Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters

Publication year range
1.
Am J Respir Crit Care Med ; 203(1): 90-101, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32730093

ABSTRACT

Rationale: Early pathogenesis of lung adenocarcinoma (LUAD) remains largely unknown. We found that, relative to wild-type littermates, the innate immunomodulator Lcn2 (lipocalin-2) was increased in normal airways from mice with knockout of the airway lineage gene Gprc5a (Gprc5a-/-) and that are prone to developing inflammation and LUAD. Yet, the role of LCN2 in lung inflammation and LUAD is poorly understood.Objectives: Delineate the role of Lcn2 induction in LUAD pathogenesis.Methods: Normal airway brushings, uninvolved lung tissues, and tumors from Gprc5a-/- mice before and after tobacco carcinogen exposure were analyzed by RNA sequencing. LCN2 mRNA was analyzed in public and in-house data sets of LUAD, lung squamous cancer (LUSC), chronic obstructive pulmonary disease (COPD), and LUAD/LUSC with COPD. LCN2 protein was immunohistochemically analyzed in a tissue microarray of 510 tumors. Temporal lung tumor development, gene expression programs, and host immune responses were compared between Gprc5a-/- and Gprc5a-/-/Lcn2-/- littermates.Measurements and Main Results:Lcn2 was progressively elevated during LUAD development and positively correlated with proinflammatory cytokines and inflammation gene sets. LCN2 was distinctively elevated in human LUADs, but not in LUSCs, relative to normal lungs and was associated with COPD among smokers and patients with LUAD. Relative to Gprc5a-/- mice, Gprc5a-/-/Lcn2-/- littermates exhibited significantly increased lung tumor development concomitant with reduced T-cell abundance (CD4+) and richness, attenuated antitumor immune gene programs, and increased immune cell expression of protumor inflammatory cytokines.Conclusions: Augmented LCN2 expression is a molecular feature of COPD-associated LUAD and counteracts LUAD development in vivo by maintaining antitumor immunity.


Subject(s)
Adenocarcinoma of Lung/immunology , Antineoplastic Agents/immunology , Lipocalin-2/genetics , Lipocalin-2/immunology , Lung Neoplasms/immunology , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/physiopathology , Animals , Biomarkers/blood , Female , Gene Expression Regulation , Humans , Lipocalin-2/blood , Male , Mice , RNA, Messenger
2.
Am J Respir Crit Care Med ; 200(6): 742-750, 2019 09 15.
Article in English | MEDLINE | ID: mdl-30896962

ABSTRACT

Rationale: Uninvolved normal-appearing airway epithelium has been shown to exhibit specific mutations characteristic of nearby non-small cell lung cancers (NSCLCs). Yet, its somatic mutational landscape in patients with early-stage NSCLC is unknown.Objectives: To comprehensively survey the somatic mutational architecture of the normal airway epithelium in patients with early-stage NSCLC.Methods: Multiregion normal airways, comprising tumor-adjacent small airways, tumor-distant large airways, nasal epithelium and uninvolved normal lung (collectively airway field), matched NSCLCs, and blood cells (n = 498) from 48 patients were interrogated for somatic single-nucleotide variants by deep-targeted DNA sequencing and for chromosomal allelic imbalance events by genome-wide genotype array profiling. Spatiotemporal relationships between the airway field and NSCLCs were assessed by phylogenetic analysis.Measurements and Main Results: Genomic airway field carcinogenesis was observed in 25 cases (52%). The airway field epithelium exhibited a total of 269 somatic mutations in most patients (n = 36) including key drivers that were shared with the NSCLCs. Allele frequencies of these acquired variants were overall higher in NSCLCs. Integrative analysis of single-nucleotide variants and allelic imbalance events revealed driver genes with shared "two-hit" alterations in the airway field (e.g., TP53, KRAS, KEAP1, STK11, and CDKN2A) and those with single hits progressing to two in the NSCLCs (e.g., PIK3CA and NOTCH1).Conclusions: Tumor-adjacent and tumor-distant normal-appearing airway epithelia exhibit somatic driver alterations that undergo selection-driven clonal expansion in NSCLC. These events offer spatiotemporal insights into the development of NSCLC and, thus, potential targets for early treatment.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Transformation, Neoplastic/genetics , Epithelium/growth & development , Genes, Tumor Suppressor , Lung Neoplasms/genetics , Mutation , Adenocarcinoma/physiopathology , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/physiopathology , Female , Humans , Lung Neoplasms/physiopathology , Male , Middle Aged , Sequence Analysis, DNA
3.
BMC Bioinformatics ; 19(1): 5, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29301485

ABSTRACT

BACKGROUND: 'Next-generation' (NGS) sequencing has wide application in medical genetics, including the detection of somatic variation in cancer. The Ion Torrent-based (IONT) platform is among NGS technologies employed in clinical, research and diagnostic settings. However, identifying mutations from IONT deep sequencing with high confidence has remained a challenge. We compared various computational variant-calling methods to derive a variant identification pipeline that may improve the molecular diagnostic and research utility of IONT. RESULTS: Using IONT, we surveyed variants from the 409-gene Comprehensive Cancer Panel in whole-section tumors, intra-tumoral biopsies and matched normal samples obtained from frozen tissues and blood from four early-stage non-small cell lung cancer (NSCLC) patients. We used MuTect, Varscan2, IONT's proprietary Ion Reporter, and a simple subtraction we called "Poor Man's Caller." Together these produced calls at 637 loci across all samples. Visual validation of 434 called variants was performed, and performance of the methods assessed individually and in combination. Of the subset of inspected putative variant calls (n=223) in genomic regions that were not intronic or intergenic, 68 variants (30%) were deemed valid after visual inspection. Among the individual methods, the Ion Reporter method offered perhaps the most reasonable tradeoffs. Ion Reporter captured 83% of all discovered variants; 50% of its variants were visually validated. Aggregating results from multiple packages offered varied improvements in performance. CONCLUSIONS: Overall, Ion Reporter offered the most attractive performance among the individual callers. This study suggests combined strategies to maximize sensitivity and positive predictive value in variant calling using IONT deep sequencing.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Sequence Analysis, DNA , Software
4.
Int J Cancer ; 141(8): 1589-1599, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28653505

ABSTRACT

Despite the urgency for prevention and treatment of lung adenocarcinoma (LUAD), we still do not know drivers in pathogenesis of the disease. Earlier work revealed that mice with knockout of the G-protein coupled receptor Gprc5a develop late onset lung tumors including LUADs. Here, we sought to further probe the impact of Gprc5a expression on LUAD pathogenesis. We first surveyed GPRC5A expression in human tissues and found that GPRC5A was markedly elevated in human normal lung relative to other normal tissues and was consistently downregulated in LUADs. In sharp contrast to wild-type littermates, Gprc5a-/- mice treated chronically with the nicotine-specific carcinogen NNK developed LUADs by 6 months following NNK exposure. Immunofluorescence analysis revealed that the LUADs exhibited abundant expression of surfactant protein C and lacked the clara cell marker Ccsp, suggesting that these LUADs originated from alveolar type II cells. Next, we sought to survey genome-wide alterations in the pathogenesis of Gprc5a-/- LUADs. Using whole exome sequencing, we found that carcinogen-induced LUADs exhibited markedly higher somatic mutation burdens relative to spontaneous tumors. All LUADs were found to harbor somatic mutations in the Kras oncogene (p. G12D or p. Q61R). In contrast to spontaneous lesions, carcinogen-induced Gprc5a-/- LUADs exhibited mutations (variants and copy number gains) in additional drivers (Atm, Kmt2d, Nf1, Trp53, Met, Ezh2). Our study underscores genomic alterations that represent early events in the development of Kras mutant LUAD following Gprc5a loss and tobacco carcinogen exposure and that may constitute targets for prevention and early treatment of this disease.


Subject(s)
Adenocarcinoma/genetics , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Receptors, G-Protein-Coupled/genetics , Adenocarcinoma/chemically induced , Adenocarcinoma/enzymology , Adenocarcinoma/metabolism , Adenocarcinoma of Lung , Animals , Carcinogens/toxicity , Cell Lineage , Genes, Tumor Suppressor , Humans , Lung Neoplasms/chemically induced , Lung Neoplasms/enzymology , Lung Neoplasms/metabolism , Mice , Mice, Knockout , Mutation , Nitrosamines/toxicity , Proto-Oncogene Proteins p21(ras)/metabolism , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/deficiency
5.
J Immunother Cancer ; 10(8)2022 08.
Article in English | MEDLINE | ID: mdl-36007963

ABSTRACT

BACKGROUND: Monotherapy with immune checkpoint blockade is ineffective for patients (pts) with microsatellite stable (MSS) metastatic colorectal cancer (mCRC). This study investigates whether the combination of trametinib (T) with durvalumab (D) can alter the immune tumor microenvironment (TME) by successfully priming and activating T-cells. METHODS: Open-label, single-center, phase II trial with primary endpoint of immune-related response rate for combination of T+D in refractory MSS mCRC pts (NCT03428126). T is 2 mg/day orally starting 1 week prior to D, which is given 1500 mg intravenously every 4 weeks. Simon 2-stage design used to enroll 29 pts into first stage, requiring a response in two or more pts to proceed to stage 2. Tumor biopsies were collected at baseline (BL) and early on-treatment (OT) at week 4. RESULTS: Twenty nine treated pts include 48% females, median age 48 years (range 28-75), and median prior therapies 2 (range 1-5). No grade (G) 4 or 5 treatment-related adverse events (TRAE). The most common TRAE of any grade was acneiform rash, 17% being G3. One of 29 pts had confirmed partial response (PR) lasting 9.3 months (mo) for an overall response rate of 3.4%. Seven pts had stable disease (SD) and five pts (1 PR, 4 SD) demonstrated decrease in total carcinoembryonic antigen ng/mL (best percentage reduction: 94%, 95%, 42%, 34%, and 22%, respectively). Median progression-free survival was 3.2 mo (range 1.1-9.3 months). Three pts with both liver and lung metastases demonstrated discrepant responses in which clinical benefit was present in the lung metastases but not liver metastases. Comparison of BL and 4-week OT tumor tissue flow cytometry demonstrated no changes in T-cell infiltration but upregulation expression of PD-1 and Tim3 on CD8 T cells. However, expression of PD-1 and Tim3 as single markers and as coexpressed markers was observed to increase OT relative to BL (p=0.03, p=0.06 and p=0.06, respectively). CONCLUSIONS: T+D demonstrated acceptable tolerability in pts with refractory MSS mCRC. The response rate in the first stage of the study did not meet efficacy criteria to proceed to the second stage. Specific site of metastatic disease may impact outcomes in novel immunotherapy combination trials. TRIAL REGISTRATION NUMBER: NCT03428126.


Subject(s)
Colorectal Neoplasms , Lung Neoplasms , Adult , Aged , Antibodies, Monoclonal , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Hepatitis A Virus Cellular Receptor 2 , Humans , Lung Neoplasms/drug therapy , Male , Microsatellite Repeats , Middle Aged , Programmed Cell Death 1 Receptor/therapeutic use , Pyridones , Pyrimidinones , Tumor Microenvironment
6.
NPJ Precis Oncol ; 5(1): 94, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34707215

ABSTRACT

Factors correlated with biopsy tissue adequacy and the prevalence of within-biopsy variability were evaluated. Totally, 1149 research biopsies were performed on 686 patients from which 5090 cores were assessed. Biopsy cores were reviewed for malignant percentage (estimated percentage of cells in the core that were malignant) and malignant area (estimated area occupied by malignant cells). Linear mixed models and generalized linear mixed models were used for the analysis. A total of 641 (55.8%) biopsies contained a core with <10% malignant percentage (inadequate core). The chance of an inadequate core was not influenced by core order, though the malignant area decreased with each consecutive core (p < 0.001). Younger age, bone biopsy location, appendiceal tumor pathology, and responding/stable disease prior to biopsy increased the odds of a biopsy containing zero adequate cores. Within-biopsy variability in core adequacy is prevalent and suggests the need for histological tumor quality assessment of each core in order to optimize translational analyses.

7.
Eur J Pharm Sci ; 143: 105195, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31852629

ABSTRACT

TM5441, a furan-containing drug, is an inhibitor of plasminogen activator inhibitor-1 (PAI-1), which can induce intrinsic apoptosis of human cancer cell lines. The aim of this study was to identify the reactive metabolites of TM5441 and to reveal the bioactivation pathways that are associated with its hepatotoxicity. The reactive metabolites were trapped by using glutathione (GSH) or N-acetyl-lysine (NAL) in rat, dog, and human liver microsomal incubation system after exposure to TM5441. Two metabolic activation pathways were disclosed. The first bioactivation pathway was dominated by Cytochrome P450 enzymes (CYP450s); TM5441 was metabolized into cis-2-butene-1,4-dial derivative dependent on NADPH, which can be trapped in the liver microsomal incubations fortified with GSH or NAL as trapping agents. Five metabolites (M1, M2, M9, M12 and M13) associated with GSH and three metabolites (M4, M7 and M14) associated with NAL were identified by liquid chromatography-high resolution mass spectrometry. The second bioactivation pathway was catalyzed by UDP-glucuronosyltransferases (UGTs); TM5441 was conjugated with glucuronide to form acyl-glucuronide (M10), which further reacted with GSH, resulting in the identification of a TM5441-S-acyl-GSH adduct (M11) in liver microsomal incubations fortified with uridine-5'-diphosphoglucuronidc acid (UDPGA) and GSH. M9, M10, M11, M12 and M13 were also detected in bile samples of rats given TM5441. Compared with rat, dog would display closer bioactivation profiles to human. The CYP450 enzyme responsible for the bioactivation of TM5441 was mainly identified as CYP3A4, using human recombinant CYP450 enzymes and specific inhibitory studies. The UGT enzymes responsible for the bioactivation of TM5441 mainly involved UGT2B7, 1A1 and 1A4. These results facilitate the understanding of the bioactivation of TM5441 and potential toxicological implications.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Glucuronosyltransferase/metabolism , Piperazines/pharmacokinetics , para-Aminobenzoates/pharmacokinetics , Activation, Metabolic , Animals , Dogs , Female , Glucuronides/metabolism , Glutathione/metabolism , Humans , Male , Microsomes, Liver/metabolism , Piperazines/blood , Piperazines/urine , Rats, Sprague-Dawley , para-Aminobenzoates/blood , para-Aminobenzoates/urine
8.
Dis Model Mech ; 12(12)2019 12 17.
Article in English | MEDLINE | ID: mdl-31732509

ABSTRACT

Mouse models of gastroesophageal junction (GEJ) cancer strive to recapitulate the intratumoral heterogeneity and cellular crosstalk within patient tumors to improve clinical translation. GEJ cancers remain a therapeutic challenge due to the lack of a reliable mouse model for preclinical drug testing. In this study, a novel patient-derived orthotopic xenograft (PDOX) was established from GEJ cancer via transabdominal surgical implantation. Patient tumor was compared to subcutaneously implanted patient-derived tumor xenograft (PDX) and PDOX by Hematoxylin and Eosin staining, immunohistochemistry and next-generation sequencing. Treatment efficacy studies of radiotherapy were performed. We observed that mechanical abrasion of mouse GEJ prior to surgical implantation of a patient-derived tumor in situ promotes tumor engraftment (100%, n=6). Complete PDOX engraftment was observed with rapid intra- and extraluminal tumor growth, as evidenced by magnetic resonance imaging. PDOXs contain fibroblasts, tumor-associated macrophages, immune and inflammatory cells, vascular and lymphatic vessels. Stromal hallmarks of aggressive GEJ cancers are recapitulated in a GEJ PDOX mouse model. PDOXs demonstrate tumor invasion into vasculature and perineural space. Next-generation sequencing revealed loss of heterozygosity with very high allelic frequency in NOTCH3, TGFB1, EZH2 and KMT2C in the patient tumor, the subcutaneous PDX and the PDOX. Immunohistochemical analysis of Her2/neu (also known as ERBB2), p53 (also known as TP53) and p16 (also known as CDKN2A) in PDX and PDOX revealed maintenance of expression of proteins found in patient tumors, but membranous EGFR overexpression in patient tumor cells was absent in both xenografts. Targeted radiotherapy in this model suggested a decrease in size by 61% according to Response Evaluation Criteria in Solid Tumors (RECIST), indicating a partial response to radiation therapy. Our GEJ PDOX model exhibits remarkable fidelity to human disease and captures the precise tissue microenvironment present within the local GEJ architecture, providing a novel tool for translating findings from studies on human GEJ cancer. This model can be applied to study metastatic progression and to develop novel therapeutic approaches for the treatment of GEJ cancer.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Adenocarcinoma/pathology , Disease Models, Animal , Esophageal Neoplasms/pathology , Xenograft Model Antitumor Assays , Alleles , Animals , Cell Line, Tumor , Computational Biology , Disease Progression , Female , Fibroblasts/metabolism , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Immune System , Inflammation , Macrophages/metabolism , Mice , Mice, SCID , Neoplasm Metastasis , Neoplasm Transplantation , Translational Research, Biomedical
9.
EBioMedicine ; 42: 296-303, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30905849

ABSTRACT

BACKGROUND: Genomic investigation of atypical adenomatous hyperplasia (AAH), the only known precursor lesion to lung adenocarcinomas (LUAD), presents challenges due to the low mutant cell fractions. This necessitates sensitive methods for detection of chromosomal aberrations to better study the role of critical alterations in early lung cancer pathogenesis and the progression from AAH to LUAD. METHODS: We applied a sensitive haplotype-based statistical technique to detect chromosomal alterations leading to allelic imbalance (AI) from genotype array profiling of 48 matched normal lung parenchyma, AAH and tumor tissues from 16 stage-I LUAD patients. To gain insights into shared developmental trajectories among tissues, we performed phylogenetic analyses and integrated our results with point mutation data, highlighting significantly-mutated driver genes in LUAD pathogenesis. FINDINGS: AI was detected in nine AAHs (56%). Six cases exhibited recurrent loss of 17p. AI and the enrichment of 17p events were predominantly identified in patients with smoking history. Among the nine AAH tissues with detected AI, seven exhibited evidence for shared chromosomal aberrations with matched LUAD specimens, including losses harboring tumor suppressors on 17p, 8p, 9p, 9q, 19p, and gains encompassing oncogenes on 8q, 12p and 1q. INTERPRETATION: Chromosomal aberrations, particularly 17p loss, appear to play critical roles early in AAH pathogenesis. Genomic instability in AAH, as well as truncal chromosomal aberrations shared with LUAD, provide evidence for mutation accumulation and are suggestive of a cancerized field contributing to the clonal selection and expansion of these premalignant lesions. FUND: Supported in part by Cancer Prevention and Research Institute of Texas (CPRIT) grant RP150079 (PS and HK), NIH grant R01HG005859 (PS) and The University of Texas MD Anderson Cancer Center Core Support Grant.


Subject(s)
Cell Transformation, Neoplastic/genetics , Lung/metabolism , Lung/pathology , Precancerous Conditions/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Alleles , Allelic Imbalance , Chromosomal Instability , Disease Progression , Female , Genetic Heterogeneity , Genome-Wide Association Study , Haplotypes , Humans , Hyperplasia , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Models, Statistical , Mutation , Neoplasm Staging , Phylogeny , Polymorphism, Single Nucleotide , Young Adult
10.
Cancer Res ; 66(1): 18-23, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16397209

ABSTRACT

We recently reported that a high level of hepatoma-derived growth factor (HDGF) expression in tumors correlates with a high incidence of tumor relapse or distant metastasis and shortened survival time in patients with non-small cell lung cancer (NSCLC). However, the mechanisms of the HDGF-associated aggressive biological behavior are unknown. In this study, we knocked down HDGF expression in NSCLC cells to determine the biological consequences. Transfection with HDGF-specific small interfering RNA (siRNA) resulted in down-regulation of HDGF expression in four NSCLC cell lines. Down-regulation of HDGF resulted in no detectable effect on anchorage-dependent cell growth as determined with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, a microelectronic cell sensor system, and flow cytometry. In contrast, cells transfected with HDGF-siRNA grew more slowly and formed significantly fewer colonies in soft agar than did cells treated with LipofectAMINE alone or transfected with negative control siRNA. In an in vitro invasion assay, significantly fewer cells transfected with HDGF-siRNA than cells treated with LipofectAMINE alone were able to invade across a Matrigel membrane barrier. In an in vivo mouse model, A549 cells treated with HDGF-siRNA grown significantly slower than the cells treated with LipofectAMINE alone or negative control siRNA. Morphologically, HDGF-siRNA-treated tumors exhibited markedly reduced blood vessel formation and increased necrosis, whereas the Ki67 labeling indices were similar in tumors treated with controls. Our results suggest that HDGF is involved in anchorage-independent growth, cell invasion, and formation of neovasculature of NSCLC. These qualities may contribute to the HDGF-associated aggressive biological behavior of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Intercellular Signaling Peptides and Proteins/biosynthesis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Adhesion/genetics , Cell Growth Processes/genetics , Cell Line, Tumor , Down-Regulation , Gene Expression Regulation, Neoplastic , Humans , Intercellular Signaling Peptides and Proteins/deficiency , Intercellular Signaling Peptides and Proteins/genetics , Lung Neoplasms/metabolism , Male , Mice , Mice, Nude , Neoplasm Invasiveness , RNA, Small Interfering/genetics , Transfection
11.
Cancer Prev Res (Phila) ; 11(4): 237-248, 2018 04.
Article in English | MEDLINE | ID: mdl-29382653

ABSTRACT

Smoking perpetuates in cytologically normal airways a molecular "field of injury" that is pertinent to lung cancer and early detection. The evolution of airway field changes prior to lung oncogenesis is poorly understood largely due to the long latency of lung cancer in smokers. Here, we studied airway expression changes prior to lung cancer onset in mice with knockout of the Gprc5a gene (Gprc5a-/-) and tobacco carcinogen (NNK) exposure and that develop the most common type of lung cancer, lung adenocarcinoma, within 6 months following exposure. Airway epithelial brushings were collected from Gprc5a-/- mice before exposure and at multiple times post-NNK until time of lung adenocarcinoma development and then analyzed by RNA sequencing. Temporal airway profiles were identified by linear models and analyzed by comparative genomics in normal airways of human smokers with and without lung cancer. We identified significantly altered profiles (n = 926) in the NNK-exposed mouse normal airways relative to baseline epithelia, a subset of which were concordantly modulated with smoking status in the human airway. Among airway profiles that were significantly modulated following NNK, we found that expression changes (n = 22) occurring as early as 2 months following exposure were significantly associated with lung cancer status when examined in airways of human smokers. Furthermore, a subset of a recently reported human bronchial gene classifier (Percepta; n = 56) was enriched in the temporal mouse airway profiles. We underscore evolutionarily conserved profiles in the normal-appearing airway that develop prior to lung oncogenesis and that comprise viable markers for early lung cancer detection in suspect smokers. Cancer Prev Res; 11(4); 237-48. ©2018 AACR.


Subject(s)
Adenocarcinoma/pathology , Bronchi/metabolism , Cell Transformation, Neoplastic/pathology , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Receptors, G-Protein-Coupled/physiology , Smoking/adverse effects , Adenocarcinoma/etiology , Animals , Bronchi/pathology , Cell Transformation, Neoplastic/genetics , Female , Gene Expression Profiling , Genome, Human , Genomics , Humans , Lung Neoplasms/etiology , Male , Mice, Inbred C57BL , Mice, Knockout , Nitrosamines/toxicity
12.
Oncoimmunology ; 7(12): e1496880, 2018.
Article in English | MEDLINE | ID: mdl-30524889

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a major cause of cancer-associated morbidity and mortality and may develop from oral premalignant lesions (OPL). An improved molecular classification of OPL may help refining prevention strategies. We identified two main OPL gene-expression subtypes, named immunological and classical, in 86 OPL (discovery dataset). A gene expression-based score was then developed to classify OPL samples from three independent datasets, including 17 (GSE30784),13 (GSE10174) and 15 (GSE85195) OPLs, into either one of the two gene-expression subtypes. Using the single sample gene set enrichment analysis, enrichment scores for immune-related pathways were different between the two OPL subtypes. In OPL from the discovery set, loss of heterozygosities (LOH) at 3p14, 17p13, TP53, 9p21 and 8p22 and miRNA gene expression profiles were analyzed. Deconvolution of the immune infiltrate was performed using the Microenvironment Cell Populations-counter tool. A multivariate analysis revealed that decreased miRNA-142-5p expression (P = 0.0484) and lower T-cell, monocytic and myeloid dendritic cells (MDC) immune infiltration (T-cells, P = 0.0196; CD8 T cells, P = 0.0129; MDC, P = 0.0481; and monocytes, P = 0.0212) were associated with oral cancer development in the immunological subtype only. In contrast, LOH at 3p14 (P = 0.0241), 17p13 (P = 0.0348) and TP53 (P = 0.004) were associated with oral cancer development in the classical subtype only. In conclusion, we identified 2 subtypes of OPLs, namely immune and classical, which may benefit from different and specific personalized prevention interventions.

13.
J Natl Cancer Inst ; 110(3)2018 03 01.
Article in English | MEDLINE | ID: mdl-29617836

ABSTRACT

Background: We have previously shown that gene expression profiles of oral leukoplakia (OL) may improve the prediction of oral cancer (OC) risk. To identify new targets for prevention, we performed a systematic survey of transcripts associated with an increased risk of oral cancer and overexpressed in OC vs normal mucosa (NM). Methods: We used gene expression profiles of 86 patients with OL and available outcomes from a chemoprevention trial of OC and NM. MET expression was evaluated using immunohistochemistry in 120 OL patients, and its association with OC development was tested in multivariable analysis. Sensitivity to pharmacological Met inhibition was tested invitro in premalignant and OC cell lines (n = 33) and invivo using the 4-NQO model of oral chemoprevention (n = 20 mice per group). All statistical tests were two-sided. Results: The overlap of 693 transcripts associated with an increased risk of OC with 163 transcripts overexpressed in OC compared with NM led to the identification of 23 overlapping transcripts, including MET. MET overexpression in OL was associated with a hazard ratio of 3.84 (95% confidence interval = 1.59 to 9.27, P = .003) of developing OC. Met activation was found in OC and preneoplastic cell lines. Crizotinib activity in preneoplastic and OC cell lines was comparable. ARQ 197 was more active in preneoplastic compared with OC cell lines. In the 4-NQO model, squamous cell carcinoma, dysplasia, and hyperkeratosis were observed in 75.0%, 15.0%, and 10.0% in the control group, and in 25.0%, 70.0%, and 5.0% in the crizotinib group (P < .001). Conclusion: Together, these data suggest that MET activation may represent an early driver in oral premalignancy and a target for chemoprevention of OC.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Head and Neck Neoplasms/prevention & control , Mouth Neoplasms/prevention & control , Proto-Oncogene Proteins c-met/antagonists & inhibitors , 4-Nitroquinoline-1-oxide/toxicity , Animals , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/prevention & control , Case-Control Studies , Cell Proliferation , Crizotinib/pharmacology , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Genomics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Leukoplakia, Oral/metabolism , Leukoplakia, Oral/pathology , Leukoplakia, Oral/prevention & control , Male , Mice, Inbred CBA , Middle Aged , Mouth Mucosa/drug effects , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Neoplasm Invasiveness , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Precancerous Conditions/prevention & control , Prognosis , Prospective Studies , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Pyrrolidinones/pharmacology , Quinolines/pharmacology , Quinolones/toxicity , Survival Rate , Tumor Cells, Cultured
14.
Oncotarget ; 8(40): 68230-68241, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28978111

ABSTRACT

The TBX2 subfamily (TBXs 2, 3, 4 and 5) transactivates or represses genes involved in lung organogenesis. Yet TBX2 subfamily expression in pathogenesis of non-small cell lung cancer (NSCLC), the most common lung malignancy, remains elusive. We sought to probe the expression profile of the TBX2 subfamily in early phases of NSCLC. Expression of TBX2 subfamily was analyzed in datasets of pan-normal specimens as well as NSCLCs and normal lung tissues. TBX2 subfamily expression in matched normal lungs, premalignant hyperplasias and NSCLCs was profiled by transcriptome sequencing. TBX2 subfamily expression was evaluated in the cancerization field consisting of matched NSCLCs and adjacent cytologically-normal airways relative to distant normal lungs and in a dataset of normal bronchial samples from smokers with indeterminate nodules suspicious for malignancy. Statistical analysis was performed using R. TBX2 subfamily expression was markedly elevated in normal lungs relative to other organ-specific normal tissues. Expression of the TBXs was significantly suppressed in NSCLCs relative to normal lungs (P < 10-9). TBX2 subfamily was significantly progressively decreased across premalignant lesions and NSCLCs relative to normal lungs (P < 10-4). The subfamily was significantly suppressed in NSCLCs and adjacent normal-appearing airways relative to distant normal lung tissues (P < 10-15). Further, suppressed TBX2 subfamily expression in normal bronchi was associated with lung cancer status (P < 10-5) in smokers. Our findings suggest that the TBX2 subfamily is notably suppressed in human NSCLC pathogenesis and may serve as a high-potential biomarker for early lung cancer detection in high-risk smokers.

15.
Cancer Res ; 77(22): 6119-6130, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28951454

ABSTRACT

There is a dearth of knowledge about the pathogenesis of premalignant lung lesions, especially for atypical adenomatous hyperplasia (AAH), the only known precursor for the major lung cancer subtype adenocarcinoma (LUAD). In this study, we performed deep DNA and RNA sequencing analyses of a set of AAH, LUAD, and normal tissues. Somatic BRAF variants were found in AAHs from 5 of 22 (23%) patients, 4 of 5 of whom had matched LUAD with driver EGFR mutations. KRAS mutations were present in AAHs from 4 of 22 (18%) of patients. KRAS mutations in AAH were only found in ever-smokers and were exclusive to BRAF-mutant cases. Integrative analysis revealed profiles expressed in KRAS-mutant cases (UBE2C, REL) and BRAF-mutant cases (MAX) of AAH, or common to both sets of cases (suppressed AXL). Gene sets associated with suppressed antitumor (Th1; IL12A, GZMB) and elevated protumor (CCR2, CTLA-4) immune signaling were enriched in AAH development and progression. Our results reveal potentially divergent BRAF or KRAS pathways in AAH as well as immune dysregulation in the pathogenesis of this premalignant lung lesion. Cancer Res; 77(22); 6119-30. ©2017 AACR.


Subject(s)
Adenocarcinoma/genetics , Genomics , Lung Neoplasms/genetics , Lung/metabolism , Precancerous Conditions/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma/pathology , Aged , Disease Progression , Female , Gene Expression Profiling , Humans , Hyperplasia/genetics , Lung/pathology , Lung Neoplasms/pathology , Male , Middle Aged , Mutation
16.
Oncotarget ; 7(24): 35932-35945, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27027432

ABSTRACT

A better understanding of the dynamics of molecular changes occurring during the early stages of oral tumorigenesis may help refine prevention and treatment strategies. We generated genome-wide expression profiles of microdissected normal mucosa, hyperplasia, dysplasia and tumors derived from the 4-NQO mouse model of oral tumorigenesis. Genes differentially expressed between tumor and normal mucosa defined the "tumor gene set" (TGS), including 4 non-overlapping gene subsets that characterize the dynamics of gene expression changes through different stages of disease progression. The majority of gene expression changes occurred early or progressively. The relevance of these mouse gene sets to human disease was tested in multiple datasets including the TCGA and the Genomics of Drug Sensitivity in Cancer project. The TGS was able to discriminate oral squamous cell carcinoma (OSCC) from normal oral mucosa in 3 independent datasets. The OSCC samples enriched in the mouse TGS displayed high frequency of CASP8 mutations, 11q13.3 amplifications and low frequency of PIK3CA mutations. Early changes observed in the 4-NQO model were associated with a trend toward a shorter oral cancer-free survival in patients with oral preneoplasia that was not seen in multivariate analysis. Progressive changes observed in the 4-NQO model were associated with an increased sensitivity to 4 different MEK inhibitors in a panel of 51 squamous cell carcinoma cell lines of the areodigestive tract. In conclusion, the dynamics of molecular changes in the 4-NQO model reveal that MEK inhibition may be relevant to prevention and treatment of a specific molecularly-defined subgroup of OSCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Cell Transformation, Neoplastic/genetics , Disease Models, Animal , Gene Expression Profiling/methods , Mouth Mucosa/metabolism , Mouth Neoplasms/genetics , 4-Nitroquinoline-1-oxide/toxicity , Animals , Antineoplastic Agents/pharmacology , Carcinogens/toxicity , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice, Inbred CBA , Mouth Mucosa/drug effects , Mouth Neoplasms/chemically induced , Mouth Neoplasms/drug therapy , Quinolones/toxicity
17.
Cancer Res ; 76(13): 3676-83, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27216194

ABSTRACT

Visually normal cells adjacent to, and extending from, tumors of the lung may carry molecular alterations characteristics of the tumor itself, an effect referred to as airway field of cancerization. This airway field has been postulated as a model for early events in lung cancer pathogenesis. Yet the genomic landscape of somatically acquired molecular alterations in airway epithelia of lung cancer patients has remained unknown. To begin to fill this void, we sought to comprehensively characterize the genomic architecture of chromosomal alterations inducing allelic imbalance (AI) in the airway field of the most common type of lung tumors, non-small cell lung cancer (NSCLC). To do so, we conducted a genome-wide survey of multiple spatially distributed normal-appearing airways, multiregion tumor specimens, and uninvolved normal tissues or blood from 45 patients with early-stage NSCLC. We detected alterations in airway epithelia from 22 patients, with an increased frequency in NSCLCs of squamous histology. Our data also indicated a spatial gradient of AI in samples at closer proximity to the NSCLC. Chromosome 9 displayed the highest levels of AI and comprised recurrent independent events. Furthermore, the airway field AI included oncogenic gains and tumor suppressor losses in known NSCLC drivers. Our results demonstrate that genome-wide AI is common in the airway field of cancerization, providing insights into early events in the pathogenesis of NSCLC that may comprise targets for early treatment and chemoprevention. Cancer Res; 76(13); 3676-83. ©2016 AACR.


Subject(s)
Adenocarcinoma/genetics , Allelic Imbalance , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/genetics , Genome, Human , Lung Neoplasms/genetics , Neoplasm Recurrence, Local/genetics , Adenocarcinoma/pathology , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/pathology , Case-Control Studies , Chromosome Aberrations , Follow-Up Studies , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Prognosis , Tumor Cells, Cultured
18.
Cell Signal ; 16(4): 457-67, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14709334

ABSTRACT

Phorbol esters can induce activation of two mitogen-activated protein kinase (MAPK) pathways, the extracellular signal-regulated kinase (ERK) pathway and the c-Jun N-terminal kinase (JNK) pathway. Unlike ERK activation, JNK activation by phorbol esters is somehow cell-specific. However, the mechanism(s) that contribute to the cell-specific JNK activation remain elusive. In this study, we found that phorbol 12-myristate 13-acetate (PMA) induced JNK activation only in non-small cell lung cancer (NSCLC) cells, but not in small cell lung cancer (SCLC) cells, whereas ERK activation was detected in both cell types. In NSCLC cells, PMA induced JNK activation in a time- and dose-dependent manner. JNK activation was attenuated by protein kinase C (PKC) down-regulation through prolonged pre-treatment with PMA and significantly inhibited by PKC inhibitors Gö6976 and GF109203X. Subcellular localization studies demonstrated that PMA induced translocation of PKC-alpha, -betaII, and -epsilon isoforms, but not PKC-delta, from the cytosol to the membrane. Analysis of various PKC isoforms revealed that PKC-epsilon was exclusively absent in the SCLC cell lines tested. Ectopic expression of PKC-epsilon in SCLC cells restored PMA activation of JNK signaling only in the presence of PKC-alpha, suggesting that PKC-alpha and PKC-epsilon act cooperatively in regulating JNK activation in response to PMA. Furthermore, using dominant negative mutants and pharmacological inhibitors, we define that a putative Rac1/Cdc42/PKC-alpha pathway is convergent with the PKC-epsilon/MEK1/2 pathway in terms of the activation of JNK by PMA.


Subject(s)
Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Small Cell/enzymology , Lung Neoplasms/enzymology , Mitogen-Activated Protein Kinases/metabolism , Protein Kinase C/metabolism , Animals , Carbazoles/pharmacology , Cell Membrane/enzymology , Cytoplasm/enzymology , Humans , Indoles/metabolism , Indoles/pharmacology , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , JNK Mitogen-Activated Protein Kinases , Maleimides/metabolism , Maleimides/pharmacology , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Protein Kinase C/antagonists & inhibitors , Protein Kinase C-alpha , Protein Kinase C-epsilon , Signal Transduction , Tetradecanoylphorbol Acetate/pharmacology , Tumor Cells, Cultured , rac1 GTP-Binding Protein/metabolism
19.
Sci Rep ; 5: 13846, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26343532

ABSTRACT

We recently demonstrated that lysosomal protein transmembrane 4 beta (LAPTM4B) is elevated in non-small cell lung cancers (NSCLCs) and in the surrounding premalignant airway field of cancerization. In the present study, we sought to begin to understand the relevance of LAPTM4B expression and signaling to NSCLC pathogenesis. In situ hybridization analysis of LAPTM4B transcript in tissue microarrays comprised of 368 NSCLCs demonstrated that LAPTM4B expression was significantly increased in smoker compared to non-smoker lung adenocarcinoma tumors (P < 0.001) and was significantly associated with poor overall survival (P < 0.05) in adenocarcinoma patients. Knockdown of LAPTM4B expression inhibited cell growth, induced cellular apoptosis and decreased cellular autophagy in serum starved lung cancer cells. Expression profiling coupled with pathways analysis revealed decreased activation of the nuclear factor erythroid 2-like 2 (NRF2) stress response pathway following LAPTM4B knockdown. Further analysis demonstrated that LAPTM4B augmented the expression and nuclear translocation of the NRF2 transcription factor following serum deprivation as well as increased the expression of NRF2 target genes such as heme oxygenase 1/HMOX1). Our study points to the relevance of LAPTM4B expression to NSCLC pathogenesis as well as to the probable role of LAPTM4B/NRF2 signaling in promoting lung cancer cell survival.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Membrane Proteins/genetics , NF-E2-Related Factor 2/metabolism , Oncogene Proteins/genetics , Signal Transduction , Stress, Physiological , Active Transport, Cell Nucleus , Autophagy , Carcinoma, Non-Small-Cell Lung/mortality , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Prognosis , Protein Transport , Smoking
20.
Cancer Prev Res (Phila) ; 8(11): 1027-35, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26342026

ABSTRACT

DNA promoter methylation of tumor suppressor genes and global DNA hypomethylation are common features of head and neck cancers. Our goal was to identify early DNA methylation changes in oral premalignant lesions (OPL) that may serve as predictive markers of developing oral squamous cell carcinoma (OSCC). Using high-throughput DNA methylation profiles of 24 OPLs, we found that the top 86 genes differentially methylated between patients who did or did not develop OSCC were simultaneously hypermethylated, suggesting that a CpG island methylation phenotype may occur early during OSCC development. The vast majority of the 86 genes were nonmethylated in normal tissues and hypermethylated in OSCC versus normal mucosa. We used pyrosequencing in a validation cohort of 44 patients to evaluate the degree of methylation of AGTR1, FOXI2, and PENK promoters CpG sites that were included in the top 86 genes and of LINE1 repetitive element methylation, a surrogate of global DNA methylation. A methylation index was developed by averaging the percent methylation of AGTR1, FOXI2, and PENK promoters; patients with a high methylation index had a worse oral cancer-free survival (P = 0.0030). On the other hand, patients with low levels of LINE1 methylation had a significantly worse oral cancer-free survival (P = 0.0153). In conclusion, AGTR1, FOXI2, and PENK promoter methylation and LINE1 hypomethylation may be associated with an increased risk of OSCC development in patients with OPLs.


Subject(s)
Carcinoma, Squamous Cell/genetics , DNA Methylation , Mouth Neoplasms/genetics , Promoter Regions, Genetic/genetics , Receptor, Angiotensin, Type 1/genetics , Carcinoma, Squamous Cell/pathology , Cell Line , CpG Islands , Disease Progression , Disease-Free Survival , Female , Follow-Up Studies , Humans , Male , Mouth Neoplasms/pathology , Phenotype , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Proportional Hazards Models , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL