Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Stem Cells ; 34(6): 1527-40, 2016 06.
Article in English | MEDLINE | ID: mdl-26866517

ABSTRACT

Histone demethylases have emerged as key regulators of biological processes. The H3K9me2 demethylase plant homeo domain finger protein 8(PHF8), for example, is involved in neuronal differentiation, but its potential function in the differentiation of embryonic stem cells (ESCs) to cardiomyocytes is poorly understood. Here, we explored the role of PHF8 during mesodermal and cardiac lineage commitment of mouse ESCs (mESCs). Using a phf8 knockout (ph8(-/Y) ) model, we found that deletion of phf8 in ESCs did not affect self-renewal, proliferation or early ectodermal/endodermal differentiation, but it did promote the mesodermal lineage commitment with the enhanced cardiomyocyte differentiation. The effects were accompanied by a reduction in apoptosis through a caspase 3-independent pathway during early ESC differentiation, without significant differences between differentiating wide-type (ph8(+/Y) ) and ph8(-/Y) ESCs in cell cycle progression or proliferation. Functionally, PHF8 promoted the loss of a repressive mark H3K9me2 from the transcription start site of a proapoptotic gene pmaip1 and activated its transcription. Furthermore, knockdown of pmaip1 mimicked the phenotype of ph8(-/Y) by showing the decreased apoptosis during early differentiation of ESCs and promoted mesodermal and cardiac commitment, while overexpression of pmaip1 or phf8 rescued the phenotype of ph8(-/Y) ESCs by increasing the apoptosis and weakening the mesodermal and cardiac differentiation. These results reveal that the histone demethylase PHF8 regulates mesodermal lineage and cell fate decisions in differentiating mESCs through epigenetic control of the gene critical to programmed cell death pathways. Stem Cells 2016;34:1527-1540.


Subject(s)
Cell Differentiation , Demethylation , Histone Demethylases/metabolism , Histones/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Myocytes, Cardiac/cytology , Proto-Oncogene Proteins c-bcl-2/genetics , Transcription Factors/metabolism , Animals , Apoptosis , Cell Lineage , Cell Proliferation , Cell Survival , Gene Deletion , Gene Knockdown Techniques , Humans , Mesoderm/cytology , Mice , Models, Biological , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
2.
Cancer Cell ; 12(1): 52-65, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17613436

ABSTRACT

Pancreatic cancer is an aggressive malignancy with morbidity rates almost equal to mortality rates because of the current lack of effective treatment options. Here, we describe a targeted approach to treating pancreatic cancer with effective therapeutic efficacy and safety in noninvasive imaging models. We developed a versatile expression vector "VISA" (VP16-GAL4-WPRE integrated systemic amplifier) and a CCKAR (cholecystokinin type A receptor) gene-based, pancreatic-cancer-specific promoter VISA (CCKAR-VISA) composite to target transgene expression in pancreatic tumors in vivo. Targeted expression of BikDD, a potent proapoptotic gene driven by CCKAR-VISA, exhibited significant antitumor effects on pancreatic cancer and prolonged survival in multiple xenograft and syngeneic orthotopic mouse models of pancreatic tumors with virtually no toxicity.


Subject(s)
Models, Biological , Pancreatic Neoplasms/genetics , Animals , Mice , Mice, Inbred C57BL , Receptors, Cholecystokinin/genetics , Transgenes
3.
J Ethnopharmacol ; 327: 118039, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38479545

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The anti-tumor related diseases of Coptidis Rhizoma (Huanglian) were correlated with its traditional use of removing damp-heat, clearing internal fire, and counteracting toxicity. In the recent years, Coptidis Rhizoma and its components have drawn extensive attention toward their anti-tumor related diseases. Besides, Coptidis Rhizoma is traditionally used as an anti-inflammatory herb. Epiberberine (EPI) is a significant alkaloid isolated from Coptidis Rhizoma, and exhibits multiple pharmacological activities including anti-inflammatory. However, the effect of epiberberine on breast cancer and the inflammatory factors of metastatic breast cancer-induced osteolysis has not been demonstrated clearly. AIM OF THE STUDY: Bone metastatic breast cancer can lead to osteolysis via inflammatory factors-induced osteoclast differentiation and function. In this study, we try to analyze the effect of epiberberine on breast cancer and the inflammatory factors of metastatic breast cancer-induced osteolysis. METHODS: To evaluate whether epiberberine could suppress bone metastatic breast cancer-induced osteolytic damage, healthy female Balb/c mice were intratibially injected with murine triple-negative breast cancer 4T1 cells. Then, we examined the inhibitory effect and underlying mechanism of epiberberine on breast cancer-induced osteoclastogenesis in vitro. Xenograft assay was used to study the effect of epiberberine on breast cancer cells in vivo. Moreover, we also studied the inhibitory effects and underlying mechanisms of epiberberine on RANKL-induced osteoclast differentiation and function in vitro. RESULTS: The results show that epiberberine displayed potential therapeutic effects on breast cancer-induced osteolytic damage. Besides, our results show that epiberberine inhibited breast cancer cells-induced osteoclast differentiation and function by inhibiting secreted inflammatory cytokines such as IL-8. Importantly, we found that epiberberine directly inhibited RANKL-induced differentiation and function of osteoclast without cytotoxicity. Mechanistically, epiberberine inhibited RANKL-induced osteoclastogensis via Akt/c-Fos signaling pathway. Furthermore, epiberberine combined with docetaxel effectively protected against bone loss induced by metastatic breast cancer cells. CONCLUSIONS: Our findings suggested that epiberberine may be a promising natural compound for treating bone metastatic breast cancer-induced osteolytic damage by inhibiting IL-8 and is worthy of further exploration in preclinical and clinical trials.


Subject(s)
Berberine/analogs & derivatives , Bone Neoplasms , Breast Neoplasms , Drugs, Chinese Herbal , Osteolysis , Humans , Female , Animals , Mice , Osteolysis/drug therapy , Osteolysis/metabolism , Osteolysis/pathology , Breast Neoplasms/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/metabolism , Interleukin-8/metabolism , Osteoclasts , Osteogenesis , Bone Neoplasms/drug therapy , Bone Neoplasms/secondary , Anti-Inflammatory Agents/pharmacology , RANK Ligand/metabolism
4.
J Cancer Res Clin Oncol ; 150(3): 129, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488909

ABSTRACT

BACKGROUND: T cells are key players in the tumor immune microenvironment (TIME), as they can recognize and eliminate cancer cells that express neoantigens derived from somatic mutations. However, the diversity and specificity of T-cell receptors (TCRs) that recognize neoantigens are largely unknown, due to the high variability of TCR sequences among individuals. METHODS: To address this challenge, we applied GLIPH2, a novel algorithm that groups TCRs based on their predicted antigen specificity and HLA restriction, to cluster the TCR repertoire of 1,702 patients with digestive tract cancer. The patients were divided into five groups based on whether they carried tumor-infiltrating or clonal-expanded TCRs and calculated their TCR diversity. The prognosis, tumor subtype, gene mutation, gene expression, and immune microenvironment of these groups were compared. Viral specificity inference and immunotherapy relevance analysis performed for the TCR groups. RESULTS: This approach reduced the complexity of TCR sequences to 249 clonally expanded and 150 tumor-infiltrating TCR groups, which revealed distinct patterns of TRBV usage, HLA association, and TCR diversity. In gastric adenocarcinoma (STAD), patients with tumor-infiltrating TCRs (Patients-TI) had significantly worse prognosis than other patients (Patients-nonTI). Patients-TI had richer CD8+ T cells in the immune microenvironment, and their gene expression features were positively correlated with immunotherapy response. We also found that tumor-infiltrating TCR groups were associated with four distinct tumor subtypes, 26 common gene mutations, and 39 gene expression signatures. We discovered that tumor-infiltrating TCRs had cross-reactivity with viral antigens, indicating a possible link between viral infections and tumor immunity. CONCLUSION: By applying GLIPH2 to TCR sequences from digestive tract tumors, we uncovered novel insights into the tumor immune landscape and identified potential candidates for shared TCRs and neoantigens.


Subject(s)
Gastrointestinal Neoplasms , Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/genetics , CD8-Positive T-Lymphocytes , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/metabolism , Immunotherapy , Antigens, Neoplasm , Tumor Microenvironment
5.
Cell Death Differ ; 30(10): 2322-2335, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37697039

ABSTRACT

Tripartite motif 17 (TRIM17) belongs to a subfamily of the RING-type E3 ubiquitin ligases, and regulates several cellular processes and pathological conditions including cancer. However, its potential function in gastric cancer (GC) remains obscure. Here, we have found TRIM17 mRNA and protein levels are both upregulated in human GC compared with normal specimens, and TRIM17 upregulation indicates poor survival for GC patients. Functionally, TRIM17 was found to act as an oncogene by promoting the proliferation and survival of GC cell lines AGS and HGC-27. Mechanistically, TRIM17 acts to interact with BAX and promote its ubiquitination and proteasomal degradation, leading to a deficiency in BAX-dependent apoptosis in GC cells in the absence and presence of apoptosis stimuli. Moreover, TRIM17 and BAX expression levels are inversely correlated in human GC specimens. Our data thus suggest TRIM17 contributes to gastric cancer survival through regulating BAX protein stability and antagonizing apoptosis, which provides a promising therapeutic target for GC treatment and a biomarker for prognosis.

6.
STAR Protoc ; 4(4): 102616, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37756156

ABSTRACT

Here, we present a protocol for exploring the effects of PPP1R15A inhibitor, Sephin1, on antitumor immunity of B16F1 subcutaneous tumor in mice. We describe steps for constructing single-cell transcriptome and TCR libraries, sequencing, and using sequencing data for the integration of expression and TCR data. We then detail procedures for gene differentiation, regulon and cell-cell communication analysis, and validation of single-cell analysis results. For complete details on the use and execution of this protocol, please refer to Wang et al.1.


Subject(s)
Cell Communication , Neoplasms , Animals , Mice , Disease Models, Animal , Single-Cell Analysis , Receptors, Antigen, T-Cell
7.
Cell Rep ; 42(1): 111972, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36641751

ABSTRACT

KRAS is widely mutated in human cancers, resulting in unchecked tumor proliferation and metastasis, which makes identifying KRAS-targeting therapies a priority. Herein, we observe that mutant KRAS specifically promotes the formation of the ERK2-p53 complex in stomach/colorectal tumor cells. Disruption of this complex by applying MEK1/2 and ERK2 inhibitors elicits strong apoptotic responses in a p53-dependent manner, validated by genome-wide knockout screening. Mechanistically, p53 physically associates with phosphorylated ERK2 through a hydrophobic interaction in the presence of mutant KRAS, which suppresses p53 activation by preventing the recruitment of p300/CBP; trametinib disrupts the ERK2-p53 complex by reducing ERK2 phosphorylation, allowing the acetylation of p53 protein by recruiting p300/CBP; acetylated p53 activates PUMA transcription and thereby kills KRAS-mutant tumors. Our study shows an important role for the ERK2-p53 complex and provides a potential therapeutic strategy for treating KRAS-mutant cancer.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Phosphorylation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Stomach
8.
iScience ; 26(2): 105954, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36718369

ABSTRACT

Protein phosphatase 1 regulatory subunit 15A (PPP1R15A) is an important factor in the integrated stress response (ISR) in mammals and may play a crucial role in tumorigenesis. In our studies, we found an inhibitor of PPP1R15A, Sephin1, plays a protumorigenic role in mouse tumor models. By analyzing the single-cell transcriptome data of the mouse tumor models, we found that in C57BL/6 mice, Sephin1 treatment could lead to higher levels of ISR activity and lower levels of antitumor immune activities. Specifically, Sephin1 treatment caused reductions in antitumor immune cell types and lower expression levels of cytotoxicity-related genes. In addition, T cell receptor (TCR) repertoire analysis demonstrated that the clonal expansion of tumor-specific T cells was inhibited by Sephin1. A special TCR + macrophage subtype in tumor was identified to be significantly depleted upon Sephin1 treatment, implying its key antitumor role. These results suggest that PPP1R15A has the potential to be an effective target for tumor therapy.

9.
EMBO Mol Med ; 15(3): e16235, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36652375

ABSTRACT

Poly-ADP-ribose polymerase (PARP) inhibitors (PARPi) have shown great promise for treating BRCA-deficient tumors. However, over 40% of BRCA-deficient patients fail to respond to PARPi. Here, we report that thioparib, a next-generation PARPi with high affinity against multiple PARPs, including PARP1, PARP2, and PARP7, displays high antitumor activities against PARPi-sensitive and -resistant cells with homologous recombination (HR) deficiency both in vitro and in vivo. Thioparib treatment elicited PARP1-dependent DNA damage and replication stress, causing S-phase arrest and apoptosis. Conversely, thioparib strongly inhibited HR-mediated DNA repair while increasing RAD51 foci formation. Notably, the on-target inhibition of PARP7 by thioparib-activated STING/TBK1-dependent phosphorylation of STAT1, triggered a strong induction of type I interferons (IFNs), and resulted in tumor growth retardation in an immunocompetent mouse model. However, the inhibitory effect of thioparib on tumor growth was more pronounced in PARP1 knockout mice, suggesting that a specific PARP7 inhibitor, rather than a pan inhibitor such as thioparib, would be more relevant for clinical applications. Finally, genome-scale CRISPR screening identified PARP1 and MCRS1 as genes capable of modulating thioparib sensitivity. Taken together, thioparib, a next-generation PARPi acting on both DNA damage response and antitumor immunity, serves as a therapeutic potential for treating hyperactive HR tumors, including those resistant to earlier-generation PARPi.


Subject(s)
Interferon Type I , Neoplasms , Animals , Mice , Cell Line, Tumor , DNA Repair , Homologous Recombination , Interferon Type I/genetics , Interferon Type I/therapeutic use , Neoplasms/genetics , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Recombinational DNA Repair , RNA-Binding Proteins/genetics , Drug Resistance, Neoplasm
10.
J Biol Chem ; 286(33): 29127-29138, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21676868

ABSTRACT

Up-regulation of the dolichol pathway, a "hallmark" of asparagine-linked protein glycosylation, enhances angiogenesis in vitro. The dynamic relationship between these two processes is now evaluated with tunicamycin. Capillary endothelial cells treated with tunicamycin were growth inhibited and could not be reversed with exogenous VEGF(165). Inhibition of angiogenesis is supported by down-regulation of (i) phosphorylated VEGFR1 and VEGFR2 receptors; (ii) VEGF(165)-specific phosphotyrosine kinase activity; and (iii) Matrigel(TM) invasion and chemotaxis. In vivo, tunicamycin prevented the vessel development in Matrigel(TM) implants in athymic Balb/c (nu/nu) mice. Immunohistochemical analysis of CD34 (p < 0.001) and CD144 (p < 0.001) exhibited reduced vascularization. A 3.8-fold increased expression of TSP-1, an endogenous angiogenesis inhibitor in Matrigel(TM) implants correlated with that in tunicamycin (32 h)-treated capillary endothelial cells. Intravenous injection of tunicamycin (0.5 mg/kg to 1.0 mg/kg) per week slowed down a double negative (MDA-MB-435) grade III breast adenocarcinoma growth by ∼50-60% in 3 weeks. Histopathological analysis of the paraffin sections indicated significant reduction in vessel size, the microvascular density and tumor mitotic index. Ki-67 and VEGF expression in tumor tissue were also reduced. A significant reduction of N-glycan expression in tumor microvessel was also observed. High expression of GRP-78 in CD144-positive cells supported unfolded protein response-mediated ER stress in tumor microvasculature. ∼65% reduction of a triple negative (MDA-MB-231) breast tumor xenograft in 1 week with tunicamycin (0.25 mg/kg) given orally and the absence of systemic and/or organ failure strongly supported tunicamycin's potential for a powerful glycotherapeutic treatment of breast cancer in the clinic.


Subject(s)
Antiviral Agents/pharmacology , Breast Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Tunicamycin/pharmacology , Unfolded Protein Response/drug effects , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Thrombospondin 1/biosynthesis , Transplantation, Heterologous , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays/methods
11.
Biochem Biophys Res Commun ; 404(1): 68-73, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21094134

ABSTRACT

Alteration of epidermal growth factor receptor (EGFR) is involved in various human cancers and has been intensively investigated. A plethora of evidence demonstrates that posttranslational modifications of EGFR play a pivotal role in controlling its function and metabolism. Here, we show that EGFR can be acetylated by CREB binding protein (CBP) acetyltransferase. Interestingly, EGFR acetylation affects its tyrosine phosphorylation, which may contribute to cancer cell resistance to histone deacetylase inhibitors (HDACIs). Since there is an increasing interest in using HDACIs to treat various cancers in the clinic, our current study provides insights and rationale for selecting effective therapeutic regimen. Consistent with the previous reports, we also show that HDACI combined with EGFR inhibitors achieves better therapeutic outcomes and provides a molecular rationale for the enhanced effect of combination therapy. Our results unveil a critical role of EGFR acetylation that regulates EGFR function, which may have an important clinical implication.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/enzymology , Cyclic AMP Response Element-Binding Protein/metabolism , Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Histone Deacetylase Inhibitors/pharmacology , Acetylation/drug effects , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Female , Histone Deacetylase Inhibitors/therapeutic use , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Lysine/genetics , Lysine/metabolism , Mice , Mice, Inbred Strains , RNA, Small Interfering/genetics , Vorinostat
12.
Commun Biol ; 4(1): 1019, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34465850

ABSTRACT

Despite the uniform mortality in pancreatic adenocarcinoma (PDAC), clinical disease heterogeneity exists with limited genomic differences. A highly aggressive tumor subtype termed 'basal-like' was identified to show worse outcomes and higher inflammatory responses. Here, we focus on the microbial effect in PDAC progression and present a comprehensive analysis of the tumor microbiome in different PDAC subtypes with resectable tumors using metagenomic sequencing. We found distinctive microbial communities in basal-like tumors and identified an increasing abundance of Acinetobacter, Pseudomonas and Sphingopyxis to be highly associated with carcinogenesis. Functional characterization of microbial genes suggested the potential to induce pathogen-related inflammation. Host-microbiota interplay analysis provided new insights into the tumorigenic role of specific microbiome compositions and demonstrated the influence of host genetics in shaping the tumor microbiome. Taken together, these findings indicated that the tumor microbiome is closely related to PDAC oncogenesis and the induction of inflammation. Additionally, our data revealed the microbial basis of PDAC heterogeneity and proved the predictive value of the microbiome, which will contribute to the intervention and treatment of disease.


Subject(s)
Adenocarcinoma/pathology , Microbiota , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Adenocarcinoma/microbiology , China , Pancreatic Neoplasms/microbiology , Phenotype , Pancreatic Neoplasms
13.
Bioorg Med Chem ; 18(2): 803-8, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20034799

ABSTRACT

6-Phenyl-4H-furo[3,2-c]pyran-4-one derivatives based on neo-tashinlactone (1) were synthesized and evaluated as novel anti-breast cancer agents. Compounds 10-13, 23, 25, and 27 showed potent inhibition against the SK-BR-3 breast cancer cell line. Importantly, 25 and 27 showed the highest cancer cell line selectivity, being approximately 100-250-fold more potent against SK-BR-3 (ED(50) 0.28 and 0.44microM, respectively) compared with other cancer cell lines tested. In addition, 25 displayed low cytotoxicity against normal breast cell lines 184A1 and MCF10A. Compounds 25 and 27 merit further investigation in our continuing program to generate and develop selective anti-breast cancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Pyrones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Molecular Structure , Pyrones/chemical synthesis , Pyrones/chemistry , Structure-Activity Relationship
14.
J Nat Prod ; 73(9): 1553-8, 2010 Sep 24.
Article in English | MEDLINE | ID: mdl-20738103

ABSTRACT

A new quassinoid, designated 2'-(R)-O-acetylglaucarubinone (1), and seven known quassinoids (2-8) were isolated, using bioactivity-guided separation, from the bark of Odyendyea gabonensis (Pierre) Engler [syn. Quassia gabonensis Pierre]. The structure of 1 was determined by spectroscopic analysis and by semisynthesis from glaucarubolone. Complete (1)H and (13)C NMR assignments of compounds 1-8 were also established from detailed analysis of two-dimensional NMR spectra, and the reported configurations in odyendene (7) and odyendane (8) were corrected. Compound 1 showed potent cytotoxicity against multiple cancer cell lines. Further investigation using various types of breast and ovarian cancer cell lines suggested that 1 does not target the estrogen receptor or progesterone receptor. When tested against mammary epithelial proliferation in vivo using a Brca1/p53-deficient mice model, 1 also caused significant reduction in mammary duct branching.


Subject(s)
Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Quassins/isolation & purification , Quassins/pharmacology , Animals , Antineoplastic Agents/chemistry , Disease Models, Animal , Drug Screening Assays, Antitumor , Female , Humans , KB Cells , Mice , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Plant Bark/chemistry , Quassins/chemistry , Stereoisomerism
15.
Cell Death Dis ; 11(9): 812, 2020 09 26.
Article in English | MEDLINE | ID: mdl-32980867

ABSTRACT

BRCA2 is crucial for repairing DNA double-strand breaks with high fidelity, and loss of BRCA2 increases the risks of developing breast and ovarian cancers. Herein, we show that BRCA2 is inactively mutated in 10% of gastric and 7% of colorectal adenocarcinomas, and that this inactivation is significantly correlated with microsatellite instability. Villin-driven Brca2 depletion promotes mouse gastrointestinal tumor formation when genome instability is increased. Whole-genome screening data showed that these BRCA2 monoallelic and biallelic mutant tumors were selectively inhibited by mitomycin C. Mechanistically, mitomycin C provoked double-strand breaks in cancer cells that often recruit wild-type BRCA2 for repair; the failure to repair double-strand breaks caused cell-cycle arrest at the S phase and p53-mediated cell apoptosis of BRCA2 monoallelic and biallelic mutant tumor cells. Our study unveils the role of BRCA2 loss in the development of gastrointestinal tumors and provides a potential therapeutic strategy to eliminate BRCA2 monoallelic and biallelic mutant tumors through mitomycin C.


Subject(s)
BRCA2 Protein/deficiency , Gastrointestinal Neoplasms/genetics , Mitomycin/metabolism , Animals , Humans , Mice
16.
Mol Cancer Res ; 6(2): 194-204, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18314480

ABSTRACT

Integrin-mediated adhesion to the extracellular matrix plays a fundamental role in tumor metastasis. Salvicine, a novel diterpenoid quinone compound identified as a nonintercalative topoisomerase II poison, possesses a broad range of antitumor and antimetastatic activity. Here, the mechanism underlying the antimetastatic capacity of salvicine was investigated by exploring the effect of salvicine on integrin-mediated cell adhesion. Salvicine inhibited the adhesion of human breast cancer MDA-MB-435 cells to fibronectin and collagen without affecting nonspecific adhesion to poly-l-lysine. The fibronectin-dependent formation of focal adhesions and actin stress fibers was also inhibited by salvicine, leading to a rounded cell morphology. Furthermore, salvicine down-regulated beta(1) integrin ligand affinity, clustering and signaling via dephosphorylation of focal adhesion kinase and paxillin. Conversely, salvicine induced extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) phosphorylation. The effect of salvicine on beta(1) integrin function and cell adhesion was reversed by U0126 and SB203580, inhibitors of MAPK/ERK kinase 1/2 and p38 MAPK, respectively. Salvicine also induced the production of reactive oxygen species (ROS) that was reversed by ROS scavenger N-acetyl-l-cysteine. N-acetyl-l-cysteine additionally reversed the salvicine-induced activation of ERK and p38 MAPK, thereby maintaining functional beta(1) integrin activity and restoring cell adhesion and spreading. Together, this study reveals that salvicine activates ERK and p38 MAPK by triggering the generation of ROS, which in turn inhibits beta(1) integrin ligand affinity. These findings contribute to a better understanding of the antimetastatic activity of salvicine and shed new light on the complex roles of ROS and downstream signaling molecules, particularly p38 MAPK, in the regulation of integrin function and cell adhesion.


Subject(s)
Antineoplastic Agents/pharmacology , Fibronectins/metabolism , Integrin beta1/metabolism , Naphthoquinones/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Down-Regulation/drug effects , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Focal Adhesions/drug effects , Focal Adhesions/enzymology , Humans , Integrin beta1/genetics , MAP Kinase Signaling System/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Stress Fibers/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , rhoA GTP-Binding Protein/metabolism
17.
EBioMedicine ; 48: 289-300, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31648989

ABSTRACT

BACKGROUND: Thymidylate synthase (TYMS) is a successful chemotherapeutic target for anticancer therapy. Numerous TYMS inhibitors have been developed and used for treating gastrointestinal cancer now, but they have limited clinical benefits due to the prevalent unresponsiveness and toxicity. It is urgent to identify a predictive biomarker to guide the precise clinical use of TYMS inhibitors. METHODS: Genome-scale CRISPR-Cas9 knockout screening was performed to identify potential therapeutic targets for treating gastrointestinal tumours as well as key regulators of raltitrexed (RTX) sensitivity. Cell-based functional assays were used to investigate how MYC regulates TYMS transcription. Cancer patient data were used to verify the correlation between drug response and MYC and/or TYMS mRNA levels. Finally, the role of NIPBL inactivation in gastrointestinal cancer was evaluated in vitro and in vivo. FINDINGS: TYMS is essential for maintaining the viability of gastrointestinal cancer cells, and is selectively inhibited by RTX. Mechanistically, MYC presets gastrointestinal cancer sensitivity to RTX through upregulating TYMS transcription, supported by TCGA data showing that complete response cases to TYMS inhibitors had significantly higher MYC and TYMS mRNA levels than those of progressive diseases. NIPBL inactivation decreases the therapeutic responses of gastrointestinal cancer to RTX through blocking MYC. INTERPRETATION: Our study unveils a mechanism of how TYMS is transcriptionally regulated by MYC, and provides rationales for the precise use of TYMS inhibitors in the clinic. FUNDING: This work was financially supported by grants of NKRDP (2016YFC1302400), STCSM (16JC1406200), NSFC (81872890, 81322034, 81372346) and CAS (QYZDB-SSW-SMC034, XDA12020210).


Subject(s)
Drug Resistance/genetics , Folic Acid Antagonists/pharmacology , Gastrointestinal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Genes, myc , Thymidylate Synthase/genetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Gastrointestinal Neoplasms/metabolism , Humans , Thymidylate Synthase/antagonists & inhibitors , Thymidylate Synthase/metabolism , Transcription, Genetic
18.
Clin Cancer Res ; 11(9): 3455-64, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15867248

ABSTRACT

PURPOSE: Salvicine is a novel DNA topoisomerase II inhibitor with potent anticancer activity. In present study, the effect of salvicine against metastasis is evaluated using human breast carcinoma orthotopic metastasis model and its mechanism is further investigated both in animal and cellular levels. EXPERIMENTAL DESIGN: The MDA-MB-435 orthotopic xenograft model was applied to detect the antimetastatic effect of salvicine. Potential target candidates were detected and analyzed by microarray technology. Candidates were verified and explored by reverse transcription-PCR and Western blot. Salvicine activities on stress fiber formation, invasion, and membrane translocation were further investigated by immunofluorescence, invasion, and ultracentrifugal assays. RESULTS: Salvicine significantly reduced the lung metastatic foci of MDA-MB-435 orthotopic xenograft, without affecting primary tumor growth obviously. A comparison of gene expression profiles of primary tumors and lung metastatic focus between salvicine-treated and untreated groups using the CLOTECH Atlas human Cancer 1.2 cDNA microarray revealed that genes involved in tumor metastasis, particularly those closely related to cell adhesion and motility, were obviously down-regulated, including fibronectin, integrin alpha3, integrin beta3, integrin beta5, FAK, paxillin, and RhoC. Furthermore, salvicine significantly down-regulated RhoC at both mRNA and protein levels, greatly inhibited stress fiber formation and invasiveness of MDA-MB-435 cells, and markedly blocked translocation of both RhoA and RhoC from cytosol to membrane. CONCLUSION: The unique antimetastatic action of salvicine, particularly its specific modulation of cell motility in vivo and in vitro, is closely related to Rho-dependent signaling pathway.


Subject(s)
Naphthoquinones/pharmacology , Xenograft Model Antitumor Assays/methods , rho GTP-Binding Proteins/metabolism , Animals , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Cytosol/drug effects , Cytosol/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Lysophospholipids/pharmacology , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Nude , Naphthoquinones/therapeutic use , Protein Transport/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Stress Fibers/metabolism , ras Proteins , rho GTP-Binding Proteins/genetics , rhoA GTP-Binding Protein/metabolism , rhoC GTP-Binding Protein
19.
J Genet Genomics ; 42(8): 423-36, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26336799

ABSTRACT

Although there is an accumulating appreciation of the key roles that long intergenic non-coding RNAs (lincRNAs) play in diverse cellular processes, our knowledge of how lincRNAs function in cancer remains sparse. Here, we present a comprehensive landscape of RNA-seq transcriptome profiles of lung adenocarcinomas and their paired normal counterparts to unravel gene regulation rules of lincRNAs. Consistent with previous findings of co-expression between neighboring protein-coding genes, lincRNAs were typically co-expressed with their neighboring genes, which was found in both cancerous and normal tissues. By building a mathematical model based on correlated gene expression, we distinguished an additional subset of lincRNAs termed "regulatory lincRNAs", representing their dominant roles in gene regulation. The number of regulatory lincRNAs was significantly higher in cancerous compared to normal tissues, and most of them positively regulated protein-coding genes in trans. Functional validation, using knockdown, determined that regulatory lincRNA, GAS5, affected its predicted protein-coding targets. Moreover, we discovered hundreds of differentially expressed regulatory lincRNAs with inclusion of some cancer-associated lincRNAs. Our integrated analysis reveals enhanced regulatory effects of lincRNAs and provides a resource for the study of regulatory lincRNAs that play critical roles in lung adenocarcinoma.


Subject(s)
Adenocarcinoma/metabolism , Gene Expression Regulation , Lung Neoplasms/metabolism , RNA, Long Noncoding/metabolism , Sequence Analysis, RNA , Adenocarcinoma of Lung , Biomarkers, Tumor/metabolism , Humans , Models, Theoretical , RNA, Long Noncoding/chemistry , RNA, Small Nucleolar/metabolism , Transcriptome
20.
Am J Transl Res ; 7(6): 1009-20, 2015.
Article in English | MEDLINE | ID: mdl-26279746

ABSTRACT

Triple-negative breast cancer (TNBC), which is closely related to basal-like breast cancer, is a highly aggressive subtype of breast cancer that initially responds to chemotherapy but eventually develops resistance. This presents a major clinical challenge as there are currently no effective targeted therapies available due to its lack of HER2 and estrogen receptor expression. Here, we show that cyclin E and the enhancer of zeste 2 (EZH2) are closely co-expressed in TNBC patients, and cyclin E/CDK2 phosphorylates EZH2 at T416 (pT416-EZH2) in vivo. Phosphorylation of EZH2 at T416 enhances the ability of EZH2 to promote TNBC cell migration/invasion, tumorsphere formation, and in vivo tumor growth. In addition, high pT416-EZH2 correlates with poorer survival in TNBC patients. These findings suggest that pT416 has the potential to serve as a therapeutic biomarker for the aggressive forms of breast cancer and provide a rationale for the use of CDK2 inhibitors to treat TNBC.

SELECTION OF CITATIONS
SEARCH DETAIL