Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cell ; 160(3): 542-53, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25635461

ABSTRACT

Excitatory amino acid transporters (EAATs) are essential for terminating glutamatergic synaptic transmission. They are not only coupled glutamate/Na(+)/H(+)/K(+) transporters but also function as anion-selective channels. EAAT anion channels regulate neuronal excitability, and gain-of-function mutations in these proteins result in ataxia and epilepsy. We have combined molecular dynamics simulations with fluorescence spectroscopy of the prokaryotic homolog GltPh and patch-clamp recordings of mammalian EAATs to determine how these transporters conduct anions. Whereas outward- and inward-facing GltPh conformations are nonconductive, lateral movement of the glutamate transport domain from intermediate transporter conformations results in formation of an anion-selective conduction pathway. Fluorescence quenching of inserted tryptophan residues indicated the entry of anions into this pathway, and mutations of homologous pore-forming residues had analogous effects on GltPh simulations and EAAT2/EAAT4 measurements of single-channel currents and anion/cation selectivities. These findings provide a mechanistic framework of how neurotransmitter transporters can operate as anion-selective and ligand-gated ion channels.


Subject(s)
Amino Acid Transport System X-AG/chemistry , Anions/metabolism , Archaeal Proteins/chemistry , Glutamate Plasma Membrane Transport Proteins/chemistry , Molecular Dynamics Simulation , Pyrococcus horikoshii/chemistry , Amino Acid Sequence , Amino Acid Transport System X-AG/metabolism , Animals , Archaeal Proteins/metabolism , Glutamate Plasma Membrane Transport Proteins/genetics , Glutamate Plasma Membrane Transport Proteins/metabolism , Humans , Molecular Sequence Data , Mutation , Patch-Clamp Techniques , Rats , Sequence Alignment
2.
Biophys J ; 120(16): 3315-3328, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34246628

ABSTRACT

The pathology of Plasmodium falciparum malaria is largely defined by the cytoadhesion of infected erythrocytes to the microvascular endothelial lining. The complexity of the endothelial surface and the large range of interactions available for the infected erythrocyte via parasite-encoded adhesins make analysis of critical contributions during cytoadherence challenging to define. Here, we have explored supported membranes functionalized with two important adhesion receptors, ICAM1 or CD36, as a quantitative biomimetic surface to help understand the processes involved in cytoadherence. Parasitized erythrocytes bound to the receptor-functionalized membranes with high efficiency and selectivity under both static and flow conditions, with infected wild-type erythrocytes displaying a higher binding capacity than do parasitized heterozygous sickle cells. We further show that the binding efficiency decreased with increasing intermolecular receptor distance and that the cell-surface contacts were highly dynamic and increased with rising wall shear stress as the cell underwent a shape transition. Computer simulations using a deformable cell model explained the wall-shear-stress-induced dynamic changes in cell shape and contact area via the specific physical properties of erythrocytes, the density of adhesins presenting knobs, and the lateral movement of receptors in the supported membrane.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , CD36 Antigens , Cell Adhesion , Erythrocytes/metabolism , Humans , Intercellular Adhesion Molecule-1/metabolism
3.
Anal Chem ; 92(8): 5765-5771, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32202408

ABSTRACT

While there is ample evidence suggesting that carriers of heterozygous hemoglobin S and C are protected from life-threatening malaria, little is known about the underlying biochemical mechanisms at the single cell level. Using nanofocused scanning X-ray fluorescence microscopy, we quantify the spatial distribution of individual elements in subcellular compartments, including Fe, S, P, Zn, and Cu, in Plasmodium falciparum-infected (P. falciparum-infected) erythrocytes carrying the wild type or variant hemoglobins. Our data indicate that heterozygous hemoglobin S and C significantly modulate biochemical reactions in parasitized erythrocytes, such as aberrant hemozoin mineralization and a delay in hemoglobin degradation. The label-free scanning X-ray fluorescence imaging has great potential to quantify the spatial distribution of elements in subcellular compartments of P. falciparum-infected erythrocytes and unravel the biochemical mechanisms underpinning disease and protective traits.


Subject(s)
Erythrocytes/metabolism , Hemoglobin C/metabolism , Hemoglobin, Sickle/metabolism , Nanotechnology , Plasmodium falciparum/metabolism , Cells, Cultured , Erythrocytes/parasitology , Hemoglobin C/analysis , Hemoglobin, Sickle/analysis , Humans , Microscopy, Fluorescence , X-Rays
4.
Cell Microbiol ; 19(2)2017 02.
Article in English | MEDLINE | ID: mdl-27450804

ABSTRACT

During intraerythrocytic development, Plasmodium falciparum increases the ion permeability of the erythrocyte plasma membrane to an extent that jeopardizes the osmotic stability of the host cell. A previously formulated numeric model has suggested that the parasite prevents premature rupture of the host cell by consuming hemoglobin (Hb) in excess of its own anabolic needs. Here, we have tested the colloid-osmotic model on the grounds of time-resolved experimental measurements on cell surface area and volume. We have further verified whether the colloid-osmotic model can predict time-dependent volumetric changes when parasites are grown in erythrocytes containing the hemoglobin variants S or C. A good agreement between model-predicted and empirical data on both infected erythrocyte and intracellular parasite volume was found for parasitized HbAA and HbAC erythrocytes. However, a delayed induction of the new permeation pathways needed to be taken into consideration for the latter case. For parasitized HbAS erythrocyte, volumes diverged from model predictions, and infected erythrocytes showed excessive vesiculation during the replication cycle. We conclude that the colloid-osmotic model provides a plausible and experimentally supported explanation of the volume expansion and osmotic stability of P. falciparum-infected erythrocytes. The contribution of vesiculation to the malaria-protective function of hemoglobin S is discussed.


Subject(s)
Cell Membrane/physiology , Erythrocytes/cytology , Erythrocytes/parasitology , Hemoglobinopathies/pathology , Host-Pathogen Interactions , Permeability , Plasmodium falciparum/pathogenicity , Cell Shape , Cell Size , Models, Theoretical , Time Factors
5.
Biophys J ; 112(9): 1908-1919, 2017 May 09.
Article in English | MEDLINE | ID: mdl-28494961

ABSTRACT

To avoid clearance by the spleen, red blood cells infected with the human malaria parasite Plasmodium falciparum (iRBCs) adhere to the vascular endothelium through adhesive protrusions called "knobs" that the parasite induces on the surface of the host cell. However, the detailed relation between the developing knob structure and the resulting movement in shear flow is not known. Using flow chamber experiments on endothelial monolayers and tracking of the parasite inside the infected host cell, we find that trophozoites (intermediate-stage iRBCs) tend to flip due to their biconcave shape, whereas schizonts (late-stage iRBCs) tend to roll due to their almost spherical shape. We then use adhesive dynamics simulations for spherical cells to predict the effects of knob density and receptor multiplicity per knob on rolling adhesion of schizonts. We find that rolling adhesion requires a homogeneous coverage of the cell surface by knobs and that rolling adhesion becomes more stable and slower for higher knob density. Our experimental data suggest that schizonts are at the border between transient and stable rolling adhesion. They also allow us to establish an estimate for the molecular parameters for schizont adhesion to the vascular endothelium and to predict bond dynamics in the contact region.


Subject(s)
Cell Adhesion/physiology , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/parasitology , Erythrocytes/metabolism , Erythrocytes/parasitology , Malaria, Falciparum/blood , Cells, Cultured , Computer Simulation , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Erythrocyte Membrane/pathology , Erythrocytes/pathology , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Models, Cardiovascular , Motion , Plasmodium falciparum , Regional Blood Flow/physiology
6.
Cell Rep Med ; 5(5): 101549, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38703767

ABSTRACT

There is a compelling need for approaches to predict the efficacy of immunotherapy drugs. Tumor-on-chip technology exploits microfluidics to generate 3D cell co-cultures embedded in hydrogels that recapitulate simplified tumor ecosystems. Here, we present the development and validation of lung tumor-on-chip platforms to quickly and precisely measure ex vivo the effects of immune checkpoint inhibitors on T cell-mediated cancer cell death by exploiting the power of live imaging and advanced image analysis algorithms. The integration of autologous immunosuppressive FAP+ cancer-associated fibroblasts impaired the response to anti-PD-1, indicating that tumors-on-chips are capable of recapitulating stroma-dependent mechanisms of immunotherapy resistance. For a small cohort of non-small cell lung cancer patients, we generated personalized tumors-on-chips with their autologous primary cells isolated from fresh tumor samples, and we measured the responses to anti-PD-1 treatment. These results support the power of tumor-on-chip technology in immuno-oncology research and open a path to future clinical validations.


Subject(s)
Immune Checkpoint Inhibitors , Lung Neoplasms , Precision Medicine , Programmed Cell Death 1 Receptor , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Precision Medicine/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Lab-On-A-Chip Devices , Immunotherapy/methods , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Cell Line, Tumor
7.
Biosens Bioelectron ; 215: 114571, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35932554

ABSTRACT

Organ-on-chip and tumor-on-chip microfluidic cell cultures represent a fast-growing research field for modelling organ functions and diseases, for drug development, and for promising applications in personalized medicine. Still, one of the bottlenecks of this technology is the analysis of the huge amount of bio-images acquired in these dynamic 3D microenvironments, a task that we propose to achieve by exploiting the interdisciplinary contributions of computer science and electronic engineering. In this work, we apply this strategy to the study of oncolytic vaccinia virus (OVV), an emerging agent in cancer immunotherapy. Infection and killing of cancer cells by OVV were recapitulated and directly imaged in tumor-on-chip. By developing and applying appropriate image analysis strategies and advanced automatic algorithms, we uncovered synergistic cooperation of OVV and immune cells to kill cancer cells. Moreover, we observed that the kinetics of immune cells were modified in presence of OVV and that these immune modulations varied during the course of infection. A correlation between cancer cell infection and cancer-immune interaction time was pointed out, strongly supporting a cause-effect relationship between infection of cancer cells and their recognition by the immune cells. These results shed new light on the mode of action of OVV, and suggest new clinical avenues for immunotherapy developments.


Subject(s)
Biosensing Techniques , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Neoplasms/therapy , Oncolytic Virotherapy/methods , Tumor Microenvironment , Vaccinia virus
8.
Commun Biol ; 2: 311, 2019.
Article in English | MEDLINE | ID: mdl-31428699

ABSTRACT

During intraerythrocytic development, the human malaria parasite Plasmodium falciparum alters the mechanical deformability of its host cell. The underpinning biological processes involve gain in parasite mass, changes in the membrane protein compositions, reorganization of the cytoskeletons and its coupling to the plasma membrane, and formation of membrane protrusions, termed knobs. The hemoglobinopathies S and C are known to partially protect carriers from severe malaria, possibly through additional changes in the erythrocyte biomechanics, but a detailed quantification of cell mechanics is still missing. Here, we combined flicker spectroscopy and a mathematical model and demonstrated that knob formation strongly suppresses membrane fluctuations by increasing membrane-cytoskeleton coupling. We found that the confinement increased with hemoglobin S but decreases with hemoglobin C in spite of comparable knob densities and diameters. We further found that the membrane bending modulus strongly depends on the hemoglobinopathetic variant, suggesting increased amounts of irreversibly oxidized hemichromes bound to membranes.


Subject(s)
Erythrocyte Membrane/parasitology , Hemoglobin C/metabolism , Hemoglobin, Sickle/metabolism , Plasmodium falciparum/physiology , Biomechanical Phenomena , Computer Simulation , Humans , Mutation/genetics , Numerical Analysis, Computer-Assisted
9.
Commun Biol ; 1: 211, 2018.
Article in English | MEDLINE | ID: mdl-30534603

ABSTRACT

Sickle cell trait, a common hereditary blood disorder, protects carriers from severe disease in infections with the human malaria parasite Plasmodium falciparum. Protection is associated with a reduced capacity of parasitized erythrocytes to cytoadhere to the microvascular endothelium and cause vaso-occlusive events. However, the underpinning cellular and biomechanical processes are only partly understood and the impact on endothelial cell activation is unclear. Here, we show, by combining quantitative flow chamber experiments with multiscale computer simulations of deformable cells in hydrodynamic flow, that parasitized erythrocytes containing the sickle cell haemoglobin displayed altered adhesion dynamics, resulting in restricted contact footprints on the endothelium. Main determinants were cell shape, knob density and membrane bending. As a consequence, the extent of endothelial cell activation was decreased. Our findings provide a quantitative understanding of how the sickle cell trait affects the dynamic cytoadhesion behavior of parasitized erythrocytes and, in turn, endothelial cell activation.

SELECTION OF CITATIONS
SEARCH DETAIL