Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Cell ; 186(12): 2628-2643.e21, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37267950

ABSTRACT

CDK2 is a core cell-cycle kinase that phosphorylates many substrates to drive progression through the cell cycle. CDK2 is hyperactivated in multiple cancers and is therefore an attractive therapeutic target. Here, we use several CDK2 inhibitors in clinical development to interrogate CDK2 substrate phosphorylation, cell-cycle progression, and drug adaptation in preclinical models. Whereas CDK1 is known to compensate for loss of CDK2 in Cdk2-/- mice, this is not true of acute inhibition of CDK2. Upon CDK2 inhibition, cells exhibit a rapid loss of substrate phosphorylation that rebounds within several hours. CDK4/6 activity backstops inhibition of CDK2 and sustains the proliferative program by maintaining Rb1 hyperphosphorylation, active E2F transcription, and cyclin A2 expression, enabling re-activation of CDK2 in the presence of drug. Our results augment our understanding of CDK plasticity and indicate that co-inhibition of CDK2 and CDK4/6 may be required to suppress adaptation to CDK2 inhibitors currently under clinical assessment.


Subject(s)
Cell Cycle Proteins , Cyclin-Dependent Kinases , Animals , Mice , Cyclin-Dependent Kinases/metabolism , Cell Cycle/physiology , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Cell Cycle Proteins/metabolism , Phosphorylation , Cell Division
2.
Cell ; 175(3): 679-694.e22, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30340040

ABSTRACT

Dietary soluble fibers are fermented by gut bacteria into short-chain fatty acids (SCFA), which are considered broadly health-promoting. Accordingly, consumption of such fibers ameliorates metabolic syndrome. However, incorporating soluble fiber inulin, but not insoluble fiber, into a compositionally defined diet, induced icteric hepatocellular carcinoma (HCC). Such HCC was microbiota-dependent and observed in multiple strains of dysbiotic mice but not in germ-free nor antibiotics-treated mice. Furthermore, consumption of an inulin-enriched high-fat diet induced both dysbiosis and HCC in wild-type (WT) mice. Inulin-induced HCC progressed via early onset of cholestasis, hepatocyte death, followed by neutrophilic inflammation in liver. Pharmacologic inhibition of fermentation or depletion of fermenting bacteria markedly reduced intestinal SCFA and prevented HCC. Intervening with cholestyramine to prevent reabsorption of bile acids also conferred protection against such HCC. Thus, its benefits notwithstanding, enrichment of foods with fermentable fiber should be approached with great caution as it may increase risk of HCC.


Subject(s)
Carcinoma, Hepatocellular/etiology , Cholestasis/complications , Dietary Fiber/metabolism , Dysbiosis/complications , Fermentation , Gastrointestinal Microbiome , Liver Neoplasms/etiology , Animals , Carcinoma, Hepatocellular/microbiology , Cell Line, Tumor , Cholestasis/microbiology , Diet, High-Fat/adverse effects , Dysbiosis/microbiology , Inulin/adverse effects , Liver Neoplasms/microbiology , Male , Mice , Mice, Inbred C57BL
3.
Nat Chem Biol ; 18(9): 934-941, 2022 09.
Article in English | MEDLINE | ID: mdl-35590003

ABSTRACT

The expansion of the target landscape of covalent inhibitors requires the engagement of nucleophiles beyond cysteine. Although the conserved catalytic lysine in protein kinases is an attractive candidate for a covalent approach, selectivity remains an obvious challenge. Moreover, few covalent inhibitors have been shown to engage the kinase catalytic lysine in animals. We hypothesized that reversible, lysine-targeted inhibitors could provide sustained kinase engagement in vivo, with selectivity driven in part by differences in residence time. By strategically linking benzaldehydes to a promiscuous kinase binding scaffold, we developed chemoproteomic probes that reversibly and covalently engage >200 protein kinases in cells and mice. Probe-kinase residence time was dramatically enhanced by a hydroxyl group ortho to the aldehyde. Remarkably, only a few kinases, including Aurora A, showed sustained, quasi-irreversible occupancy in vivo, the structural basis for which was revealed by X-ray crystallography. We anticipate broad application of salicylaldehyde-based probes to proteins that lack a druggable cysteine.


Subject(s)
Lysine , Protein Kinase Inhibitors , Animals , Cysteine/metabolism , Lysine/metabolism , Mice , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism
4.
J Biol Chem ; 298(4): 101801, 2022 04.
Article in English | MEDLINE | ID: mdl-35257745

ABSTRACT

Endothelial dysfunction is a hallmark of inflammation and is mediated by inflammatory factors that signal through G protein-coupled receptors including protease-activated receptor-1 (PAR1). PAR1, a receptor for thrombin, signals via the small GTPase RhoA and myosin light chain intermediates to facilitate endothelial barrier permeability. PAR1 also induces endothelial barrier disruption through a p38 mitogen-activated protein kinase-dependent pathway, which does not integrate into the RhoA/MLC pathway; however, the PAR1-p38 signaling pathways that promote endothelial dysfunction remain poorly defined. To identify effectors of this pathway, we performed a global phosphoproteome analysis of thrombin signaling regulated by p38 in human cultured endothelial cells using multiplexed quantitative mass spectrometry. We identified 5491 unique phosphopeptides and 2317 phosphoproteins, four distinct dynamic phosphoproteome profiles of thrombin-p38 signaling, and an enrichment of biological functions associated with endothelial dysfunction, including modulators of endothelial barrier disruption and a subset of kinases predicted to regulate p38-dependent thrombin signaling. Using available antibodies to detect identified phosphosites of key p38-regulated proteins, we discovered that inhibition of p38 activity and siRNA-targeted depletion of the p38α isoform increased basal phosphorylation of extracellular signal-regulated protein kinase 1/2, resulting in amplified thrombin-stimulated extracellular signal-regulated protein kinase 1/2 phosphorylation that was dependent on PAR1. We also discovered a role for p38 in the phosphorylation of α-catenin, a component of adherens junctions, suggesting that this phosphorylation may function as an important regulatory process. Taken together, these studies define a rich array of thrombin- and p38-regulated candidate proteins that may serve important roles in endothelial dysfunction.


Subject(s)
Endothelial Cells , Thrombin , p38 Mitogen-Activated Protein Kinases , Cells, Cultured , Endothelial Cells/metabolism , Humans , MAP Kinase Signaling System , Phosphorylation , Proteomics , Receptor, PAR-1/metabolism , Thrombin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
5.
PLoS Pathog ; 17(11): e1009409, 2021 11.
Article in English | MEDLINE | ID: mdl-34843601

ABSTRACT

The HIV-1 accessory protein Vpu modulates membrane protein trafficking and degradation to provide evasion of immune surveillance. Targets of Vpu include CD4, HLAs, and BST-2. Several cellular pathways co-opted by Vpu have been identified, but the picture of Vpu's itinerary and activities within membrane systems remains incomplete. Here, we used fusion proteins of Vpu and the enzyme ascorbate peroxidase (APEX2) to compare the ultrastructural locations and the proximal proteomes of wild type Vpu and Vpu-mutants. The proximity-omes of the proteins correlated with their ultrastructural locations and placed wild type Vpu near both retromer and ESCRT-0 complexes. Hierarchical clustering of protein abundances across the mutants was essential to interpreting the data and identified Vpu degradation-targets including CD4, HLA-C, and SEC12 as well as Vpu-cofactors including HGS, STAM, clathrin, and PTPN23, an ALIX-like protein. The Vpu-directed degradation of BST-2 was supported by STAM and PTPN23 and to a much lesser extent by the retromer subunits Vps35 and SNX3. PTPN23 also supported the Vpu-directed decrease in CD4 at the cell surface. These data suggest that Vpu directs targets from sorting endosomes to degradation at multi-vesicular bodies via ESCRT-0 and PTPN23.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , HIV Infections/virology , Human Immunodeficiency Virus Proteins/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Proteome/metabolism , Sorting Nexins/metabolism , Vesicular Transport Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Viroporin Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , HIV Infections/genetics , HIV Infections/metabolism , HIV-1/physiology , HeLa Cells , Human Immunodeficiency Virus Proteins/genetics , Humans , Microscopy, Electron , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Transport , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Proteome/analysis , Sorting Nexins/chemistry , Sorting Nexins/genetics , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics , Viroporin Proteins/genetics
6.
Proc Natl Acad Sci U S A ; 117(9): 5039-5048, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32071217

ABSTRACT

Thrombin, a procoagulant protease, cleaves and activates protease-activated receptor-1 (PAR1) to promote inflammatory responses and endothelial dysfunction. In contrast, activated protein C (APC), an anticoagulant protease, activates PAR1 through a distinct cleavage site and promotes anti-inflammatory responses, prosurvival, and endothelial barrier stabilization. The distinct tethered ligands formed through cleavage of PAR1 by thrombin versus APC result in unique active receptor conformations that bias PAR1 signaling. Despite progress in understanding PAR1 biased signaling, the proteins and pathways utilized by thrombin versus APC signaling to induce opposing cellular functions are largely unknown. Here, we report the global phosphoproteome induced by thrombin and APC signaling in endothelial cells with the quantification of 11,266 unique phosphopeptides using multiplexed quantitative mass spectrometry. Our results reveal unique dynamic phosphoproteome profiles of thrombin and APC signaling, an enrichment of associated biological functions, including key modulators of endothelial barrier function, regulators of gene transcription, and specific kinases predicted to mediate PAR1 biased signaling. Using small interfering RNA to deplete a subset of phosphorylated proteins not previously linked to thrombin or APC signaling, a function for afadin and adducin-1 actin binding proteins in thrombin-induced endothelial barrier disruption is unveiled. Afadin depletion resulted in enhanced thrombin-promoted barrier permeability, whereas adducin-1 depletion completely ablated thrombin-induced barrier disruption without compromising p38 signaling. However, loss of adducin-1 blocked APC-induced Akt signaling. These studies define distinct thrombin and APC dynamic signaling profiles and a rich array of proteins and biological pathways that engender PAR1 biased signaling in endothelial cells.


Subject(s)
Proteomics , Receptor, PAR-1/metabolism , Signal Transduction , Thrombin/metabolism , Calmodulin-Binding Proteins , Carrier Proteins , Endothelial Cells/metabolism , Humans , Microfilament Proteins , Phosphorylation , Protein C Inhibitor/metabolism
7.
Genes Dev ; 29(17): 1875-89, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26314710

ABSTRACT

The retinoblastoma tumor suppressor (pRb) protein associates with chromatin and regulates gene expression. Numerous studies have identified Rb-dependent RNA signatures, but the proteomic effects of Rb loss are largely unexplored. We acutely ablated Rb in adult mice and conducted a quantitative analysis of RNA and proteomic changes in the colon and lungs, where Rb(KO) was sufficient or insufficient to induce ectopic proliferation, respectively. As expected, Rb(KO) caused similar increases in classic pRb/E2F-regulated transcripts in both tissues, but, unexpectedly, their protein products increased only in the colon, consistent with its increased proliferative index. Thus, these protein changes induced by Rb loss are coupled with proliferation but uncoupled from transcription. The proteomic changes in common between Rb(KO) tissues showed a striking decrease in proteins with mitochondrial functions. Accordingly, RB1 inactivation in human cells decreased both mitochondrial mass and oxidative phosphorylation (OXPHOS) function. RB(KO) cells showed decreased mitochondrial respiratory capacity and the accumulation of hypopolarized mitochondria. Additionally, RB/Rb loss altered mitochondrial pyruvate oxidation from (13)C-glucose through the TCA cycle in mouse tissues and cultured cells. Consequently, RB(KO) cells have an enhanced sensitivity to mitochondrial stress conditions. In summary, proteomic analyses provide a new perspective on Rb/RB1 mutation, highlighting the importance of pRb for mitochondrial function and suggesting vulnerabilities for treatment.


Subject(s)
Mitochondria/metabolism , Oxidative Phosphorylation , Retinoblastoma Protein/genetics , Animals , Cells, Cultured , Colon/physiopathology , Gene Expression Regulation , Gene Knockout Techniques , Humans , Lung/physiopathology , Mice , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Proteomics , Retinoblastoma Protein/metabolism , Stress, Physiological/genetics , Transcriptome
8.
Mol Cell Proteomics ; 18(5): 968-981, 2019 05.
Article in English | MEDLINE | ID: mdl-30705125

ABSTRACT

Proteolysis is an integral component of life and has been implicated in many disease processes. To improve our understanding of peptidase function, it is imperative to develop tools to uncover substrate specificity and cleavage efficiency. Here, we combine the quantitative power of tandem mass tags (TMTs) with an established peptide cleavage assay to yield quantitative Multiplex Substrate Profiling by Mass Spectrometry (qMSP-MS). This assay was validated with papain, a well-characterized cysteine peptidase, to generate cleavage efficiency values for hydrolysis of 275 unique peptide bonds in parallel. To demonstrate the breath of this assay, we show that qMSP-MS can uncover the substrate specificity of minimally characterized intramembrane rhomboid peptidases, as well as define hundreds of proteolytic activities in complex biological samples, including secretions from lung cancer cell lines. Importantly, our qMSP-MS library uses synthetic peptides whose termini are unmodified, allowing us to characterize not only endo- but also exo-peptidase activity. Each cleaved peptide sequence can be ranked by turnover rate, and the amino acid sequence of the best substrates can be used for designing fluorescent reporter substrates. Discovery of peptide substrates that are selectively cleaved by peptidases which are active at the site of disease highlights the potential for qMSP-MS to guide the development of peptidase-activating drugs for cancer and infectious disease.


Subject(s)
Mass Spectrometry/methods , Peptide Hydrolases/metabolism , Aspergillus/metabolism , Cell Line, Tumor , Fluorescence , Humans , Lung Neoplasms/metabolism , Papain/metabolism , Proteolysis , Reproducibility of Results , Substrate Specificity
9.
Mol Cell Proteomics ; 16(8): 1447-1461, 2017 08.
Article in English | MEDLINE | ID: mdl-28606917

ABSTRACT

The mechanisms by which human immunodeficiency virus (HIV) circumvents and coopts cellular machinery to replicate and persist in cells are not fully understood. HIV accessory proteins play key roles in the HIV life cycle by altering host pathways that are often dependent on post-translational modifications (PTMs). Thus, the identification of HIV accessory protein host targets and their PTM status is critical to fully understand how HIV invades, avoids detection and replicates to spread infection. To date, a comprehensive characterization of HIV accessory protein host targets and modulation of their PTM status does not exist. The significant gap in knowledge regarding the identity and PTMs of HIV host targets is due, in part, to technological limitations. Here, we applied current mass spectrometry techniques to define mechanisms of viral protein action by identifying host proteins whose abundance is affected by the accessory protein Vpr and the corresponding modulation of down-stream signaling pathways, specifically those regulated by phosphorylation. By utilizing a novel, inducible HIV-1 CD4+ T-cell model system expressing either the wild type or a vpr-negative viral genome, we overcame challenges associated with synchronization and infection-levels present in other models. We report identification and abundance dynamics of over 7000 proteins and 28,000 phospho-peptides. Consistent with Vpr's ability to impair cell-cycle progression, we observed Vpr-mediated modulation of spindle and centromere proteins, as well as Aurora kinase A and cyclin-dependent kinase 4 (CDK4). Unexpectedly, we observed evidence of Vpr-mediated modulation of the activity of serine/arginine-rich protein-specific kinases (SRPKs), suggesting a possible role for Vpr in the regulation of RNA splicing. This study presents a new experimental system and provides a data-resource that lays the foundation for validating host proteins and phosphorylation-pathways affected by HIV-1 and its accessory protein Vpr.


Subject(s)
Cell Cycle Proteins/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Host-Pathogen Interactions , Proteomics/methods , vpr Gene Products, Human Immunodeficiency Virus/metabolism , Aurora Kinase A/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cell Cycle Proteins/genetics , Cyclin-Dependent Kinase 4/metabolism , Gene Expression , Gene Ontology , HEK293 Cells , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , HIV-1/physiology , Humans , Jurkat Cells , Phosphorylation , Protein Processing, Post-Translational , RNA Splicing/physiology , Virus Replication , vpr Gene Products, Human Immunodeficiency Virus/genetics
10.
J Infect Dis ; 218(10): 1641-1652, 2018 10 05.
Article in English | MEDLINE | ID: mdl-29868829

ABSTRACT

Background: Streptococcus agalactiae (group B Streptococcus [GBS]) asymptomatically colonizes approximately 20% of adults; however, GBS causes severe disease in susceptible populations, including newborns, pregnant women, and elderly individuals. In shifting between commensal and pathogenic states, GBS reveals multiple mechanisms of virulence factor control. Here we describe a GBS protein that we named "biofilm regulatory protein A" (BrpA) on the basis of its homology with BrpA from Streptococcus mutans. Methods: We coupled phenotypic assays, RNA sequencing, human neutrophil and whole-blood killing assays, and murine infection models to investigate the contribution of BrpA to GBS physiology and virulence. Results: Sequence analysis identified BrpA as a LytR-CpsA-Psr enzyme. Targeted mutagenesis yielded a GBS mutant (ΔbrpA) with normal ultrastructural morphology but a 6-fold increase in chain length, a biofilm defect, and decreased acid tolerance. GBS ΔbrpA stimulated increased neutrophil reactive oxygen species and proved more susceptible to human and murine blood and neutrophil killing. Notably, the wild-type parent outcompeted ΔbrpA GBS in murine sepsis and vaginal colonization models. RNA sequencing of ΔbrpA uncovered multiple differences from the wild-type parent, including pathways of cell wall synthesis and cellular metabolism. Conclusions: We propose that BrpA is an important virulence regulator and potential target for design of novel antibacterial therapeutics against GBS.


Subject(s)
Bacterial Proteins/physiology , Immunity, Innate/immunology , Streptococcus agalactiae/immunology , Streptococcus agalactiae/pathogenicity , Animals , Biofilms , Cell Line , Female , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/physiology , Humans , Mice , Neutrophils/immunology , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcus agalactiae/chemistry , Streptococcus agalactiae/physiology
11.
Diabetologia ; 61(12): 2674, 2018 12.
Article in English | MEDLINE | ID: mdl-30324489

ABSTRACT

Owing to an oversight, the authors omitted to note that Dr Taub is a co-founder of and equity holder in Cardero Therapeutics.

12.
Diabetologia ; 60(10): 2052-2065, 2017 10.
Article in English | MEDLINE | ID: mdl-28770317

ABSTRACT

AIMS/HYPOTHESIS: Mitochondria are important regulators of the metabolic phenotype in type 2 diabetes. A key factor in mitochondrial physiology is the H+-ATP synthase. The expression and activity of its physiological inhibitor, ATPase inhibitory factor 1 (IF1), controls tissue homeostasis, metabolic reprogramming and signalling. We aimed to characterise the putative role of IF1 in mediating skeletal muscle metabolism in obesity and diabetes. METHODS: We examined the 'mitochondrial signature' of obesity and type 2 diabetes in a cohort of 100 metabolically characterised human skeletal muscle biopsy samples. The expression and activity of H+-ATP synthase, IF1 and key mitochondrial proteins were characterised, including their association with BMI, fasting plasma insulin, fasting plasma glucose and HOMA-IR. IF1 was also overexpressed in primary cultures of human myotubes derived from the same biopsies to unveil the possible role played by the pathological inhibition of the H+-ATP synthase in skeletal muscle. RESULTS: The results indicate that type 2 diabetes and obesity act via different mechanisms to impair H+-ATP synthase activity in human skeletal muscle (76% reduction in its catalytic subunit vs 280% increase in IF1 expression, respectively) and unveil a new pathway by which IF1 influences lipid metabolism. Mechanistically, IF1 altered cellular levels of α-ketoglutarate and L-carnitine metabolism in the myotubes of obese (84% of control) and diabetic (76% of control) individuals, leading to limited ß-oxidation of fatty acids (60% of control) and their cytosolic accumulation (164% of control). These events led to enhanced release of TNF-α (10 ± 2 pg/ml, 27 ± 5 pg/ml and 35 ± 4 pg/ml in control, obese and type 2 diabetic participants, respectively), which probably contributes to an insulin resistant phenotype. CONCLUSIONS/INTERPRETATION: Overall, our data highlight IF1 as a novel regulator of lipid metabolism and metabolic disorders, and a possible target for therapeutic intervention.


Subject(s)
Dyslipidemias/metabolism , Insulin Resistance/physiology , Mitochondria, Muscle/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Muscle, Skeletal/metabolism , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Male , Obesity/metabolism , Proteomics
13.
Mol Ther ; 21(4): 775-85, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23164933

ABSTRACT

One of the barriers to successful nonviral gene delivery is the crowded cytoplasm, which plasmids need to actively traverse for gene expression. Relatively little is known about how this process occurs, but our lab and others have shown that the microtubule network and motors are required for plasmid movement to the nucleus. To further investigate how plasmids exploit normal physiological processes to transfect cells, we have taken a proteomics approach to identify the proteins that comprise the plasmid-trafficking complex. We have developed a live cell DNA-protein pull-down assay to isolate complexes at certain time points post-transfection (15 minutes to 4 hours) for analysis by mass spectrometry (MS). Plasmids containing promoter sequences bound hundreds of unique proteins as early as 15 minutes post-electroporation, while a plasmid lacking any eukaryotic sequences failed to bind many of the proteins. Specific proteins included microtubule-based motor proteins (e.g., kinesin and dynein), proteins involved in protein nuclear import (e.g., importin 1, 2, 4, and 7, Crm1, RAN, and several RAN-binding proteins), a number of heterogeneous nuclear ribonucleoprotein (hnRNP)- and mRNA-binding proteins, and transcription factors. The significance of several of the proteins involved in protein nuclear localization and plasmid trafficking was determined by monitoring movement of microinjected fluorescently labeled plasmids via live cell particle tracking in cells following protein knockdown by small-interfering RNA (siRNA) or through the use of specific inhibitors. While importin ß1 was required for plasmid trafficking and subsequent nuclear import, importin α1 played no role in microtubule trafficking but was required for optimal plasmid nuclear import. Surprisingly, the nuclear export protein Crm1 also was found to complex with the transfected plasmids and was necessary for plasmid trafficking along microtubules and nuclear import. Our results show that various proteins involved in nuclear import and export influence intracellular trafficking of plasmids and subsequent nuclear accumulation.


Subject(s)
DNA/metabolism , Proteins/metabolism , Proteomics/methods , Blotting, Western , Cell Line , Cell Line, Tumor , Gene Transfer Techniques , Humans , Mass Spectrometry , Plasmids/genetics , Protein Binding , Tandem Mass Spectrometry
14.
Cell Chem Biol ; 30(10): 1191-1210.e20, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37557181

ABSTRACT

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Histones/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Signal Transduction , Cell Line, Tumor
15.
Microbiology (Reading) ; 158(Pt 8): 2133-2143, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22628481

ABSTRACT

Streptococcus mutans, a causative agent of dental caries in humans, adapts to changing environmental conditions, such as pH, in order to survive and cause disease in the oral cavity. Previously, we have shown that S. mutans increases the proportion of monounsaturated membrane fatty acids as part of its acid-adaptive strategy. Membrane lipids function as carriers of membrane fatty acids and therefore it was hypothesized that lipid backbones themselves could participate in the acid adaptation process. Lipids have been shown to protect other bacterial species from rapid changes in their environment, such as shifts in osmolality and the need for long-term survival. In the present study, we have determined the contribution of cardiolipin (CL) to acid resistance in S. mutans. Two ORFs have been identified in the S. mutans genome that encode presumptive synthetic enzymes for the acidic phospholipids: phosphatidylglycerol (PG) synthase (pgsA, SMU.2151c) and CL synthase (cls, SMU.988), which is responsible for condensing two molecules of PG to create CL. A deletion mutant of the presumptive cls gene was created using PCR-mediated cloning; however, attempts to delete pgsA were unsuccessful, indicating that pgsA may be essential. Loss of the presumptive cls gene resulted in the inability of the mutant strain to produce CL, indicating that SMU.988 encodes CL synthase. The defect in cls rendered the mutant acid sensitive, indicating that CL is required for acid adaptation in S. mutans. Addition of exogenous CL to the mutant strain alleviated acid sensitivity. MS indicated that S. mutans could assimilate exogenous CL into the membrane, halting endogenous CL incorporation. This phenomenon was not due to repression, as a cls gene transcriptional reporter fusion exhibited elevated activity when cells were supplemented with exogenous CL. Lipid analysis, via MS, indicated that CL is a reservoir for monounsaturated fatty acids in S. mutans. We demonstrated that the cls mutant exhibits elevated F-ATPase activity but it is nevertheless unable to maintain the normal membrane proton gradient, indicating cytoplasmic acidification. We conclude that the control of lipid backbone synthesis is part of the acid-adaptive repertoire of S. mutans.


Subject(s)
Acids/metabolism , Cardiolipins/biosynthesis , Streptococcus mutans/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Gene Expression Regulation, Bacterial , Hydrogen-Ion Concentration , Streptococcus mutans/genetics
16.
Sci Rep ; 12(1): 12501, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35864202

ABSTRACT

The synthetic lethal association between BRCA deficiency and poly (ADP-ribose) polymerase (PARP) inhibition supports PARP inhibitor (PARPi) clinical efficacy in BRCA-mutated tumors. PARPis also demonstrate activity in non-BRCA mutated tumors presumably through induction of PARP1-DNA trapping. Despite pronounced clinical response, therapeutic resistance to PARPis inevitably develops. An abundance of knowledge has been built around resistance mechanisms in BRCA-mutated tumors, however, parallel understanding in non-BRCA mutated settings remains insufficient. In this study, we find a strong correlation between the epithelial-mesenchymal transition (EMT) signature and resistance to a clinical PARPi, Talazoparib, in non-BRCA mutated tumor cells. Genetic profiling demonstrates that SNAI2, a master EMT transcription factor, is transcriptionally induced by Talazoparib treatment or PARP1 depletion and this induction is partially responsible for the emerging resistance. Mechanistically, we find that the PARP1 protein directly binds to SNAI2 gene promoter and suppresses its transcription. Talazoparib treatment or PARP1 depletion lifts PARP1-mediated suppression and increases chromatin accessibility around SNAI2 promoters, thus driving SNAI2 transcription and drug resistance. We also find that depletion of the chromatin remodeler CHD1L suppresses SNAI2 expression and reverts acquired resistance to Talazoparib. The PARP1/CHD1L/SNAI2 transcription axis might be therapeutically targeted to re-sensitize Talazoparib in non-BRCA mutated tumors.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Chromatin , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Humans , Neoplasms/genetics , Phthalazines/pharmacology , Phthalazines/therapeutic use , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerases/genetics , Snail Family Transcription Factors/genetics
17.
J Proteome Res ; 10(2): 751-5, 2011 Feb 04.
Article in English | MEDLINE | ID: mdl-21121676

ABSTRACT

Phosphorylation is a ubiquitous protein post-translational modification that is intimately involved in most aspects of cellular regulation. Currently, most proteomic analyses are performed with phosphorylation searches for serine, threonine, and tyrosine modifications, as the phosphorylated residues of histidine and aspartic acid are acid labile and thus undetectable with most proteomic methodologies. Here, we present a novel buffer system to show histidine phosphorylation of NM23-H1, the product of the first identified putative human metastasis suppressor gene (NME1), which catalyzes the transfer of the γ-phosphate from nucleoside triphosphates to nucleoside diphosphates. On the basis of a pH titration of LC elution buffers and MS/MS identification, recombinant NM23-H1 subjected to autophosphorylation was shown to contain phosphorylated histidine at residue 118 at pH 5 and 6, with each level giving over 75% peptide coverage for identification. The solvent system presented permits the detection of all five possible phosphorylation moieties. Application of histidine and aspartic acid phosphorylation modifications to proteomic analyses will significantly advance the understanding of phosphorylation relay signaling in cellular regulation, including elucidation of the role of NM23-H1 in metastasis.


Subject(s)
Histidine/metabolism , NM23 Nucleoside Diphosphate Kinases/metabolism , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Chromatography, Liquid , Histidine/chemistry , Humans , Hydrogen-Ion Concentration , Molecular Sequence Data , NM23 Nucleoside Diphosphate Kinases/chemistry , Phosphorylation , Proteomics/methods , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
18.
Sci Rep ; 11(1): 14736, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34282211

ABSTRACT

During early G1 phase, Rb is exclusively mono-phosphorylated by cyclin D:Cdk4/6, generating 14 different isoforms with specific binding patterns to E2Fs and other cellular protein targets. While mono-phosphorylated Rb is dispensable for early G1 phase progression, interfering with cyclin D:Cdk4/6 kinase activity prevents G1 phase progression, questioning the role of cyclin D:Cdk4/6 in Rb inactivation. To dissect the molecular functions of cyclin D:Cdk4/6 during cell cycle entry, we generated a single cell reporter for Cdk2 activation, RB inactivation and cell cycle entry by CRISPR/Cas9 tagging endogenous p27 with mCherry. Through single cell tracing of Cdk4i cells, we identified a time-sensitive early G1 phase specific Cdk4/6-dependent phosphorylation gradient that regulates cell cycle entry timing and resides between serum-sensing and cyclin E:Cdk2 activation. To reveal the substrate identity of the Cdk4/6 phosphorylation gradient, we performed whole proteomic and phospho-proteomic mass spectrometry, and identified 147 proteins and 82 phospho-peptides that significantly changed due to Cdk4 inhibition in early G1 phase. In summary, we identified novel (non-Rb) cyclin D:Cdk4/6 substrates that connects early G1 phase functions with cyclin E:Cdk2 activation and Rb inactivation by hyper-phosphorylation.


Subject(s)
Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , G1 Phase/physiology , Cell Division , Cells, Cultured , Cyclin D/metabolism , Cyclin E/metabolism , Humans , Oncogene Proteins/metabolism , Phosphorylation , Proteome/metabolism , Proto-Oncogene Proteins/metabolism , Retinoblastoma Protein/metabolism
19.
J Med Chem ; 64(13): 9056-9077, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34110834

ABSTRACT

Control of the cell cycle through selective pharmacological inhibition of CDK4/6 has proven beneficial in the treatment of breast cancer. Extending this level of control to additional cell cycle CDK isoforms represents an opportunity to expand to additional tumor types and potentially provide benefits to patients that develop tumors resistant to selective CDK4/6 inhibitors. However, broad-spectrum CDK inhibitors have a long history of failure due to safety concerns. In this approach, we describe the use of structure-based drug design and Free-Wilson analysis to optimize a series of CDK2/4/6 inhibitors. Further, we detail the use of molecular dynamics simulations to provide insights into the basis for selectivity against CDK9. Based on overall potency, selectivity, and ADME profile, PF-06873600 (22) was identified as a candidate for the treatment of cancer and advanced to phase 1 clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Dogs , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Injections, Intravenous , Mice , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
20.
Cancer Cell ; 39(10): 1404-1421.e11, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34520734

ABSTRACT

The CDK4/6 inhibitor, palbociclib (PAL), significantly improves progression-free survival in HR+/HER2- breast cancer when combined with anti-hormonals. We sought to discover PAL resistance mechanisms in preclinical models and through analysis of clinical transcriptome specimens, which coalesced on induction of MYC oncogene and Cyclin E/CDK2 activity. We propose that targeting the G1 kinases CDK2, CDK4, and CDK6 with a small-molecule overcomes resistance to CDK4/6 inhibition. We describe the pharmacodynamics and efficacy of PF-06873600 (PF3600), a pyridopyrimidine with potent inhibition of CDK2/4/6 activity and efficacy in multiple in vivo tumor models. Together with the clinical analysis, MYC activity predicts (PF3600) efficacy across multiple cell lineages. Finally, we find that CDK2/4/6 inhibition does not compromise tumor-specific immune checkpoint blockade responses in syngeneic models. We anticipate that (PF3600), currently in phase 1 clinical trials, offers a therapeutic option to cancer patients in whom CDK4/6 inhibition is insufficient to alter disease progression.


Subject(s)
Cell Cycle/drug effects , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Neoplasms/drug therapy , Female , Humans , Male , Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL