Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Clin Exp Dermatol ; 48(5): 555-556, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-36702807

ABSTRACT

Pyoderma gangrenosum can be associated with haematological malignancies but rarely a myeloproliferative neoplasm. A review of requests for molecular detection of myeloproliferative neoplasm driver mutations in patients with pyoderma gangrenosum was performed and revealed that testing for these mutations is unwarranted in cases where there are no clinical, haematological or morphological features of a myeloproliferative neoplasm present.


Subject(s)
Hematologic Neoplasms , Myeloproliferative Disorders , Pyoderma Gangrenosum , Humans , Pyoderma Gangrenosum/pathology , Myeloproliferative Disorders/complications , Myeloproliferative Disorders/genetics , Hematologic Neoplasms/complications
7.
Eur J Haematol ; 95(4): 270-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25951317

ABSTRACT

Since the discovery of the JAK2 V617F mutation in the majority of the myeloproliferative neoplasms (MPN) of polycythemia vera, essential thrombocythemia and primary myelofibrosis ten years ago, further MPN-specific mutational events, notably in JAK2 exon 12, MPL exon 10 and CALR exon 9 have been identified. These discoveries have been rapidly incorporated into evolving molecular diagnostic algorithms. Whilst many of these mutations appear to have prognostic implications, establishing MPN diagnosis is of immediate clinical importance with selection, implementation and the continual evaluation of the appropriate laboratory methodology to achieve this diagnosis similarly vital. The advantages and limitations of these approaches in identifying and quantitating the common MPN-associated mutations are considered herein with particular regard to their clinical utility. The evolution of molecular diagnostic applications and platforms has occurred in parallel with the discovery of MPN-associated mutations, and it therefore appears likely that emerging technologies such as next-generation sequencing and digital PCR will in the future play an increasing role in the molecular diagnosis of MPN.


Subject(s)
Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Calreticulin/genetics , Exons , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Mutation , Myeloproliferative Disorders/metabolism , Quality Assurance, Health Care , Receptors, Thrombopoietin/genetics
9.
Oncol Res ; 32(9): 1423-1427, 2024.
Article in English | MEDLINE | ID: mdl-39220131

ABSTRACT

Hairy cell leukemia (HCL) is an uncommon mature B-cell malignancy characterized by a typical morphology, immunophenotype, and clinical profile. The vast majority of HCL patients harbor the canonical BRAF V600E mutation which has become a rationalized target of the subsequently deregulated RAS-RAF-MEK-MAPK signaling pathway in HCL patients who have relapsed or who are refractory to front-line therapy. However, several HCL patients with a classical phenotype display non-canonical BRAF mutations or rearrangements. These include sequence variants within alternative exons and an oncogenic fusion with the IGH gene. Care must be taken in the molecular diagnostic work-up of patients with typical HCL but without the BRAF V600E to include investigation of these uncommon mechanisms. Identification, functional characterization, and reporting of further such patients is likely to provide insights into the pathogenesis of HCL and enable rational selection of targeted inhibitors in such patients if required.


Subject(s)
Gene Rearrangement , Leukemia, Hairy Cell , Mutation , Proto-Oncogene Proteins B-raf , Humans , Leukemia, Hairy Cell/genetics , Leukemia, Hairy Cell/pathology , Proto-Oncogene Proteins B-raf/genetics
11.
Br J Haematol ; 160(1): 25-34, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23057517

ABSTRACT

Molecular genetic assays for the detection of the JAK2 V617F (c.1849G>T) and other pathogenetic mutations within JAK2 exon 12 and MPL exon 10 are part of the routine diagnostic workup for patients presenting with erythrocytosis, thrombocytosis or otherwise suspected to have a myeloproliferative neoplasm. A wide choice of techniques are available for the detection of these mutations, leading to potential difficulties for clinical laboratories in deciding upon the most appropriate assay, which can lead to problems with inter-laboratory standardization. Here, we discuss the most important issues for a clinical diagnostic laboratory in choosing a technique, particularly for detection of the JAK2 V617F mutation at diagnosis. The JAK2 V617F detection assay should be both specific and sensitive enough to detect a mutant allele burden as low as 1-3%. Indeed, the use of sensitive assays increases the detection rate of the JAK2 V617F mutation within myeloproliferative neoplasms. Given their diagnostic relevance, it is also beneficial and relatively straightforward to screen JAK2 V617F negative patients for JAK2 exon 12 mutations (in the case of erythrocytosis) or MPL exon 10 mutations (thrombocytosis or myelofibrosis) using appropriate assays. Molecular results should be considered in the context of clinical findings and other haematological or laboratory results.


Subject(s)
Bone Marrow Neoplasms/diagnosis , Bone Marrow Neoplasms/genetics , Janus Kinase 2/genetics , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Bone Marrow Neoplasms/enzymology , DNA Mutational Analysis , Genetic Predisposition to Disease , Humans , Mutation , Myeloproliferative Disorders/enzymology , United Kingdom
12.
Case Rep Hematol ; 2023: 6673144, 2023.
Article in English | MEDLINE | ID: mdl-37123466

ABSTRACT

Acquired resistance to tyrosine kinase inhibitors (TKIs) remains a therapeutic challenge in the treatment of chronic myeloid leukemia (CML). The most studied reason for TKI resistance is the acquisition of mutations within the BCR::ABL1 tyrosine kinase domain (KDM) and of which the majority of which occur at seven codons within this region. A case of CML is described in which presence of a rare D363G BCR::ABL1 KDM resulted in a suboptimal response to frontline imatinib. Switching to dasatinib resulted in achieving a sustained major molecular response that was maintained after a subsequent switch to bosutinib due to the side effects. Reporting of such cases is important for the future management of any CML patients with this rare mutation.

13.
Expert Rev Mol Diagn ; 23(12): 1077-1090, 2023.
Article in English | MEDLINE | ID: mdl-37999991

ABSTRACT

INTRODUCTION: Myeloproliferative neoplasms (MPN) are a heterogeneous group of clonal hematopoietic stem cell neoplasms characterized by the driver mutations JAK2, CALR, and MPL. These mutations cause constitutive activation of JAK-STAT signaling, which is central to pathogenesis of MPNs. Next-generation sequencing has further expanded the molecular landscape allowing for improved diagnostics, prognostication, and targeted therapy. AREAS COVERED: This review aims to address current understanding of the molecular diagnosis of MPN not only through improved awareness of the driver mutations but also the disease modifying mutations. In addition, other genetic factors such as clonal hematopoiesis of indeterminate potential (CHIP), order of mutation, and mutation co-occurrence are discussed and how these factors influence disease initiation and ultimately progression. How this molecular information is incorporated into risk stratification models allowing for earlier intervention and targeted therapy in the future will be addressed further. EXPERT OPINION: The genomic landscape of the MPN has evolved in the last 15 years with integration of next-generation sequencing becoming the gold standard of MPN management. Although diagnostics and prognostication have become more personalized, additional studies are required to translate these molecular findings into targeted therapy therefore improving patient outcomes.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Humans , Pathology, Molecular , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Signal Transduction/genetics , Mutation , Genomics
16.
Leukemia ; 36(7): 1834-1842, 2022 07.
Article in English | MEDLINE | ID: mdl-35614319

ABSTRACT

Standardized monitoring of BCR::ABL1 mRNA levels is essential for the management of chronic myeloid leukemia (CML) patients. From 2016 to 2021 the European Treatment and Outcome Study for CML (EUTOS) explored the use of secondary, lyophilized cell-based BCR::ABL1 reference panels traceable to the World Health Organization primary reference material to standardize and validate local laboratory tests. Panels were used to assign and validate conversion factors (CFs) to the International Scale and assess the ability of laboratories to assess deep molecular response (DMR). The study also explored aspects of internal quality control. The percentage of EUTOS reference laboratories (n = 50) with CFs validated as optimal or satisfactory increased from 67.5% to 97.6% and 36.4% to 91.7% for ABL1 and GUSB, respectively, during the study period and 98% of laboratories were able to detect MR4.5 in most samples. Laboratories with unvalidated CFs had a higher coefficient of variation for BCR::ABL1IS and some laboratories had a limit of blank greater than zero which could affect the accurate reporting of DMR. Our study indicates that secondary reference panels can be used effectively to obtain and validate CFs in a manner equivalent to sample exchange and can also be used to monitor additional aspects of quality assurance.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Fusion Proteins, bcr-abl/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Reference Standards , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL