

ABSTRACT

The vision of the American Society of Human Genetics (ASHG) is that people everywhere will realize the benefits of human genetics and genomics. Implicit in that vision is the importance of ensuring that the benefits of human genetics and genomics research are realized in ways that minimize harms and maximize benefits, a goal that can only be achieved through focused efforts to address health inequities and increase the representation of underrepresented communities in genetics and genomics research. This guidance is intended to advance community engagement as an approach that can be used across the research lifecycle. Community engagement uniquely offers researchers in human genetics and genomics an opportunity to pursue that vision successfully, including by addressing underrepresentation in genomics research.


Subject(s)
Genomics , Research Personnel , Humans , United States
2.
Pediatr Res ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969815

ABSTRACT

BACKGROUND: Despite advances in treatment and survival, individuals with congenital heart defects (CHD) have a higher risk of heart failure (HF) compared to the general population. OBJECTIVE: To evaluate comorbidities associated with HF in patients with CHD with a goal of identifying potentially modifiable risk factors that may reduce HF-associated morbidity and mortality. METHODS: Five surveillance sites in the United States linked population-based healthcare data and vital records. Individuals with an ICD-9-CM code for CHD aged 11-64 years were included and were stratified by presence of HF diagnosis code. Prevalence of death and cardiovascular risk factors based on diagnosis codes were compared by HF status using log-linear regression. RESULTS: A total of 25,343 individuals met inclusion/exclusion criteria. HF was documented for 2.2% of adolescents and 12.9% of adults with CHD. Adolescents and adults with HF had a higher mortality than those without HF. In both age groups, HF was positively associated with coronary artery disease, hypertension, obesity, diabetes, and increased healthcare utilization compared to those without HF. CONCLUSIONS: Within this population-based cohort, over 1 in 50 adolescents and 1 in 8 adults with CHD had HF, which was associated with increased mortality. Modifiable cardiovascular comorbidities were associated with HF. IMPACT: Five sites in the United States linked population-based healthcare data and vital records to establish surveillance network for identifying the factors which influence congenital heart disease (CHD) outcomes. Survivors of CHD frequently develop heart failure across the lifespan. Over 1 in 50 adolescent and 1 in 8 adult survivors of CHD have heart failure which is associated with increased mortality compared to CHD survivors without heart failure. Heart failure development is associated with potentially modifiable cardiovascular risk factors such as hypertension, coronary artery disease, and diabetes. Controlling modifiable cardiovascular risk factors may serve to lower the risk of heart failure and mortality in survivors of congenital heart disease of all ages.

3.
Pediatr Cardiol ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456890

ABSTRACT

Anthracyclines are effective chemotherapeutics used in approximately 60% of pediatric cancer cases but have a well-documented risk of cardiotoxicity. Existing cardiotoxicity risk calculators do not include cardiovascular risk factors present at the time of diagnosis. The goal of this study is to leverage the advanced sensitivity of strain echocardiography to identify pre-existing risk factors for early subclinical cardiac dysfunction among anthracycline-exposed pediatric patients. We identified 115 pediatric patients with cancer who were treated with an anthracycline between 2013 and 2019. Peak longitudinal left ventricular strain was retroactively calculated on 495 surveillance echocardiograms via the TOMTEC AutoSTRAIN software. Cox proportional hazards models were employed to identify risk factors for abnormal longitudinal strain (> - 16%) following anthracycline treatment. High anthracycline dose (≥ 250 mg/m2 doxorubicin equivalents) and obesity at the time of diagnosis (BMI > 95th percentile-for-age) were both significant predictors of abnormal strain with hazard ratios of 2.79, 95% CI (1.07-7.25), and 3.85, 95% CI (1.42-10.48), respectively. Among pediatric cancer survivors, patients who are obese at the time of diagnosis are at an increased risk of sub-clinical cardiac dysfunction following anthracycline exposure. Future studies should explore the incidence of symptomatic cardiomyopathy 10-15 years post-treatment among patients with early subclinical cardiac dysfunction.

4.
Pediatr Cardiol ; 45(5): 976-985, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38485760

ABSTRACT

Adults with congenital heart disease (CHD) benefit from cardiology follow-up at recommended intervals of ≤ 2 years. However, benefit for children is less clear given limited studies and unclear current guidelines. We hypothesize there are identifiable risks for gaps in cardiology follow-up in children with CHD and that gaps in follow-up are associated with differences in healthcare utilization. Our cohort included children < 10 years old with CHD and a healthcare encounter from 2008 to 2013 at one of four North Carolina (NC) hospitals. We assessed associations between cardiology follow-up and demographics, lesion severity, healthcare access, and educational isolation (EI). We compared healthcare utilization based on follow-up. Overall, 60.4% of 6,969 children received cardiology follow-up within 2 years of initial encounter, including 53.1%, 58.1%, and 79.0% of those with valve, shunt, and severe lesions, respectively. Factors associated with gaps in care included increased drive time to a cardiology clinic (Hazard Ratio (HR) 0.92/15-min increase), EI (HR 0.94/0.2-unit increase), lesion severity (HR 0.48 for shunt/valve vs severe), and older age (HR 0.95/month if < 1 year old and 0.94/year if > 1 year old; p < 0.05). Children with a care gap subsequently had more emergency department (ED) visits (Rate Ratio (RR) 1.59) and fewer inpatient encounters and procedures (RR 0.51, 0.35; p < 0.05). We found novel factors associated with gaps in care for cardiology follow-up in children with CHD and altered health care utilization with a gap. Our findings demonstrate a need to mitigate healthcare barriers and generate clear cardiology follow-up guidelines for children with CHD.


Subject(s)
Heart Defects, Congenital , Humans , Heart Defects, Congenital/therapy , Male , Female , Child, Preschool , Risk Factors , Infant , Child , North Carolina/epidemiology , Health Services Accessibility , Retrospective Studies , Patient Acceptance of Health Care/statistics & numerical data , Infant, Newborn , Follow-Up Studies
5.
Circulation ; 146(2): 110-124, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35708014

ABSTRACT

BACKGROUND: There is a paucity of data regarding the phenotype of dilated cardiomyopathy (DCM) gene variants in the general population. We aimed to determine the frequency and penetrance of DCM-associated putative pathogenic gene variants in a general adult population, with a focus on the expression of clinical and subclinical phenotype, including structural, functional, and arrhythmic disease features. METHODS: UK Biobank participants who had undergone whole exome sequencing, ECG, and cardiovascular magnetic resonance imaging were selected for study. Three variant-calling strategies (1 primary and 2 secondary) were used to identify participants with putative pathogenic variants in 44 DCM genes. The observed phenotype was graded DCM (clinical or cardiovascular magnetic resonance diagnosis); early DCM features, including arrhythmia or conduction disease, isolated ventricular dilation, and hypokinetic nondilated cardiomyopathy; or phenotype-negative. RESULTS: Among 18 665 individuals included in the study, 1463 (7.8%) possessed ≥1 putative pathogenic variant in 44 DCM genes by the main variant calling strategy. A clinical diagnosis of DCM was present in 0.34% and early DCM features in 5.7% of individuals with putative pathogenic variants. ECG and cardiovascular magnetic resonance analysis revealed evidence of subclinical DCM in an additional 1.6% and early DCM features in an additional 15.9% of individuals with putative pathogenic variants. Arrhythmias or conduction disease (15.2%) were the most common early DCM features, followed by hypokinetic nondilated cardiomyopathy (4%). The combined clinical/subclinical penetrance was ≤30% with all 3 variant filtering strategies. Clinical DCM was slightly more prevalent among participants with putative pathogenic variants in definitive/strong evidence genes as compared with those with variants in moderate/limited evidence genes. CONCLUSIONS: In the UK Biobank, ≈1 of 6 of adults with putative pathogenic variants in DCM genes exhibited early DCM features potentially associated with DCM genotype, most commonly manifesting with arrhythmias in the absence of substantial ventricular dilation or dysfunction.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/genetics , Biological Specimen Banks , Cardiomyopathies/complications , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/epidemiology , Cardiomyopathy, Dilated/genetics , Humans , Penetrance , United Kingdom/epidemiology
6.
Mol Genet Metab ; 138(3): 107525, 2023 03.
Article in English | MEDLINE | ID: mdl-36796138

ABSTRACT

Glycogen storage disease type IV (GSD IV) is an ultra-rare autosomal recessive disorder caused by pathogenic variants in GBE1 which results in reduced or deficient glycogen branching enzyme activity. Consequently, glycogen synthesis is impaired and leads to accumulation of poorly branched glycogen known as polyglucosan. GSD IV is characterized by a remarkable degree of phenotypic heterogeneity with presentations in utero, during infancy, early childhood, adolescence, or middle to late adulthood. The clinical continuum encompasses hepatic, cardiac, muscular, and neurologic manifestations that range in severity. The adult-onset form of GSD IV, referred to as adult polyglucosan body disease (APBD), is a neurodegenerative disease characterized by neurogenic bladder, spastic paraparesis, and peripheral neuropathy. There are currently no consensus guidelines for the diagnosis and management of these patients, resulting in high rates of misdiagnosis, delayed diagnosis, and lack of standardized clinical care. To address this, a group of experts from the United States developed a set of recommendations for the diagnosis and management of all clinical phenotypes of GSD IV, including APBD, to support clinicians and caregivers who provide long-term care for individuals with GSD IV. The educational resource includes practical steps to confirm a GSD IV diagnosis and best practices for medical management, including (a) imaging of the liver, heart, skeletal muscle, brain, and spine, (b) functional and neuromusculoskeletal assessments, (c) laboratory investigations, (d) liver and heart transplantation, and (e) long-term follow-up care. Remaining knowledge gaps are detailed to emphasize areas for improvement and future research.


Subject(s)
Glycogen Storage Disease Type IV , Glycogen Storage Disease , Neurodegenerative Diseases , Child, Preschool , Humans , Glycogen Storage Disease Type IV/diagnosis , Glycogen Storage Disease Type IV/genetics , Glycogen Storage Disease Type IV/therapy , Glycogen Storage Disease/diagnosis , Glycogen Storage Disease/genetics , Glycogen Storage Disease/therapy , Glycogen
7.
J Card Fail ; 29(12): 1657-1666, 2023 12.
Article in English | MEDLINE | ID: mdl-37659618

ABSTRACT

BACKGROUND: A diagnosis of Lamin proteins A and C cardiomyopathy (LMNA-CM) not only impacts disease prognosis, but also leads to specific guideline-recommended treatment options for these patients. This etiology is fundamentally different from other genetic causes of dilated CM. METHODS AND RESULTS: LMNA-CM often presents early in the third to fourth decades and there is an age-dependent penetrance of nearly 90% among those with a positive genotype for LMNA-CM. Oftentimes, electrical abnormalities with either conduction disturbances and/or either atrial or ventricular arrhythmias manifest before there is imaging evidence of left ventricular dysfunction. Given these subtle early findings, cardiac magnetic resonance provides helpful guidance regarding patterns of enhancement associated with LMNA-CM, often before there is significant left ventricular dilation and/or a decrease in the ejection fraction and could be used for further understanding of risk stratification and prognosis of asymptomatic genotype-positive individuals. Among symptomatic patients with LMNA-CM, approximately one-quarter of individuals progress to needing advanced heart failure therapies such as heart transplantation. CONCLUSIONS: In the era of precision medicine, increased recognition of clinical findings associated with LMNA-CM and increased detection by genetic testing among patients with idiopathic nonischemic CM is of increasing importance. Not only does a diagnosis of LMNA-CM have implications for management and risk stratification, but new gene-based therapies continue to be evaluated for this group. Clinicians must be aware not only of the general indications for genetic testing in arrhythmogenic and dilated cardiomyopathies and of when to suspect LMNA-CM, but also of the clinical trials underway targeted toward the different genetic cardiomyopathies.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Heart Failure , Humans , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/genetics , Mutation , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Cardiomyopathies/therapy , Arrhythmias, Cardiac , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/therapy , Lamin Type A/genetics
8.
Curr Cardiol Rep ; 25(5): 295-305, 2023 05.
Article in English | MEDLINE | ID: mdl-36930454

ABSTRACT

PURPOSE OF REVIEW: Congenital heart disease includes a wide variety of structural cardiac defects, the most severe of which are single ventricle defects (SVD). These patients suffer from significant morbidity and mortality; however, our understanding of the developmental etiology of these conditions is limited. Model organisms offer a window into normal and abnormal cardiogenesis yet often fail to recapitulate complex congenital heart defects seen in patients. The use of induced pluripotent stem cells (iPSCs) derived from patients with single-ventricle defects opens the door to studying SVD in patient-derived cardiomyocytes (iPSC-CMs) in a variety of different contexts, including organoids and chamber-specific cardiomyocytes. As the genetic and cellular causes of SVD are not well defined, patient-derived iPSC-CMs hold promise for uncovering mechanisms of disease development and serve as a platform for testing therapies. The purpose of this review is to highlight recent advances in iPSC-based models of SVD. RECENT FINDINGS: Recent advances in patient-derived iPSC-CM differentiation, as well as the development of both chamber-specific and non-myocyte cardiac cell types, make it possible to model the complex genetic and molecular architecture involved in SVD development. Moreover, iPSC models have become increasingly complex with the generation of 3D organoids and engineered cardiac tissues which open the door to new mechanistic insight into SVD development. Finally, iPSC-CMs have been used in proof-of-concept studies that the molecular underpinnings of SVD may be targetable for future therapies. While each platform has its advantages and disadvantages, the use of patient-derived iPSC-CMs offers a window into patient-specific cardiogenesis and SVD development. Advancement in stem-cell based modeling of SVD promises to revolutionize our understanding of the developmental etiology of SVD and provides a tool for developing and testing new therapies.


Subject(s)
Heart Defects, Congenital , Induced Pluripotent Stem Cells , Humans , Cell Differentiation/genetics , Myocytes, Cardiac
9.
Circulation ; 144(20): 1646-1655, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34780255

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is a primary disease of the myocardium, predominantly caused by genetic defects in proteins of the cardiac intercalated disc, particularly, desmosomes. Transmission is mostly autosomal dominant with incomplete penetrance. ACM also has wide phenotype variability, ranging from premature ventricular contractions to sudden cardiac death and heart failure. Among other drivers and modulators of phenotype, inflammation in response to viral infection and immune triggers have been postulated to be an aggravator of cardiac myocyte damage and necrosis. This theory is supported by multiple pieces of evidence, including the presence of inflammatory infiltrates in more than two-thirds of ACM hearts, detection of different cardiotropic viruses in sporadic cases of ACM, the fact that patients with ACM often fulfill the histological criteria of active myocarditis, and the abundance of anti-desmoglein-2, antiheart, and anti-intercalated disk autoantibodies in patients with arrhythmogenic right ventricular cardiomyopathy. In keeping with the frequent familial occurrence of ACM, it has been proposed that, in addition to genetic predisposition to progressive myocardial damage, a heritable susceptibility to viral infections and immune reactions may explain familial clustering of ACM. Moreover, considerable in vitro and in vivo evidence implicates activated inflammatory signaling in ACM. Although the role of inflammation/immune response in ACM is not entirely clear, inflammation as a driver of phenotype and a potential target for mechanism-based therapy warrants further research. This review discusses the present evidence supporting the role of inflammatory and immune responses in ACM pathogenesis and proposes opportunities for translational and clinical investigation.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia/etiology , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Disease Susceptibility , Immunity , Inflammation/etiology , Inflammation/metabolism , Alleles , Animals , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/therapy , Autoimmune Diseases/diagnosis , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/therapy , Autoimmunity , Biomarkers , Biopsy , Clinical Trials as Topic , Cytokines/biosynthesis , Disease Management , Disease Susceptibility/immunology , Electrocardiography , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Multifactorial Inheritance , Signal Transduction
10.
Genet Med ; 24(5): 1045-1053, 2022 05.
Article in English | MEDLINE | ID: mdl-35058154

ABSTRACT

PURPOSE: In a large cohort of 373 pediatric patients with Marfan syndrome (MFS) with a severe cardiovascular phenotype, we explored the proportion of patients with MFS with a pathogenic FBN1 variant and analyzed whether the type/location of FBN1 variants was associated with specific clinical characteristics and response to treatment. Patients were recruited on the basis of the following criteria: aortic root z-score > 3, age 6 months to 25 years, no prior or planned surgery, and aortic root diameter < 5 cm. METHODS: Targeted resequencing and deletion/duplication testing of FBN1 and related genes were performed. RESULTS: We identified (likely) pathogenic FBN1 variants in 91% of patients. Ectopia lentis was more frequent in patients with dominant-negative (DN) variants (61%) than in those with haploinsufficient variants (27%). For DN FBN1 variants, the prevalence of ectopia lentis was highest in the N-terminal region (84%) and lowest in the C-terminal region (17%). The association with a more severe cardiovascular phenotype was not restricted to DN variants in the neonatal FBN1 region (exon 25-33) but was also seen in the variants in exons 26 to 49. No difference in the therapeutic response was detected between genotypes. CONCLUSION: Important novel genotype-phenotype associations involving both cardiovascular and extra-cardiovascular manifestations were identified, and existing ones were confirmed. These findings have implications for prognostic counseling of families with MFS.


Subject(s)
Ectopia Lentis , Marfan Syndrome , Biological Variation, Population , Child , Ectopia Lentis/complications , Ectopia Lentis/genetics , Fibrillin-1/genetics , Fibrillins/genetics , Genotype , Humans , Marfan Syndrome/genetics , Mutation , Phenotype
11.
Mol Genet Metab ; 135(3): 179-185, 2022 03.
Article in English | MEDLINE | ID: mdl-35123877

ABSTRACT

PURPOSE: Thoroughly phenotype children with late-onset Pompe disease (LOPD) diagnosed via newborn screening (NBS) to provide guidance for long-term follow up. METHODS: Twenty infants ages 6-21 months with LOPD diagnosed by NBS underwent systematic clinical evaluation at Duke University including cardiac imaging, biomarker testing, physical therapy evaluation, and speech-language pathology evaluation. RESULTS: Of the 20 infants, four were homozygous for the "late-onset" IVS1 splice site variant c.-32-13 T > G, fourteen were compound heterozygous, and two did not have any copies of this variant. None of the patients had evidence of cardiomyopathy or cardiac rhythm disturbances. Biomarker testing showed an increase in CK, AST, and ALT in 8 patients (40%) and increase in Glc4 in two patients (10%). All patients demonstrated postural and kinematic concerns. Three patients (17%) scored below the 10%ile on the Alberta Infant Motor Scale (AIMS) and 15 patients (83%) scored above the 10%ile. Speech-language pathology assessments were normal in all patients and mild feeding/swallowing abnormalities were noted in nine patients (45%). CONCLUSION: Our data show high variability among children with LOPD diagnosed via NBS. Careful physical therapy evaluation is necessary to monitor for subtle musculoskeletal signs that may reflect early muscle involvement. Patients should be monitored closely for symptom progression.


Subject(s)
Glycogen Storage Disease Type II , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/pathology , Homozygote , Humans , Infant, Newborn , Mutation , Neonatal Screening/methods , Phenotype
12.
J Cell Mol Med ; 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34110090

ABSTRACT

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited cardiac arrhythmia syndrome that often leads to sudden cardiac death. The most common form of CPVT is caused by autosomal-dominant variants in the cardiac ryanodine receptor type-2 (RYR2) gene. Mutations in RYR2 promote calcium (Ca2+ ) leak from the sarcoplasmic reticulum (SR), triggering lethal arrhythmias. Recently, it was demonstrated that tetracaine derivative EL20 specifically inhibits mutant RyR2, normalizes Ca2+ handling and suppresses arrhythmias in a CPVT mouse model. The objective of this study was to determine whether EL20 normalizes SR Ca2+ handling and arrhythmic events in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from a CPVT patient. Blood samples from a child carrying RyR2 variant RyR2 variant Arg-176-Glu (R176Q) and a mutation-negative relative were reprogrammed into iPSCs using a Sendai virus system. iPSC-CMs were derived using the StemdiffTM kit. Confocal Ca2+ imaging was used to quantify RyR2 activity in the absence and presence of EL20. iPSC-CMs harbouring the R176Q variant demonstrated spontaneous SR Ca2+ release events, whereas administration of EL20 diminished these abnormal events at low nanomolar concentrations (IC50  = 82 nM). Importantly, treatment with EL20 did not have any adverse effects on systolic Ca2+ handling in control iPSC-CMs. Our results show for the first time that tetracaine derivative EL20 normalized SR Ca2+ handling and suppresses arrhythmogenic activity in iPSC-CMs derived from a CPVT patient. Hence, this study confirms that this RyR2-inhibitor represents a promising therapeutic candidate for treatment of CPVT.

13.
Circulation ; 141(6): 429-439, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31941373

ABSTRACT

BACKGROUND: Insight into type 5 long QT syndrome (LQT5) has been limited to case reports and small family series. Improved understanding of the clinical phenotype and genetic features associated with rare KCNE1 variants implicated in LQT5 was sought through an international multicenter collaboration. METHODS: Patients with either presumed autosomal dominant LQT5 (N = 229) or the recessive Type 2 Jervell and Lange-Nielsen syndrome (N = 19) were enrolled from 22 genetic arrhythmia clinics and 4 registries from 9 countries. KCNE1 variants were evaluated for ECG penetrance (defined as QTc >460 ms on presenting ECG) and genotype-phenotype segregation. Multivariable Cox regression was used to compare the associations between clinical and genetic variables with a composite primary outcome of definite arrhythmic events, including appropriate implantable cardioverter-defibrillator shocks, aborted cardiac arrest, and sudden cardiac death. RESULTS: A total of 32 distinct KCNE1 rare variants were identified in 89 probands and 140 genotype positive family members with presumed LQT5 and an additional 19 Type 2 Jervell and Lange-Nielsen syndrome patients. Among presumed LQT5 patients, the mean QTc on presenting ECG was significantly longer in probands (476.9±38.6 ms) compared with genotype positive family members (441.8±30.9 ms, P<0.001). ECG penetrance for heterozygous genotype positive family members was 20.7% (29/140). A definite arrhythmic event was experienced in 16.9% (15/89) of heterozygous probands in comparison with 1.4% (2/140) of family members (adjusted hazard ratio [HR] 11.6 [95% CI, 2.6-52.2]; P=0.001). Event incidence did not differ significantly for Type 2 Jervell and Lange-Nielsen syndrome patients relative to the overall heterozygous cohort (10.5% [2/19]; HR 1.7 [95% CI, 0.3-10.8], P=0.590). The cumulative prevalence of the 32 KCNE1 variants in the Genome Aggregation Database, which is a human database of exome and genome sequencing data from now over 140 000 individuals, was 238-fold greater than the anticipated prevalence of all LQT5 combined (0.238% vs 0.001%). CONCLUSIONS: The present study suggests that putative/confirmed loss-of-function KCNE1 variants predispose to QT prolongation, however, the low ECG penetrance observed suggests they do not manifest clinically in the majority of individuals, aligning with the mild phenotype observed for Type 2 Jervell and Lange-Nielsen syndrome patients.


Subject(s)
Long QT Syndrome , Penetrance , Potassium Channels, Voltage-Gated/genetics , Registries , Adolescent , Adult , Death, Sudden, Cardiac , Electric Countershock , Electrocardiography , Female , Heart Arrest/genetics , Heart Arrest/mortality , Heart Arrest/physiopathology , Heart Arrest/therapy , Humans , Long QT Syndrome/genetics , Long QT Syndrome/mortality , Long QT Syndrome/physiopathology , Long QT Syndrome/therapy , Male , Middle Aged
14.
Clin Genet ; 100(2): 132-143, 2021 08.
Article in English | MEDLINE | ID: mdl-33871046

ABSTRACT

Anthracyclines, chemotherapeutic agents that have contributed to significant improvements in cancer survival, also carry risk of both acute and chronic cardiotoxicity. This has led to significantly elevated risks of cardiac morbidity and mortality among cancer survivors treated with these agents. Certain treatment related, demographic, and medical factors increase an individual's risk of anthracycline induced cardiotoxicity; however, significant variability among those affected suggests that there is an underlying genetic predisposition to anthracycline induced cardiotoxicity. The current narrative review seeks to summarize the literature to date that has identified genetic variants associated with anthracycline induced cardiotoxicity. These include variants found in genes that encode proteins associated with anthracycline transportation and metabolism, those that encode proteins associated with the generation of reactive oxygen species, and those known to be associated with cardiac disease. While there is strong evidence that susceptibility to anthracycline induced cardiotoxicity has genetic underpinnings, the majority of work to date has been candidate gene analyses. Future work should focus on genome-wide analyses including genome-wide association and sequencing-based studies to confirm and expand these findings.


Subject(s)
Anthracyclines/adverse effects , Cardiomyopathies/chemically induced , Cardiomyopathies/genetics , Genetic Predisposition to Disease , ATP Binding Cassette Transporter, Subfamily B/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Antibiotics, Antineoplastic/adverse effects , Cardiomyopathies/metabolism , Cardiotoxicity/genetics , Humans , NADPH Oxidases/genetics , Nitric Oxide Synthase Type III/genetics , Organic Anion Transport Protein 1/genetics
15.
J Muscle Res Cell Motil ; 42(2): 323-342, 2021 06.
Article in English | MEDLINE | ID: mdl-33179204

ABSTRACT

Familial cardiomyopathy is an inherited disease that affects the structure and function of heart muscle and has an extreme range of phenotypes. Among the millions of affected individuals, patients with hypertrophic (HCM), dilated (DCM), or left ventricular non-compaction (LVNC) cardiomyopathy can experience morphologic changes of the heart which lead to sudden death in the most detrimental cases. TNNC1, the gene that codes for cardiac troponin C (cTnC), is a sarcomere gene associated with cardiomyopathies in which probands exhibit young age of presentation and high death, transplant or ventricular fibrillation events relative to TNNT2 and TNNI3 probands. Using GnomAD, ClinVar, UniProt and PhosphoSitePlus databases and published literature, an extensive list to date of identified genetic variants in TNNC1 and post-translational modifications (PTMs) in cTnC was compiled. Additionally, a recent cryo-EM structure of the cardiac thin filament regulatory unit was used to localize each functionally studied amino acid variant and each PTM (acetylation, glycation, s-nitrosylation, phosphorylation) in the structure of cTnC. TNNC1 has a large number of variants (> 100) relative to other genes of the same transcript size. Surprisingly, the mapped variant amino acids and PTMs are distributed throughout the cTnC structure. While many cardiomyopathy-associated variants are localized in α-helical regions of cTnC, this was not statistically significant χ2 (p = 0.72). Exploring the variants in TNNC1 and PTMs of cTnC in the contexts of cardiomyopathy association, physiological modulation and potential non-canonical roles provides insights into the normal function of cTnC along with the many facets of TNNC1 as a cardiomyopathic gene.


Subject(s)
Myocardium , Troponin C , Humans , Myocardium/metabolism , Protein Processing, Post-Translational/genetics , Troponin C/genetics , Troponin C/metabolism , Troponin I , Troponin T/genetics
16.
Am J Med Genet A ; 185(3): 923-929, 2021 03.
Article in English | MEDLINE | ID: mdl-33369127

ABSTRACT

Long QT syndrome (LQTS) is a genetic disease resulting in a prolonged QT interval on a resting electrocardiogram, predisposing affected individuals to polymorphic ventricular tachycardia and sudden death. Although a number of genes have been implicated in this disease, nearly one in four individuals exhibiting the LQTS phenotype are genotype-negative. Whole-exome sequencing identified a missense T223M variant in TBX5 that cosegregates with prolonged QT interval in a family with otherwise genotype-negative LQTS and sudden death. The TBX5-T223M variant was absent among large ostensibly healthy populations (gnomAD) and predicted to be pathogenic by in silico modeling based on Panther, PolyPhen-2, Provean, SIFT, SNAP2, and PredictSNP prediction tools. The variant was located in a highly conserved region of TBX5 predicted to be part of the DNA-binding interface. A luciferase assay identified a 57.5% reduction in the ability of TBX5-T223M to drive expression at the atrial natriuretic factor promotor compared to wildtype TBX5 in vitro. We conclude that the variant is pathogenic in this family, and we put TBX5 forward as a disease susceptibility allele for genotype-negative LQTS. The identification of this familial variant may serve as a basis for the identification of previously unknown mechanisms of LQTS with broader implications for cardiac electrophysiology.


Subject(s)
Death, Sudden, Cardiac/etiology , Long QT Syndrome/genetics , Mutation, Missense , Point Mutation , T-Box Domain Proteins/genetics , Adult , Amino Acid Sequence , Amino Acid Substitution , Atrial Natriuretic Factor/genetics , Child , Child, Preschool , Electrocardiography , Female , Humans , Male , Middle Aged , Models, Molecular , Pedigree , Promoter Regions, Genetic , Protein Conformation , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , T-Box Domain Proteins/deficiency , Exome Sequencing
17.
Article in English | MEDLINE | ID: mdl-34776723

ABSTRACT

BACKGROUND: Pediatric-onset cardiomyopathies are rare yet cause significant morbidity and mortality in affected children. Genetic testing has a major role in the clinical evaluation of pediatric-onset cardiomyopathies, and identification of a variant in an associated gene can be used to confirm the clinical diagnosis and exclude syndromic causes that may warrant different treatment strategies. Further, risk-predictive testing of first-degree relatives can assess who is at-risk of disease and requires continued clinical follow-up. AIM OF REVIEW: In this review, we seek to describe the current role of genetic testing in the clinical diagnosis and management of patients and families with the five major cardiomyopathies. Further, we highlight the ongoing development of precision-based approaches to diagnosis, prognosis, and treatment. KEY SCIENTIFIC CONCEPTS OF REVIEW: Emerging application of genotype-phenotype correlations opens the door for genetics to guide a precision medicine-based approach to prognosis and potentially for therapies. Despite advances in our understanding of the genetic etiology of cardiomyopathy and increased accessibility of clinical genetic testing, not all pediatric cardiomyopathy patients have a clear genetic explanation for their disease. Expanded genomic studies are needed to understand the cause of disease in these patients, improve variant classification and genotype-driven prognostic predictions, and ultimately develop truly disease preventing treatment.

18.
J Mol Cell Cardiol ; 142: 118-125, 2020 05.
Article in English | MEDLINE | ID: mdl-32278834

ABSTRACT

INTRODUCTION: Troponin (TNN)-encoded cardiac troponins (Tn) are critical for sensing calcium and triggering myofilament contraction. TNN variants are associated with development of cardiomyopathy; however, recent advances in genetic analysis have identified rare population variants. It is unclear how certain variants are associated with disease while others are tolerated. OBJECTIVE: To compare probands with TNNT2, TNNI3, and TNNC1 variants and utilize high-resolution variant comparison mapping of pathologic and rare population variants to identify loci associated with disease pathogenesis. METHODS: Cardiomyopathy-associated TNN variants were identified in the literature and topology mapping conducted. Clinical features were compiled and compared. Rare population variants were obtained from the gnomAD database. Signal-to-noise (S:N) normalized pathologic variant frequency against population variant frequency. Abstract review of clinical phenotypes was applied to "significant" hot spots. RESULTS: Probands were compiled (N = 70 studies, 224 probands) as were rare variants (N = 125,748 exomes; 15,708 genomes, MAF <0.001). TNNC1-positive probands demonstrated the youngest age of presentation (20.0 years; P = .016 vs TNNT2; P = .004 vs TNNI3) and the highest death, transplant, or ventricular fibrillation events (P = .093 vs TNNT2; P = .024 vs TNNI3; Kaplan Meir: P = .025). S:N analysis yielded hot spots of diagnostic significance within the tropomyosin-binding domains, α-helix 1, and the N-Terminus in TNNT2 with increased sudden cardiac death and ventricular fibrillation (P = .004). The inhibitory region and C-terminal region in TNNI3 exhibited increased restrictive cardiomyopathy (P =.008). HCM and RCM models tended to have increased calcium sensitivity and DCM decreased sensitivity (P < .001). DCM and HCM studies typically showed no differences in Hill coefficient which was decreased in RCM models (P < .001). CM models typically demonstrated no changes to Fmax (P = .239). CONCLUSION: TNNC1-positive probands had younger ages of diagnosis and poorer clinical outcomes. Mapping of TNN variants identified locations in TNNT2 and TNNI3 associated with heightened pathogenicity, RCM diagnosis, and increased risk of sudden death.


Subject(s)
Alleles , Cardiomyopathies/genetics , Cardiomyopathies/mortality , Genetic Predisposition to Disease , Genetic Variation , Quantitative Trait Loci , Troponin/genetics , Age of Onset , Amino Acid Substitution , Cardiomyopathies/diagnosis , Chromosome Mapping , Databases, Genetic , Genetic Association Studies , Genotype , Humans , Patient Outcome Assessment , Prognosis , Troponin/metabolism , Troponin I/genetics , Troponin T/genetics
20.
J Card Fail ; 25(12): 1004-1008, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31626950

ABSTRACT

BACKGROUND: Wolff-Parkinson-White (WPW) has been associated with left ventricular noncompaction (LVNC) in children. Little is known about the prevalence of this association, clinical outcomes, and treatment options. METHODS: Retrospective review of subjects with LVNC. LVNC was defined by established criteria; those with congenital heart disease were excluded. Electrocardiograms (ECGs) were reviewed for presence of pre-excitation. Outcomes were compared between those with isolated LVNC and those with WPW and LVNC. RESULTS: A total of 348 patients with LVNC were identified. Thirty-eight (11%) were found to have WPW pattern on ECG, and 84% of those with WPW and LVNC had cardiac dysfunction. In Kaplan-Meier analysis, there was significantly lower freedom from significant dysfunction (ejection fraction ≤ 40%) among those with WPW and LVNC (P < .001). Further analysis showed a higher risk of developing significant dysfunction in patients with WPW and LVNC versus LVNC alone (hazard ratio 4.64 [2.79, 9.90]). Twelve patients underwent an ablation procedure with an acute success rate of 83%. Four patients with cardiac dysfunction were successfully ablated, 3 having improvement in function. CONCLUSION: WPW is common among children with LVNC and is associated with cardiac dysfunction. Ablation therapy can be safely and effectively performed and may result in improvement in function.


Subject(s)
Isolated Noncompaction of the Ventricular Myocardium/diagnosis , Isolated Noncompaction of the Ventricular Myocardium/epidemiology , Wolff-Parkinson-White Syndrome/diagnosis , Wolff-Parkinson-White Syndrome/epidemiology , Adolescent , Child , Child, Preschool , Cohort Studies , Electrocardiography/methods , Female , Follow-Up Studies , Humans , Infant , Isolated Noncompaction of the Ventricular Myocardium/physiopathology , Male , Retrospective Studies , Wolff-Parkinson-White Syndrome/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL