Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 178(3): 699-713.e19, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31280963

ABSTRACT

Accurate prediction of long-term outcomes remains a challenge in the care of cancer patients. Due to the difficulty of serial tumor sampling, previous prediction tools have focused on pretreatment factors. However, emerging non-invasive diagnostics have increased opportunities for serial tumor assessments. We describe the Continuous Individualized Risk Index (CIRI), a method to dynamically determine outcome probabilities for individual patients utilizing risk predictors acquired over time. Similar to "win probability" models in other fields, CIRI provides a real-time probability by integrating risk assessments throughout a patient's course. Applying CIRI to patients with diffuse large B cell lymphoma, we demonstrate improved outcome prediction compared to conventional risk models. We demonstrate CIRI's broader utility in analogous models of chronic lymphocytic leukemia and breast adenocarcinoma and perform a proof-of-concept analysis demonstrating how CIRI could be used to develop predictive biomarkers for therapy selection. We envision that dynamic risk assessment will facilitate personalized medicine and enable innovative therapeutic paradigms.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Lymphoma, Large B-Cell, Diffuse/pathology , Precision Medicine , Algorithms , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/blood , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Circulating Tumor DNA/blood , Female , Humans , Kaplan-Meier Estimate , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/mortality , Neoadjuvant Therapy , Prognosis , Progression-Free Survival , Proportional Hazards Models , Risk Assessment , Treatment Outcome
2.
Blood ; 141(5): 529-533, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36240445

ABSTRACT

We compared minimal/measurable residual disease (MRD) levels evaluated by routinely used real-time quantitative polymerase chain reaction (qPCR) patient-specific assays and by next-generation sequencing (NGS) approach in 780 immunoglobulin (IG) and T-cell receptor (TR) markers in 432 children with B-cell precursor acute lymphoblastic leukemia treated on the AIEOP-BFM ALL 2009 protocol. Our aim was to compare the MRD-based risk stratification at the end of induction. The results were concordant in 639 of 780 (81.9%) of these markers; 37 of 780 (4.7%) markers were detected only by NGS. In 104 of 780 (13.3%) markers positive only by qPCR, a large fraction (23/104; 22.1%) was detected also by NGS, however, owing to the presence of identical IG/TR rearrangements in unrelated samples, we classified those as nonspecific/false-positive. Risk group stratification based on the MRD results by qPCR and NGS at the end of induction was concordant in 76% of the patients; 19% of the patients would be assigned to a lower risk group by NGS, largely owing to the elimination of false-positive qPCR results, and 5% of patients would be assigned to a higher risk group by NGS. NGS MRD is highly concordant with qPCR while providing more specific results and can be an alternative in the front line of MRD evaluation in forthcoming MRD-based protocols.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Gene Rearrangement , Receptors, Antigen, T-Cell/genetics , Immunoglobulins/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Risk Assessment , High-Throughput Nucleotide Sequencing/methods , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics
3.
Blood ; 141(5): 519-528, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36084320

ABSTRACT

The sensitivity of conventional techniques for reliable quantification of minimal/measurable residual disease (MRD) in chronic lymphocytic leukemia (CLL) is limited to MRD 10-4. Measuring MRD <10-4 could help to further distinguish between patients with CLL with durable remission and those at risk of early relapse. We herein present an academically developed immunoglobulin heavy-chain variable (IGHV) leader-based next-generation sequencing (NGS) assay for the quantification of MRD in CLL. We demonstrate, based on measurements in contrived MRD samples, that the linear range of detection and quantification of our assay reaches beyond MRD 10-5. If provided with sufficient DNA input, MRD can be detected down to MRD 10-6. There was high interassay concordance between measurements of the IGHV leader-based NGS assay and allele-specific oligonucleotide quantitative polymerase chain reaction (PCR) (r = 0.92 [95% confidence interval {CI}, 0.86-0.96]) and droplet digital PCR (r = 0.93 [95% CI, 0.88-0.96]) on contrived MRD samples. In a cohort of 67 patients from the CLL11 trial, using MRD 10-5 as a cutoff, undetectable MRD was associated with superior progression-free survival (PFS) and time to next treatment. More important, deeper MRD measurement allowed for additional stratification of patients with MRD <10-4 but ≥10-5. PFS of patients in this MRD range was significantly shorter, compared with patients with MRD <10-5 (hazard ratio [HR], 4.0 [95% CI, 1.6-10.3]; P = .004), but significantly longer, compared with patients with MRD ≥10-4 (HR, 0.44 [95% CI, 0.23-0.87]; P = .018). These results support the clinical utility of the IGHV leader-based NGS assay.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Prognosis , Immunoglobulin Heavy Chains/genetics , Polymerase Chain Reaction , High-Throughput Nucleotide Sequencing/methods , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics
4.
Blood ; 142(18): 1570-1575, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37595284

ABSTRACT

In this retrospective study, BRAF mutation status did not correlate with disease extent or (event-free) survival in 156 adults with Langerhans cell histiocytosis. BRAFV600E was associated with an increased incidence of second malignancies, often comprising hematological cancers, which may be clonally related.


Subject(s)
Histiocytosis, Langerhans-Cell , Neoplasms, Second Primary , Humans , Adult , Neoplasms, Second Primary/epidemiology , Neoplasms, Second Primary/genetics , Proto-Oncogene Proteins B-raf/genetics , Retrospective Studies , Incidence , Histiocytosis, Langerhans-Cell/epidemiology , Histiocytosis, Langerhans-Cell/genetics , Histiocytosis, Langerhans-Cell/pathology , Mutation
5.
Blood ; 142(13): 1131-1142, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37363833

ABSTRACT

Chronic lymphocytic leukemia (CLL)-related symptoms and morbidity related to the advanced age at diagnosis impairs the well-being of older adult patients. Therefore, it is essential to tailor treatment according to geriatric characteristics and aim for an improvement in health-related quality of life (HRQoL) as a primary treatment goal. In the HOVON139/GiVe trial, 12 cycles of fixed-duration venetoclax plus obinutuzumab (Ven-O) were shown to be effective and tolerable in FCR (fludarabine, cyclophosphamide, rituximab)-unfit patients with CLL (n = 67). However, prolonged venetoclax exposure as consolidation treatment led to increased toxicity with limited effect on minimal residual disease. To assess the impact of geriatric assessment on treatment outcomes and the patients' HRQoL, patient-reported outcomes (PROs), including function, depression, cognition, nutrition, physical performance, muscle parameters, comorbidities, and the European Organization for Research and Treatment of Cancer C30 and CLL17 questionnaires were assessed. At baseline, geriatric impairments were present in >90% of patients and ≥2 impairments present in 60% of patients predicted grade ≥3 nonhematological toxicity. During treatment, the number of geriatric impairments diminished significantly and clinically relevant improvements in HRQoL subscales were reached for global health status, physical functioning, role functioning, emotional functioning, fatigue, dyspnea, physical condition or fatigue, and worries or fears related to health and functioning. These improvements were comparable for patients receiving venetoclax consolidation and patients in whom treatment could mostly be discontinued. Collectively, frontline fixed-duration Ven-O improves overall PROs in older, unfit patients with CLL with and without geriatric impairments. This study was registered at EudraCT as 2015-004985-27 and the Netherlands Trial Register as NTR6043.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Aged , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Quality of Life , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Fatigue/chemically induced
6.
Blood ; 139(10): 1557-1563, 2022 03 10.
Article in English | MEDLINE | ID: mdl-34662377

ABSTRACT

Chronic lymphocytic leukemia (CLL) is preceded by monoclonal B-cell lymphocytosis (MBL), a CLL precursor state with a prevalence of up to 12% in aged individuals; however, the duration of MBL and the mechanisms of its evolution to CLL remain largely unknown. In this study, we sequenced the B-cell receptor (BcR) immunoglobulin heavy chain (IGH) gene repertoire of 124 patients with CLL and 118 matched controls in blood samples taken up to 22 years prior to diagnosis. Significant skewing in the BcR IGH gene repertoire was detected in the majority of patients, even before the occurrence of lymphocytosis and irrespective of the clonotypic IGH variable gene somatic hypermutation status. Furthermore, we identified dominant clonotypes belonging to major stereotyped subsets associated with poor prognosis up to 16 years before diagnosis in 14 patients with CLL. In 22 patients with longitudinal samples, the skewing of the BcR IGH gene repertoire increased significantly over time to diagnosis or remained stable at high levels. For 14 of 16 patients with available samples at diagnosis, the CLL clonotype was already present in the prediagnostic samples. Overall, our data indicate that the preclinical phase of CLL could be longer than previously thought, even in adverse-prognostic cases.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphocytosis , Aged , B-Lymphocytes , Humans , Immunoglobulin Heavy Chains/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Lymphocytosis/diagnosis , Lymphocytosis/genetics , Receptors, Antigen, B-Cell/genetics
7.
Semin Cancer Biol ; 84: 80-88, 2022 09.
Article in English | MEDLINE | ID: mdl-34757183

ABSTRACT

Cancer is characterized by an extremely complex biological background, which hinders personalized therapeutic interventions. Precision medicine promises to overcome this obstacle through integrating information from different 'subsystems', including the host, the external environment, the tumor itself and the tumor micro-environment. Immunogenetics is an essential tool that allows dissecting both lymphoid cancer ontogeny at both a cell-intrinsic and a cell-extrinsic level, i.e. through characterizing micro-environmental interactions, with a view to precision medicine. This is particularly thanks to the introduction of powerful, high-throughput approaches i.e. next generation sequencing, which allow the comprehensive characterization of immune repertoires. Indeed, NGS immunogenetic analysis (Immune-seq) has emerged as key to both understanding cancer pathogenesis and improving the accuracy of clinical decision making in oncology. Immune-seq has applications in lymphoid malignancies, assisting in the diagnosis e.g. through differentiating from reactive conditions, as well as in disease monitoring through accurate assessment of minimal residual disease. Moreover, Immune-seq facilitates the study of T cell receptor clonal dynamics in critical clinical contexts, including transplantation as well as innovative immunotherapy for solid cancers. The clinical utility of Immune-seq represents the focus of the present contribution, where we highlight what can be achieved but also what must be addressed in order to maximally realize the promise of Immune-seq in precision medicine in cancer.


Subject(s)
Neoplasms , Precision Medicine , High-Throughput Nucleotide Sequencing , Humans , Immunogenetics , Immunotherapy , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Tumor Microenvironment/genetics
8.
Haematologica ; 108(5): 1313-1321, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36579446

ABSTRACT

The somatic hypermutation (SHM) status of the clonotypic, rearranged immunoglobulin heavy variable (IGHV) gene is an established prognostic and predictive marker in chronic lymphocytic leukemia (CLL). Analysis of SHM is generally performed by polymerase chain reaction (PCR)-amplification of clonal IGHV-IGHD-IGHJ gene rearrangements followed by sequencing to identify IGHV gene sequences and germline identity. Targeted-hybridization next-generation sequencing (NGS) can simultaneously assess clonality and other genetic aberrations. However, it has limitations for SHM analysis due to sequence similarity between different IGHV genes and mutations introduced by SHM, which can affect alignment efficiency and accuracy. We developed a novel SHM assessment strategy using a targeted-hybridization NGS approach (EuroClonality- NDC assay) and applied it to 331 samples of lymphoproliferative disorder (LPD). Our strategy focuses on analyzing the sequence downstream to the clonotypic, rearranged IGHJ gene up to the IGHM enhancer (IGHJ-E) which provides more accurate alignment. Overall, 84/95 (88.4%) CLL cases with conventional SHM data showed concordant SHM status, increasing to 91.6% when excluding borderline cases. Additionally, IGHJ-E mutation analysis in a wide range of pre- and post-germinal center LPD showed significant correlation with differentiation and lineage status, suggesting that IGHJ-E analysis is a promising surrogate marker enabling SHM to be reported using NGS-capture strategies and whole genome sequencing.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Gene Rearrangement , Immunoglobulin Heavy Chains/genetics , Mutation , Genomics , High-Throughput Nucleotide Sequencing , Somatic Hypermutation, Immunoglobulin
9.
J Clin Immunol ; 42(6): 1205-1222, 2022 08.
Article in English | MEDLINE | ID: mdl-35527320

ABSTRACT

The first successful European hematopoietic stem cell transplantation (HSCT) was performed in 1968 as treatment in a newborn with IL2RG deficiency using an HLA-identical sibling donor. Because of declining naive T and natural killer (NK) cells, and persistent human papilloma virus (HPV)-induced warts, the patient received a peripheral stem cell boost at the age of 37 years. NK and T cells were assessed before and up to 14 years after the boost by flow cytometry. The boost induced renewed reconstitution of functional NK cells that were 14 years later enriched for CD56dimCD27+ NK cells. T-cell phenotype and T-cell receptor (TCR) repertoire were simultaneously analyzed by including TCR Vß antibodies in the cytometry panel. Naive T-cell numbers with a diverse TCR Vß repertoire were increased by the boost. Before and after the boost, clonal expansions with a homogeneous TIGIT and PD-1 phenotype were identified in the CD27- and/or CD28- memory population in the patient, but not in the donor. TRB sequencing was applied on sorted T-cell subsets from blood and on T cells from skin biopsies. Abundant circulating CD8 memory clonotypes with a chronic virus-associated CD57+KLRG1+CX3CR1+ phenotype were also present in warts, but not in healthy skin of the patient, suggesting a link with HPV. In conclusion, we demonstrate in this IL2RG-deficient patient functional NK cells, a diverse and lasting naive T-cell compartment, supported by a stem cell boost, and an oligoclonal memory compartment half a century after HSCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Papillomavirus Infections , Warts , Adult , CD28 Antigens , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Infant, Newborn , Interleukin Receptor Common gamma Subunit , Killer Cells, Natural , Programmed Cell Death 1 Receptor , Receptors, Antigen, T-Cell , Receptors, Immunologic
10.
N Engl J Med ; 380(23): 2225-2236, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31166681

ABSTRACT

BACKGROUND: The BCL2 inhibitor venetoclax has shown activity in patients with chronic lymphocytic leukemia (CLL), but its efficacy in combination with other agents in patients with CLL and coexisting conditions is not known. METHODS: In this open-label, phase 3 trial, we investigated fixed-duration treatment with venetoclax and obinutuzumab in patients with previously untreated CLL and coexisting conditions. Patients with a score of greater than 6 on the Cumulative Illness Rating Scale (scores range from 0 to 56, with higher scores indicating more impaired function of organ systems) or a calculated creatinine clearance of less than 70 ml per minute were randomly assigned to receive venetoclax-obinutuzumab or chlorambucil-obinutuzumab. The primary end point was investigator-assessed progression-free survival. The safety of each regimen was also evaluated. RESULTS: In total, 432 patients (median age, 72 years; median Cumulative Illness Rating Scale score, 8; median creatinine clearance, 66.4 ml per minute) underwent randomization, with 216 assigned to each group. After a median follow-up of 28.1 months, 30 primary end-point events (disease progression or death) had occurred in the venetoclax-obinutuzumab group and 77 had occurred in the chlorambucil-obinutuzumab group (hazard ratio, 0.35; 95% confidence interval [CI], 0.23 to 0.53; P<0.001). The Kaplan-Meier estimate of the percentage of patients with progression-free survival at 24 months was significantly higher in the venetoclax-obinutuzumab group than in the chlorambucil-obinutuzumab group: 88.2% (95% CI, 83.7 to 92.6) as compared with 64.1% (95% CI, 57.4 to 70.8). This benefit was also observed in patients with TP53 deletion, mutation, or both and in patients with unmutated immunoglobulin heavy-chain genes. Grade 3 or 4 neutropenia occurred in 52.8% of patients in the venetoclax-obinutuzumab group and in 48.1% of patients in the chlorambucil-obinutuzumab group, and grade 3 or 4 infections occurred in 17.5% and 15.0%, respectively. All-cause mortality was 9.3% in the venetoclax-obinutuzumab group and 7.9% in the chlorambucil-obinutuzumab group. These differences were not significant. CONCLUSIONS: Among patients with untreated CLL and coexisting conditions, venetoclax-obinutuzumab was associated with longer progression-free survival than chlorambucil-obinutuzumab. (Funded by F. Hoffmann-La Roche and AbbVie; ClinicalTrials.gov number, NCT02242942.).


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Chlorambucil/administration & dosage , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Sulfonamides/administration & dosage , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Chlorambucil/adverse effects , Comorbidity , Female , Humans , Kaplan-Meier Estimate , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Male , Progression-Free Survival , Sulfonamides/adverse effects
11.
Haematologica ; 107(1): 143-153, 2022 01 01.
Article in English | MEDLINE | ID: mdl-33596640

ABSTRACT

T-cell prolymphocytic leukemia (T-PLL) is mostly characterized by aberrant expansion of small- to medium-sized prolymphocytes with a mature post-thymic phenotype, high aggressiveness of the disease and poor prognosis. However, T-PLL is more heterogeneous with a wide range of clinical, morphological, and molecular features, which occasionally impedes the diagnosis. We hypothesized that T-PLL consists of phenotypic and/or genotypic subgroups that may explain the heterogeneity of the disease. Multi-dimensional immuno-phenotyping and gene expression profiling did not reveal clear T-PLL subgroups, and no clear T-cell receptor a or ß CDR3 skewing was observed between different T-PLL cases. We revealed that the expression of microRNA (miRNA) is aberrant and often heterogeneous in T-PLL. We identified 35 miRNA that were aberrantly expressed in T-PLL with miR-200c/141 as the most differentially expressed cluster. High miR- 200c/141 and miR-181a/181b expression was significantly correlated with increased white blood cell counts and poor survival. Furthermore, we found that overexpression of miR-200c/141 correlated with downregulation of their targets ZEB2 and TGFßR3 and aberrant TGFß1- induced phosphorylated SMAD2 (p-SMAD2) and p-SMAD3, indicating that the TGFß pathway is affected in T-PLL. Our results thus highlight the potential role for aberrantly expressed oncogenic miRNA in T-PLL and pave the way for new therapeutic targets in this disease.


Subject(s)
Leukemia, Prolymphocytic, T-Cell , MicroRNAs , Gene Expression Profiling , Humans , Leukemia, Prolymphocytic, T-Cell/diagnosis , Leukemia, Prolymphocytic, T-Cell/genetics , Leukemia, Prolymphocytic, T-Cell/therapy , Lymphocytes , MicroRNAs/genetics , Transforming Growth Factor beta , Zinc Finger E-box Binding Homeobox 2/genetics
12.
J Immunol ; 204(2): 360-374, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31836657

ABSTRACT

Balanced activity of kinases and phosphatases downstream of the BCR is essential for B cell differentiation and function and is disturbed in chronic lymphocytic leukemia (CLL). In this study, we employed IgH.TEµ mice, which spontaneously develop CLL, and stable EMC CLL cell lines derived from these mice to explore the role of phosphatases in CLL. Genome-wide expression profiling comparing IgH.TEµ CLL cells with wild-type splenic B cells identified 96 differentially expressed phosphatase genes, including SH2-containing inositol phosphatase (Ship2). We found that B cell-specific deletion of Ship2, but not of its close homolog Ship1, significantly reduced CLL formation in IgH.TEµ mice. Treatment of EMC cell lines with Ship1/2 small molecule inhibitors resulted in the induction of caspase-dependent apoptosis. Using flow cytometry and Western blot analysis, we observed that blocking Ship1/2 abrogated EMC cell survival by exerting dual effects on the BCR signaling cascade. On one hand, specific Ship1 inhibition enhanced calcium signaling and thereby abrogated an anergic response to BCR stimulation in CLL cells. On the other hand, concomitant Ship1/Ship2 inhibition or specific Ship2 inhibition reduced constitutive activation of the mTORC1/ribosomal protein S6 pathway and downregulated constitutive expression of the antiapoptotic protein Mcl-1, in both EMC cell lines and primary IgH.TEµ CLL cells. Importantly, also in human CLL, we found overexpression of many phosphatases including SHIP2. Inhibition of SHIP1/SHIP2 reduced cellular survival and S6 phosphorylation and enhanced basal calcium levels in human CLL cells. Taken together, we provide evidence that SHIP2 contributes to CLL pathogenesis in mouse and human CLL.


Subject(s)
B-Lymphocytes/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Cell Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics
14.
Blood ; 131(9): 955-962, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29255066

ABSTRACT

Our objective was to evaluate minimal residual disease (MRD) at the end of induction treatment with chemoimmunotherapy as a surrogate end point for progression-free survival (PFS) in chronic lymphocytic leukemia (CLL) based on 3 randomized, phase 3 clinical trials (ClinicalTrials.gov identifiers NCT00281918, NCT00769522, and NCT02053610). MRD was measured in peripheral blood (PB) from treatment-naïve patients in the CLL8, CLL10, and CLL11 clinical trials, and quantified by 4-color flow cytometry or allele-specific oligonucleotide real-time quantitative polymerase chain reaction. A meta-regression model was developed to predict treatment effect on PFS using treatment effect on PB-MRD. PB-MRD levels were measured in 393, 337, and 474 patients from CLL8, CLL10, and CLL11, respectively. The model demonstrated a statistically significant relationship between treatment effect on PB-MRD and treatment effect on PFS. As the difference between treatment arms in PB-MRD response rates increased, a reduction in the risk of progression or death was observed; for each unit increase in the (log) ratio of MRD- rates between arms, the log of the PFS hazard ratio decreased by -0.188 (95% confidence interval, -0.321 to -0.055; P = .008). External model validation on the REACH trial and sensitivity analyses confirm the robustness and applicability of the surrogacy model. Our surrogacy model supports use of PB-MRD as a primary end point in randomized clinical trials of chemoimmunotherapy in CLL. Additional CLL trial data are required to establish a more precise quantitative relationship between MRD and PFS, and to support general applicability of MRD surrogacy for PFS across diverse patient characteristics, treatment regimens, and different treatment mechanisms of action.


Subject(s)
Immunotherapy , Leukemia, Lymphocytic, Chronic, B-Cell , Models, Biological , Disease-Free Survival , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Male , Neoplasm, Residual , Survival Rate
15.
Haematologica ; 105(1): 182-192, 2020 01.
Article in English | MEDLINE | ID: mdl-31097630

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a disease with heterogeneous clinical and biological characteristics. Differences in Ca2+ levels among cases, both basal and upon B-cell receptor (BCR) stimulation, may reflect heterogeneity in the pathogenesis due to cell-intrinsic factors. Our aim was to elucidate cell-intrinsic differences between BCR-responsive and -unresponsive cases. We therefore determined BCR responsiveness ex vivo based on Ca2+ influx upon α-IgM stimulation of purified CLL cell fractions from 52 patients. Phosphorylation levels of various BCR signaling molecules, and expression of activation markers were assessed by flow cytometry. Transcription profiling of responsive (n=6) and unresponsive cases (n=6) was performed by RNA sequencing. Real-time quantitative polymerase chain reaction analysis was used to validate transcript level differences in a larger cohort. In 24 cases an α-IgM response was visible by Ca2+ influx which was accompanied by higher phosphorylation of PLCγ2 and Akt after α-IgM stimulation in combination with higher surface expression of IgM, IgD, CD19, CD38 and CD43 compared to the unresponsive cases (n=28). Based on RNA sequencing analysis several components of the canonical nuclear factor (NF)-κB pathway, especially those related to NF-κB inhibition, were expressed more highly in unresponsive cases. Moreover, upon α-IgM stimulation, the expression of these NF-κB pathway genes (especially genes coding for NF-κB pathway inhibitors but also NF-κB subunit REL) was upregulated in BCR-responsive cases while the level did not change, compared to basal level, in the unresponsive cases. These findings suggest that cells from CLL cases with enhanced NF-κB signaling have a lesser capacity to respond to BCR stimulation.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , NF-kappa B , Humans , I-kappa B Proteins , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , NF-kappa B/metabolism , Receptors, Antigen, B-Cell/genetics , Signal Transduction
16.
Immun Ageing ; 17: 4, 2020.
Article in English | MEDLINE | ID: mdl-32082402

ABSTRACT

BACKGROUND: End-stage renal disease is associated with premature ageing of the T cell immune system but inter-individual variation is substantial. The hypothesis was tested that advanced immunological T cell ageing assessed by peripheral T cell differentiation increases the long-term mortality risk after renal transplantation. RESULTS: Circulating T cells of 211 recipients of a kidney from a living donor were analyzed before and in the first year after transplantation. The number of CD31-positive naive T cells (as a marker for recent thymic emigrants) and the differentiation status of the memory T cells was assessed. Thirty recipients died during follow-up of at least 5 years. Absolute numbers of naive CD4+ (living:258 cells/µl vs. deceased:101 cells/µl, p < 0.001) and naive CD8+ T cells (living:97 cells/µl vs. deceased:37 cells/µl, p < 0.001) were significantly lower in the deceased group prior to transplantation. In a multivariate proportional hazard analysis the number of naive CD4+ T cells remained associated with all-cause mortality (HR 0.98, CI 0.98-0.99, p < 0.001). The low number of naive T cells in the deceased patient group was primarily caused by a decrease in recent thymic emigrants (i.e. less CD31+ naive T cells) indicating a lowered thymus function. In addition, the physiological age-related compensatory increase in CD31- naïve T cells was not observed. Within the first year after transplantation, the number and characteristics of naive T cells remained stable. CONCLUSIONS: A severe reduction in circulating naïve T cells because of a decrease in recent thymic emigrants is highly associated with all-cause mortality after renal transplantation.

18.
J Immunol ; 198(1): 102-109, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27903736

ABSTRACT

Congenital CMV infection (cCMV) is the most common congenital infection that can cause long-term impairment (LTI). The pathogenesis of LTI is not completely understood. Fetal immunity may play a role in controlling the infection and preventing LTI, although immune activation may also contribute to fetal immunopathology. In this study, we analyzed various molecular markers of T and B cell numbers in neonatal dried blood spots of 99 children with cCMV and 54 children without cCMV: δRec-ψJα signal joints on TCR excision circles, intron recombination signal sequence k-deleting element signal joints on Igκ-deleting recombination excision circles, genomic intron recombination signal sequence k-deleting element coding joint, genomic Vδ1-Jδ1, and Vδ2-Jδ1 rearrangements. Of this cohort, clinical symptoms at birth and LTI at 6 y of age were recorded. Neonates with cCMV had fewer TCR excision circles in their blood than non-infected controls. Furthermore, cCMV infection was associated with increased numbers of γδ T cells and B cells, and these numbers were positively correlated with CMV viral load in the dried blood spots. Infected children with a better long-term outcome had higher numbers of B cells at birth than those who developed LTI; no difference in B cell replication was observed. The potential protective role of B cells in controlling cCMV-related disease and the clinical value of this marker as a predictor of long-term outcome merit further evaluation.


Subject(s)
B-Lymphocytes/immunology , Biomarkers , Cytomegalovirus Infections/congenital , Cytomegalovirus Infections/immunology , Child , Cohort Studies , Cytomegalovirus Infections/complications , Female , Humans , Infant, Newborn , Lymphocyte Count , Male , Real-Time Polymerase Chain Reaction , Retrospective Studies , T-Lymphocytes/immunology
19.
J Immunol ; 198(8): 3058-3068, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28275136

ABSTRACT

The Tec tyrosine kinase is expressed in many cell types, including hematopoietic cells, and is a member of the Tec kinase family that also includes Btk. Although the role of Btk in B cells has been extensively studied, the role of Tec kinase in B cells remains largely unclear. It was previously shown that Tec kinase has the ability to partly compensate for loss of Btk activity in B cell differentiation, although the underlying mechanism is unknown. In this study, we confirm that Tec kinase is not essential for normal B cell development when Btk is present, but we also found that Tec-deficient mature B cells showed increased activation, proliferation, and survival upon BCR stimulation, even in the presence of Btk. Whereas Tec deficiency did not affect phosphorylation of phospholipase Cγ or Ca2+ influx, it was associated with significantly increased activation of the intracellular Akt/S6 kinase signaling pathway upon BCR and CD40 stimulation. The increased S6 kinase phosphorylation in Tec-deficient B cells was dependent on Btk kinase activity, as ibrutinib treatment restored pS6 to wild-type levels, although Btk protein and phosphorylation levels were comparable to controls. In Tec-deficient mice in vivo, B cell responses to model Ags and humoral immunity upon influenza infection were enhanced. Moreover, aged mice lacking Tec kinase developed a mild autoimmune phenotype. Taken together, these data indicate that in mature B cells, Tec and Btk may compete for activation of the Akt signaling pathway, whereby the activating capacity of Btk is limited by the presence of Tec kinase.


Subject(s)
B-Lymphocytes/immunology , Lymphocyte Activation/immunology , Protein-Tyrosine Kinases/immunology , Agammaglobulinaemia Tyrosine Kinase , Animals , Cell Differentiation/immunology , Cell Separation , Disease Models, Animal , Flow Cytometry , Humans , Immunohistochemistry , Influenza, Human , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Polymerase Chain Reaction , Receptors, Antigen, B-Cell/immunology , Signal Transduction/immunology
20.
J Immunol ; 198(10): 3765-3774, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28416603

ABSTRACT

Analysis and interpretation of Ig and TCR gene rearrangements in the conventional, low-throughput way have their limitations in terms of resolution, coverage, and biases. With the advent of high-throughput, next-generation sequencing (NGS) technologies, a deeper analysis of Ig and/or TCR (IG/TR) gene rearrangements is now within reach, which impacts on all main applications of IG/TR immunogenetic analysis. To bridge the generation gap from low- to high-throughput analysis, the EuroClonality-NGS Consortium has been formed, with the main objectives to develop, standardize, and validate the entire workflow of IG/TR NGS assays for 1) clonality assessment, 2) minimal residual disease detection, and 3) repertoire analysis. This concerns the preanalytical (sample preparation, target choice), analytical (amplification, NGS), and postanalytical (immunoinformatics) phases. Here we critically discuss pitfalls and challenges of IG/TR NGS methodology and its applications in hemato-oncology and immunology.


Subject(s)
Hematology/methods , High-Throughput Nucleotide Sequencing , Immunogenetics/methods , Immunologic Techniques , Alleles , Computational Biology/methods , Gene Rearrangement , Genes, Immunoglobulin , Genes, T-Cell Receptor/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Immunogenetics/standards
SELECTION OF CITATIONS
SEARCH DETAIL