Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Nat Immunol ; 25(7): 1245-1256, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38886592

ABSTRACT

Human immunodeficiency virus (HIV) cure efforts are increasingly focused on harnessing CD8+ T cell functions, which requires a deeper understanding of CD8+ T cells promoting HIV control. Here we identifiy an antigen-responsive TOXhiTCF1+CD39+CD8+ T cell population with high expression of inhibitory receptors and low expression of canonical cytolytic molecules. Transcriptional analysis of simian immunodeficiency virus (SIV)-specific CD8+ T cells and proteomic analysis of purified CD8+ T cell subsets identified TOXhiTCF1+CD39+CD8+ T cells as intermediate effectors that retained stem-like features with a lineage relationship with terminal effector T cells. TOXhiTCF1+CD39+CD8+ T cells were found at higher frequency than TCF1-CD39+CD8+ T cells in follicular microenvironments and were preferentially located in proximity of SIV-RNA+ cells. Their frequency was associated with reduced plasma viremia and lower SIV reservoir size. Highly similar TOXhiTCF1+CD39+CD8+ T cells were detected in lymph nodes from antiretroviral therapy-naive and antiretroviral therapy-suppressed people living with HIV, suggesting this population of CD8+ T cells contributes to limiting SIV and HIV persistence.


Subject(s)
CD8-Positive T-Lymphocytes , Lymph Nodes , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Simian Immunodeficiency Virus/immunology , CD8-Positive T-Lymphocytes/immunology , Animals , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Lymph Nodes/immunology , Humans , Macaca mulatta , HIV Infections/immunology , HIV Infections/virology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
2.
Nat Immunol ; 22(11): 1452-1464, 2021 11.
Article in English | MEDLINE | ID: mdl-34611361

ABSTRACT

There is limited understanding of the viral antibody fingerprint following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children. Herein, SARS-CoV-2 proteome-wide immunoprofiling of children with mild/moderate or severe coronavirus disease 2019 (COVID-19) versus multisystem inflammatory syndrome in children versus hospitalized control patients revealed differential cytokine responses, IgM/IgG/IgA epitope diversity, antibody binding and avidity. Apart from spike and nucleocapsid, IgG/IgA recognized epitopes in nonstructural protein (NSP) 2, NSP3, NSP12-NSP14 and open reading frame (ORF) 3a-ORF9. Peptides representing epitopes in NSP12, ORF3a and ORF8 demonstrated SARS-CoV-2 serodiagnosis. Antibody-binding kinetics with 24 SARS-CoV-2 proteins revealed antibody parameters that distinguish children with mild/moderate versus severe COVID-19 or multisystem inflammatory syndrome in children. Antibody avidity to prefusion spike correlated with decreased illness severity and served as a clinical disease indicator. The fusion peptide and heptad repeat 2 region induced SARS-CoV-2-neutralizing antibodies in rabbits. Thus, we identified SARS-CoV-2 antibody signatures in children associated with disease severity and delineate promising serodiagnostic and virus neutralization targets. These findings might guide the design of serodiagnostic assays, prognostic algorithms, therapeutics and vaccines in this important but understudied population.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/complications , COVID-19/immunology , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , Adolescent , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19/diagnosis , Child , Child, Preschool , Disease Progression , Epitopes/metabolism , Female , Hospitalization , Humans , Immunity, Humoral , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Male , Prognosis , Proteome , Severity of Illness Index , Systemic Inflammatory Response Syndrome/diagnosis
3.
J Virol ; 98(5): e0019424, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38567950

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10× Genomics Chromium single-cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human monocyte-derived dendritic cells infected with ZIKV at the single-cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN-dependent and -independent genes (the antiviral module). We modeled the ZIKV-specific antiviral state at the protein level, leveraging experimentally derived protein interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per-cell basis with experimental protein interaction data. IMPORTANCE: Zika virus (ZIKV) remains a public health threat given its potential for re-emergence and the detrimental fetal outcomes associated with infection during pregnancy. Understanding the dynamics between ZIKV and its host is critical to understanding ZIKV pathogenesis. Through ZIKV-inclusive single-cell RNA sequencing (scRNA-seq), we demonstrate on the single-cell level the dynamic interplay between ZIKV and the host: the transcriptional program that restricts viral infection and ZIKV-mediated inhibition of that response. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool for gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.


Subject(s)
Dendritic Cells , Single-Cell Analysis , Zika Virus Infection , Zika Virus , Humans , Zika Virus/physiology , Zika Virus Infection/virology , Zika Virus Infection/immunology , Dendritic Cells/virology , Dendritic Cells/immunology , RNA, Viral/metabolism , RNA, Viral/genetics , Interferon Type I/metabolism , Host-Pathogen Interactions , Sequence Analysis, RNA
4.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34088793

ABSTRACT

Low plasma arginine bioavailability has been implicated in endothelial dysfunction and immune dysregulation. The role of arginine in COVID-19 is unknown, but could contribute to cellular damage if low. Our objective was to determine arginine bioavailability in adults and children with COVID-19 vs. healthy controls. We hypothesized that arginine bioavailability would be low in patients with COVID-19 and multisystem inflammatory syndrome in children (MIS-C). We conducted a prospective observational study of three patient cohorts; arginine bioavailability was determined in asymptomatic healthy controls, adults hospitalized with COVID-19, and hospitalized children/adolescents <21 y old with COVID-19, MIS-C, or asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection identified on admission screen. Mean patient plasma amino acids were compared to controls using the Student's t test. Arginine-to-ornithine ratio, a biomarker of arginase activity, and global arginine bioavailability ratio (GABR, arginine/[ornithine+citrulline]) were assessed in all three groups. A total of 80 patients were included (28 controls, 32 adults with COVID-19, and 20 pediatric patients with COVID-19/MIS-C). Mean plasma arginine and arginine bioavailability ratios were lower among adult and pediatric patients with COVID-19/MIS-C compared to controls. There was no difference between arginine bioavailability in children with COVID-19 vs. MIS-C. Adults and children with COVID-19 and MIS-C in our cohort had low arginine bioavailability compared to healthy adult controls. This may contribute to immune dysregulation and endothelial dysfunction in COVID-19. Low arginine-to-ornithine ratio in patients with COVID-19 or MIS-C suggests an elevation of arginase activity. Further study is merited to explore the role of arginine dysregulation in COVID-19.


Subject(s)
Amino Acids/blood , COVID-19/blood , Hospitalization , SARS-CoV-2/metabolism , Adult , COVID-19/therapy , Female , Humans , Male , Middle Aged , Retrospective Studies
5.
J Infect Dis ; 227(1): 50-60, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36281651

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is a leading viral respiratory pathogen in infants. The objective of this study was to generate RSV live-attenuated vaccine (LAV) candidates by removing the G-protein mucin domains to attenuate viral replication while retaining immunogenicity through deshielding of surface epitopes. METHODS: Two LAV candidates were generated from recombinant RSV A2-line19F by deletion of the G-protein mucin domains (A2-line19F-G155) or deletion of the G-protein mucin and transmembrane domains (A2-line19F-G155S). Vaccine attenuation was measured in BALB/c mouse lungs by fluorescent focus unit (FFU) assays and real-time polymerase chain reaction (RT-PCR). Immunogenicity was determined by measuring serum binding and neutralizing antibodies in mice following prime/boost on days 28 and 59. Efficacy was determined by measuring RSV lung viral loads on day 4 postchallenge. RESULTS: Both LAVs were undetectable in mouse lungs by FFU assay and elicited similar neutralizing antibody titers compared to A2-line19F on days 28 and 59. Following RSV challenge, vaccinated mice showed no detectable RSV in the lungs by FFU assay and a significant reduction in RSV RNA in the lungs by RT-PCR of 560-fold for A2-line19F-G155 and 604-fold for A2-line19F-G155S compared to RSV-challenged, unvaccinated mice. CONCLUSIONS: Removal of the G-protein mucin domains produced RSV LAV candidates that were highly attenuated with retained immunogenicity.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Animals , Mice , Vaccines, Attenuated , Mucins , Mice, Inbred BALB C , Respiratory Syncytial Virus, Human/genetics , Antibodies, Neutralizing , GTP-Binding Proteins , Antibodies, Viral , Viral Fusion Proteins/genetics
6.
Proc Natl Acad Sci U S A ; 116(8): 3183-3192, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30723152

ABSTRACT

The positioning of chromosomes in the nucleus of a eukaryotic cell is highly organized and has a complex and dynamic relationship with gene expression. In the human malaria parasite Plasmodium falciparum, the clustering of a family of virulence genes correlates with their coordinated silencing and has a strong influence on the overall organization of the genome. To identify conserved and species-specific principles of genome organization, we performed Hi-C experiments and generated 3D genome models for five Plasmodium species and two related apicomplexan parasites. Plasmodium species mainly showed clustering of centromeres, telomeres, and virulence genes. In P. falciparum, the heterochromatic virulence gene cluster had a strong repressive effect on the surrounding nuclear space, while this was less pronounced in Plasmodium vivax and Plasmodium berghei, and absent in Plasmodium yoelii In Plasmodium knowlesi, telomeres and virulence genes were more dispersed throughout the nucleus, but its 3D genome showed a strong correlation with gene expression. The Babesia microti genome showed a classical Rabl organization with colocalization of subtelomeric virulence genes, while the Toxoplasma gondii genome was dominated by clustering of the centromeres and lacked virulence gene clustering. Collectively, our results demonstrate that spatial genome organization in most Plasmodium species is constrained by the colocalization of virulence genes. P. falciparum and P. knowlesi, the only two Plasmodium species with gene families involved in antigenic variation, are unique in the effect of these genes on chromosome folding, indicating a potential link between genome organization and gene expression in more virulent pathogens.


Subject(s)
Genome, Protozoan/genetics , Heterochromatin/genetics , Malaria, Falciparum/genetics , Plasmodium falciparum/genetics , Animals , Centromere/genetics , Gene Expression Regulation/genetics , Genomics , Humans , Malaria, Falciparum/parasitology , Plasmodium berghei/genetics , Plasmodium berghei/pathogenicity , Plasmodium falciparum/pathogenicity , Plasmodium knowlesi/genetics , Plasmodium knowlesi/pathogenicity , Plasmodium vivax/genetics , Plasmodium vivax/pathogenicity , Telomere/genetics , Toxoplasma/genetics , Toxoplasma/pathogenicity
7.
PLoS Pathog ; 15(9): e1007974, 2019 09.
Article in English | MEDLINE | ID: mdl-31536608

ABSTRACT

Plasmodium relapses are attributed to the activation of dormant liver-stage parasites and are responsible for a significant number of recurring malaria blood-stage infections. While characteristic of human infections caused by P. vivax and P. ovale, their relative contribution to malaria disease burden and transmission remains poorly understood. This is largely because it is difficult to identify 'bona fide' relapse infections due to ongoing transmission in most endemic areas. Here, we use the P. cynomolgi-rhesus macaque model of relapsing malaria to demonstrate that clinical immunity can form after a single sporozoite-initiated blood-stage infection and prevent illness during relapses and homologous reinfections. By integrating data from whole blood RNA-sequencing, flow cytometry, P. cynomolgi-specific ELISAs, and opsonic phagocytosis assays, we demonstrate that this immunity is associated with a rapid recall response by memory B cells that expand and produce anti-parasite IgG1 that can mediate parasite clearance of relapsing parasites. The reduction in parasitemia during relapses was mirrored by a reduction in the total number of circulating gametocytes, but importantly, the cumulative proportion of gametocytes increased during relapses. Overall, this study reveals that P. cynomolgi relapse infections can be clinically silent in macaques due to rapid memory B cell responses that help to clear asexual-stage parasites but still carry gametocytes.


Subject(s)
Immunity, Humoral , Malaria/immunology , Malaria/parasitology , Plasmodium cynomolgi/immunology , Plasmodium cynomolgi/pathogenicity , Animals , Antibodies, Protozoan/blood , B-Lymphocytes/immunology , Gene Expression Profiling , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Immunity, Humoral/genetics , Immunoglobulin G/blood , Immunologic Memory/genetics , Macaca mulatta , Malaria/genetics , Malaria, Vivax/genetics , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Male , Parasitemia/genetics , Parasitemia/immunology , Parasitemia/parasitology , Plasmodium vivax/immunology , Plasmodium vivax/pathogenicity , Recurrence , Sporozoites/immunology , Sporozoites/pathogenicity
8.
Malar J ; 20(1): 486, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34969401

ABSTRACT

BACKGROUND: Kra monkeys (Macaca fascicularis), a natural host of Plasmodium knowlesi, control parasitaemia caused by this parasite species and escape death without treatment. Knowledge of the disease progression and resilience in kra monkeys will aid the effective use of this species to study mechanisms of resilience to malaria. This longitudinal study aimed to define clinical, physiological and pathological changes in kra monkeys infected with P. knowlesi, which could explain their resilient phenotype. METHODS: Kra monkeys (n = 15, male, young adults) were infected intravenously with cryopreserved P. knowlesi sporozoites and the resulting parasitaemias were monitored daily. Complete blood counts, reticulocyte counts, blood chemistry and physiological telemetry data (n = 7) were acquired as described prior to infection to establish baseline values and then daily after inoculation for up to 50 days. Bone marrow aspirates, plasma samples, and 22 tissue samples were collected at specific time points to evaluate longitudinal clinical, physiological and pathological effects of P. knowlesi infections during acute and chronic infections. RESULTS: As expected, the kra monkeys controlled acute infections and remained with low-level, persistent parasitaemias without anti-malarial intervention. Unexpectedly, early in the infection, fevers developed, which ultimately returned to baseline, as well as mild to moderate thrombocytopenia, and moderate to severe anaemia. Mathematical modelling and the reticulocyte production index indicated that the anaemia was largely due to the removal of uninfected erythrocytes and not impaired production of erythrocytes. Mild tissue damage was observed, and tissue parasite load was associated with tissue damage even though parasite accumulation in the tissues was generally low. CONCLUSIONS: Kra monkeys experimentally infected with P. knowlesi sporozoites presented with multiple clinical signs of malaria that varied in severity among individuals. Overall, the animals shared common mechanisms of resilience characterized by controlling parasitaemia 3-5 days after patency, and controlling fever, coupled with physiological and bone marrow responses to compensate for anaemia. Together, these responses likely minimized tissue damage while supporting the establishment of chronic infections, which may be important for transmission in natural endemic settings. These results provide new foundational insights into malaria pathogenesis and resilience in kra monkeys, which may improve understanding of human infections.


Subject(s)
Disease Resistance , Macaca fascicularis , Malaria/veterinary , Monkey Diseases/parasitology , Parasitemia/veterinary , Plasmodium knowlesi/physiology , Animals , Longitudinal Studies , Malaria/parasitology , Male , Parasitemia/parasitology
9.
Malar J ; 16(1): 384, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28938907

ABSTRACT

BACKGROUND: Mild to severe anaemia is a common complication of malaria that is caused in part by insufficient erythropoiesis in the bone marrow. This study used systems biology to evaluate the transcriptional and alterations in cell populations in the bone marrow during Plasmodium cynomolgi infection of rhesus macaques (a model of Plasmodium vivax malaria) that may affect erythropoiesis. RESULTS: An appropriate erythropoietic response did not occur to compensate for anaemia during acute cynomolgi malaria despite an increase in erythropoietin levels. During this period, there were significant perturbations in the bone marrow transcriptome. In contrast, relapses did not induce anaemia and minimal changes in the bone marrow transcriptome were detected. The differentially expressed genes during acute infection were primarily related to ongoing inflammatory responses with significant contributions from Type I and Type II Interferon transcriptional signatures. These were associated with increased frequency of intermediate and non-classical monocytes. Recruitment and/or expansion of these populations was correlated with a decrease in the erythroid progenitor population during acute infection, suggesting that monocyte-associated inflammation may have contributed to anaemia. The decrease in erythroid progenitors was associated with downregulation of genes regulated by GATA1 and GATA2, two master regulators of erythropoiesis, providing a potential molecular basis for these findings. CONCLUSIONS: These data suggest the possibility that malarial anaemia may be driven by monocyte-associated disruption of GATA1/GATA2 function in erythroid progenitors resulting in insufficient erythropoiesis during acute infection.


Subject(s)
Bone Marrow/physiopathology , Erythropoiesis/immunology , Malaria, Vivax/physiopathology , Malaria/physiopathology , Monocytes/immunology , Plasmodium cynomolgi/physiology , Animals , Bone Marrow/parasitology , Humans , Macaca mulatta , Malaria/parasitology , Malaria, Vivax/parasitology , Male , Models, Animal , Monocytes/parasitology
10.
Malar J ; 16(1): 486, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29202752

ABSTRACT

After publication of the article [1], it was brought to our attention that several symbols were missing from Fig. 1, including some cited in the figure's key. The correct version of the figure is shown below and has now been updated in the original article.

12.
Malar J ; 14: 110, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25880967

ABSTRACT

BACKGROUND: Plasmodium knowlesi is one of five Plasmodium species known to cause malaria in humans and can result in severe illness and death. While a zoonosis in humans, this simian malaria parasite species infects macaque monkeys and serves as an experimental model for in vivo, ex vivo and in vitro studies. It has underpinned malaria discoveries relating to host-pathogen interactions, the immune response and immune evasion strategies. This study investigated differences in P. knowlesi gene expression in samples from ex vivo and in vitro cultures. METHODS: Gene expression profiles were generated using microarrays to compare the stage-specific transcripts detected for a clone of P. knowlesi propagated in the blood of a rhesus macaque host and then grown in an ex-vivo culture, and the same clone adapted to long-term in vitro culture. Parasite samples covering one blood-stage cycle were analysed at four-hour intervals. cDNA was generated and hybridized to an oligoarray representing the P. knowlesi genome. Two replicate experiments were developed from in vitro cultures. Expression values were filtered, normalized, and analysed using R and Perl language and applied to a sine wave model to determine changes in equilibrium and amplitude. Differentially expressed genes from ex vivo and in vitro time points were detected using limma R/Bioconductor and gene set enrichment analysis (GSEA). RESULTS: Major differences were noted between the ex vivo and in vitro time courses in overall gene expression and the length of the cycle (25.5 hours ex vivo; 33.5 hours in vitro). GSEA of genes up-regulated ex vivo showed an enrichment of various genes including SICAvar, ribosomal- associated and histone acetylation pathway genes. In contrast, certain genes involved in metabolism and cell growth, such as porphobilinogen deaminase and tyrosine phosphatase, and one SICAvar gene, were significantly up-regulated in vitro. CONCLUSIONS: This study demonstrates how gene expression in P. knowlesi blood-stage parasites can differ dramatically depending on whether the parasites are grown in vivo, with only one cycle of development ex vivo, or as an adapted isolate in long-term in vitro culture. These data bring emphasis to the importance of studying the parasite, its biology and disease manifestations in the context of the host.


Subject(s)
Erythrocytes/parasitology , Host-Parasite Interactions/genetics , Plasmodium knowlesi/genetics , Plasmodium knowlesi/pathogenicity , Protozoan Proteins , Animals , DNA, Protozoan/genetics , DNA, Protozoan/metabolism , Gene Expression/genetics , Gene Expression Profiling , Macaca mulatta , Oligonucleotide Array Sequence Analysis , Plasmodium knowlesi/metabolism , Protozoan Proteins/analysis , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
13.
J Proteomics ; 302: 105197, 2024 06 30.
Article in English | MEDLINE | ID: mdl-38759952

ABSTRACT

The emerging malaria parasite Plasmodium knowlesi threatens the goal of worldwide malaria elimination due to its zoonotic spread in Southeast Asia. After brief ex-vivo culture we used 2D LC/MS/MS to examine the early and late ring stages of infected Macaca mulatta red blood cells harboring P. knowlesi. The M. mulatta clathrin heavy chain and T-cell and macrophage inhibitor ERMAP were overexpressed in the early ring stage; glutaredoxin 3 was overexpressed in the late ring stage; GO term differential enrichments included response to oxidative stress and the cortical cytoskeleton in the early ring stage. P. knowlesi clathrin heavy chain and 60S acidic ribosomal protein P2 were overexpressed in the late ring stage; GO term differential enrichments included vacuoles in the early ring stage, ribosomes and translation in the late ring stage, and Golgi- and COPI-coated vesicles, proteasomes, nucleosomes, vacuoles, ion-, peptide-, protein-, nucleocytoplasmic- and RNA-transport, antioxidant activity and glycolysis in both stages. SIGNIFICANCE: Due to its zoonotic spread, cases of the emerging human pathogen Plasmodium knowlesi in southeast Asia, and particularly in Malaysia, threaten regional and worldwide goals for malaria elimination. Infection by this parasite can be fatal to humans, and can be associated with significant morbidity. Due to zoonotic transmission from large macaque reservoirs that are untreatable by drugs, and outdoor biting mosquito vectors that negate use of preventive measures such as bed nets, its containment remains a challenge. Its biology remains incompletely understood. Thus we examine the expressed proteome of the early and late ex-vivo cultured ring stages, the first intraerythrocyte developmental stages after infection of host rhesus macaque erythrocytes. We used GO term enrichment strategies and differential protein expression to compare early and late ring stages. The early ring stage is characterized by the enrichment of P. knowlesi vacuoles, and overexpression of the M. mulatta clathrin heavy chain, important for clathrin-coated pits and vesicles, and clathrin-mediated endocytosis. The M. mulatta protein ERMAP was also overexpressed in the early ring stage, suggesting a potential role in early ring stage inhibition of T-cells and macrophages responding to P. knowlesi infection of reticulocytes. This could allow expansion of the host P. knowlesi cellular niche, allowing parasite adaptation to invasion of a wider age range of RBCs than the preferred young RBCs or reticulocytes, resulting in proliferation and increased pathogenesis in infected humans. Other GO terms differentially enriched in the early ring stage include the M. mulatta cortical cytoskeleton and response to oxidative stress. The late ring stage is characterized by overexpression of the P. knowlesi clathrin heavy chain. Combined with late ring stage GO term enrichment of Golgi-associated and coated vesicles, and enrichment of COPI-coated vesicles in both stages, this suggests the importance to P. knowlesi biology of clathrin-mediated endocytosis. P. knowlesi ribosomes and translation were also differentially enriched in the late ring stage. With expression of a variety of heat shock proteins, these results suggest production of folded parasite proteins is increasing by the late ring stage. M. mulatta endocytosis was differentially enriched in the late ring stage, as were clathrin-coated vesicles and endocytic vesicles. This suggests that M. mulatta clathrin-based endocytosis, perhaps in infected reticulocytes rather than mature RBC, may be an important process in the late ring stage. Additional ring stage biology from enriched GO terms includes M. mulatta proteasomes, protein folding and the chaperonin-containing T complex, actin and cortical actin cytoskeletons. P knowlesi biology also includes proteasomes, as well as nucleosomes, antioxidant activity, a variety of transport processes, glycolysis, vacuoles and protein folding. Mature RBCs have lost internal organelles, suggesting infection here may involve immature reticulocytes still retaining organelles. P. knowlesi parasite proteasomes and translational machinery may be ring stage drug targets for known selective inhibitors of these processes in other Plasmodium species. To our knowledge this is the first examination of more than one timepoint within the ring stage. Our results expand knowledge of both host and parasite proteins, pathways and organelles underlying P. knowlesi ring stage biology.


Subject(s)
Erythrocytes , Macaca mulatta , Plasmodium knowlesi , Proteome , Plasmodium knowlesi/metabolism , Animals , Erythrocytes/parasitology , Erythrocytes/metabolism , Proteome/metabolism , Protozoan Proteins/metabolism , Malaria/parasitology , Malaria/metabolism , Malaria/transmission , Humans , Host-Parasite Interactions
14.
bioRxiv ; 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38293140

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10x Genomics Chromium single cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human moDCs infected with ZIKV at the single cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN dependent and independent genes (antiviral module). We modeled the ZIKV specific antiviral state at the protein level leveraging experimentally derived protein-interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per cell basis with experimental protein interaction data. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool to gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.

15.
bioRxiv ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39211190

ABSTRACT

Waning immunity and the emergence of immune evasive SARS-CoV-2 variants jeopardize vaccine efficacy leading to breakthrough infections. We have previously shown that innate immune cells play a critical role in controlling SARS-CoV-2. To investigate the innate immune response during breakthrough infections, we modeled breakthrough infections by challenging low-dose vaccinated mice with a vaccine-mismatched SARS-CoV-2 Beta variant. We found that low-dose vaccinated infected mice had a 2-log reduction in lung viral burden, but increased immune cell infiltration in the lung parenchyma, characterized by monocytes, monocyte-derived macrophages, and eosinophils. Single cell RNA-seq revealed viral RNA was highly associated with eosinophils that corresponded to a unique IFN-γ biased signature. Antibody-mediated depletion of eosinophils in vaccinated mice resulted in increased virus replication and dissemination in the lungs, demonstrating that eosinophils in the lungs are protective during SARS-CoV-2 breakthrough infections. These results highlight the critical role for the innate immune response in vaccine mediated protection against SARS-CoV-2.

16.
bioRxiv ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39109178

ABSTRACT

The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (ß-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other ß-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines. One of these S2-directed mAbs, CC40.8, has demonstrated protective efficacy in small animal models against SARS-CoV-2 challenge. As the next step in the pre-clinical testing of S2-directed antibodies as a strategy to protect from SARS-CoV-2 infection, we evaluated the in vivo efficacy of CC40.8 in a clinically relevant non-human primate model by conducting passive antibody transfer to rhesus macaques (RM) followed by SARS-CoV-2 challenge. CC40.8 mAb was intravenously infused at 10mg/kg, 1mg/kg, or 0.1 mg/kg into groups (n=6) of RM, alongside one group that received a control antibody (PGT121). Viral loads in the lower airway were significantly reduced in animals receiving higher doses of CC40.8. We observed a significant reduction in inflammatory cytokines and macrophages within the lower airway of animals infused with 10mg/kg and 1mg/kg doses of CC40.8. Viral genome sequencing demonstrated a lack of escape mutations in the CC40.8 epitope. Collectively, these data demonstrate the protective efficiency of broadly neutralizing S2-targeting antibodies against SARS-CoV-2 infection within the lower airway while providing critical preclinical work necessary for the development of pan-ß-CoV vaccines.

17.
Mol Microbiol ; 84(5): 816-31, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22537295

ABSTRACT

Plasmodium vivax and P. cynomolgi produce numerous caveola-vesicle complex (CVC) structures within the surface of the infected erythrocyte membrane. These contrast with the electron-dense knob protrusions expressed at the surface of Plasmodium falciparum-infected erythrocytes. Here we investigate the three-dimensional (3-D) structure of the CVCs and the identity of a predominantly expressed 95 kDa CVC protein. Liquid chromatography - tandem mass spectrometry analysis of immunoprecipitates by monoclonal antibodies from P. cynomolgi extracts identified this protein as a member of the Plasmodium helical interspersed subtelomeric (PHIST) superfamily with a calculated mass of 81 kDa. We named the orthologous proteins PvPHIST/CVC-81(95) and PcyPHIST/CVC-81(95) , analysed their structural features, including a PEXEL motif, repeated sequences and a C-terminal PHIST domain, and show that PHIST/CVC-81(95) is most highly expressed in trophozoites. We generated images of CVCs in 3-D using electron tomography (ET), and used immuno-ET to show PHIST/CVC-81(95) localizes to the cytoplasmic side of the CVC tubular extensions. Targeted gene disruptions were attempted in vivo. The pcyphist/cvc-81(95) gene was not disrupted, but parasites containing episomes with the tgdhfr selection cassette were retrieved by selection with pyrimethamine. This suggests that PHIST/CVC-81(95) is essential for survival of these malaria parasites.


Subject(s)
Caveolae/chemistry , Erythrocytes/parasitology , Plasmodium cynomolgi/chemistry , Plasmodium vivax/chemistry , Protozoan Proteins/analysis , Protozoan Proteins/chemistry , Chromatography, Liquid , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Electron Microscope Tomography , Gene Expression Profiling , Gene Knockout Techniques , Genes, Essential , Humans , Imaging, Three-Dimensional , Microscopy, Immunoelectron , Molecular Sequence Data , Molecular Weight , Protein Structure, Tertiary , Sequence Analysis, DNA , Tandem Mass Spectrometry
18.
Front Cell Infect Microbiol ; 12: 1058926, 2022.
Article in English | MEDLINE | ID: mdl-36710962

ABSTRACT

Previous studies have suggested that a relationship exists between severity and transmissibility of malaria and variations in the gut microbiome, yet only limited information exists on the temporal dynamics of the gut microbial community during a malarial infection. Here, using a rhesus macaque model of relapsing malaria, we investigate how malaria affects the gut microbiome. In this study, we performed 16S sequencing on DNA isolated from rectal swabs of rhesus macaques over the course of an experimental malarial infection with Plasmodium cynomolgi and analyzed gut bacterial taxa abundance across primary and relapsing infections. We also performed metabolomics on blood plasma from the animals at the same timepoints and investigated changes in metabolic pathways over time. Members of Proteobacteria (family Helicobacteraceae) increased dramatically in relative abundance in the animal's gut microbiome during peak infection while Firmicutes (family Lactobacillaceae and Ruminococcaceae), Bacteroidetes (family Prevotellaceae) and Spirochaetes amongst others decreased compared to baseline levels. Alpha diversity metrics indicated decreased microbiome diversity at the peak of parasitemia, followed by restoration of diversity post-treatment. Comparison with healthy subjects suggested that the rectal microbiome during acute malaria is enriched with commensal bacteria typically found in the healthy animal's mucosa. Significant changes in the tryptophan-kynurenine immunomodulatory pathway were detected at peak infection with P. cynomolgi, a finding that has been described previously in the context of P. vivax infections in humans. During relapses, which have been shown to be associated with less inflammation and clinical severity, we observed minimal disruption to the gut microbiome, despite parasites being present. Altogether, these data suggest that the metabolic shift occurring during acute infection is associated with a concomitant shift in the gut microbiome, which is reversed post-treatment.


Subject(s)
Gastrointestinal Microbiome , Malaria, Vivax , Malaria , Plasmodium cynomolgi , Animals , Humans , Macaca mulatta/genetics , Macaca mulatta/metabolism , Malaria/parasitology , Malaria, Vivax/parasitology , Plasmodium cynomolgi/genetics , Plasmodium cynomolgi/metabolism , Bacteria/genetics , RNA, Ribosomal, 16S/genetics
19.
JCI Insight ; 7(4)2022 02 22.
Article in English | MEDLINE | ID: mdl-35044955

ABSTRACT

Why multisystem inflammatory syndrome in children (MIS-C) develops after SARS-CoV-2 infection in a subset of children is unknown. We hypothesized that aberrant virus-specific T cell responses contribute to MIS-C pathogenesis. We quantified SARS-CoV-2-reactive T cells, serologic responses against major viral proteins, and cytokine responses from plasma and peripheral blood mononuclear cells in children with convalescent COVID-19, in children with acute MIS-C, and in healthy controls. Children with MIS-C had significantly lower virus-specific CD4+ and CD8+ T cell responses to major SARS-CoV-2 antigens compared with children convalescing from COVID-19. Furthermore, T cell responses in participants with MIS-C were similar to or lower than those in healthy controls. Serologic responses against spike receptor binding domain (RBD), full-length spike, and nucleocapsid were similar among convalescent COVID-19 and MIS-C, suggesting functional B cell responses. Cytokine profiling demonstrated predominant Th1 polarization of CD4+ T cells from children with convalescent COVID-19 and MIS-C, although cytokine production was reduced in MIS-C. Our findings support a role for constrained induction of anti-SARS-CoV-2-specific T cells in the pathogenesis of MIS-C.


Subject(s)
COVID-19/complications , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , Adolescent , COVID-19/immunology , Child , Child, Preschool , Female , Humans , Male
20.
Open Forum Infect Dis ; 9(3): ofac070, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35237703

ABSTRACT

BACKGROUND: The serologic and cytokine responses of children hospitalized with multisystem inflammatory syndrome (MIS-C) vs coronavirus disease 2019 (COVID-19) are poorly understood. METHODS: We performed a prospective, multicenter, cross-sectional study of hospitalized children who met the Centers for Disease Control and Prevention case definition for MIS-C (n = 118), acute COVID-19 (n = 88), or contemporaneous healthy controls (n = 24). We measured severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor-binding domain (RBD) immunoglobulin G (IgG) titers and cytokine concentrations in patients and performed multivariable analysis to determine cytokine signatures associated with MIS-C. We also measured nucleocapsid IgG and convalescent RBD IgG in subsets of patients. RESULTS: Children with MIS-C had significantly higher SARS-CoV-2 RBD IgG than children with acute COVID-19 (median, 2783 vs 146; P < .001), and titers correlated with nucleocapsid IgG. For patients with MIS-C, RBD IgG titers declined in convalescence (median, 2783 vs 1135; P = .010) in contrast to patients with COVID-19 (median, 146 vs 4795; P < .001). MIS-C was characterized by transient acute proinflammatory hypercytokinemia, including elevated levels of interleukin (IL) 6, IL-10, IL-17A, and interferon gamma (IFN-γ). Elevation of at least 3 of these cytokines was associated with significantly increased prevalence of prolonged hospitalization ≥8 days (prevalence ratio, 3.29 [95% CI, 1.17-9.23]). CONCLUSIONS: MIS-C was associated with high titers of SARS-CoV-2 RBD IgG antibodies and acute hypercytokinemia with IL-6, IL-10, IL-17A, and IFN-γ.

SELECTION OF CITATIONS
SEARCH DETAIL