Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Cell ; 167(3): 750-762.e14, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27768894

ABSTRACT

Cannabinoid receptor 1 (CB1) is the principal target of Δ9-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use. CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study. The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding. In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids. This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.


Subject(s)
Cannabinoid Receptor Antagonists/chemistry , Morpholines/chemistry , Pyrazoles/chemistry , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/chemistry , Binding Sites , Cannabinoids/pharmacology , Cannabis/chemistry , Crystallography, X-Ray , Dronabinol/pharmacology , Endocannabinoids/pharmacology , Humans , Ligands , Morpholines/chemical synthesis , Protein Binding , Protein Conformation, alpha-Helical , Pyrazoles/chemical synthesis
2.
J Pharmacol Exp Ther ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858091

ABSTRACT

Δ9-tetrahydrocannabinol (THC) is a psychoactive phytocannabinoid found in the Cannabis sativa plant. THC is primarily metabolized into 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (COOH-THC), that may themselves be psychoactive. There is very little research-based evidence concerning the pharmacokinetics and pharmacodynamics of 11-OH-THC as an individual compound. Male C57BL/6 mice were treated with THC or 11-OH-THC via i.p injection, tail vein i.v injection, or oral gavage (p.o), and whole blood compound levels were measured to determine pharmacokinetic parameters (Cmax, Tmax, t1/2, AUC, Vd, ClS, k and F) while also monitoring changes in catalepsy, body temperature, and nociception. 11-OH-THC achieved Tmax at 30 min for all routes of administration. The maximum concentration at 30 min was not different between i.v. and i.p. routes, but the p.o. Cmax was significantly lower. THC had a 10 min time to the maximum concentration - which was the first blood collection time point - for i.v. and i.p., and 60 min for p.o. with a lower Cmax for i.p. and p o. compared to i.v When accounting for circulating compound levels and ED50 responses, these data suggest that 11-OH-THC was 153% as active as THC in the tail-flick test of nociception, and 78% as active as THC for catalepsy. Therefore, 11-OH-THC displayed equal or greater activity than the parent compound THC, even when accounting for PK differences. Thus, the THC metabolite 11-OH-THC likely plays a critical role in the bioactivity of cannabis; understanding its activity when administered directly will aid in the interpretation of future animal and human studies. Significance Statement In this study we establish that the primary metabolite of THC - 11-OH-THC - displays equal or greater activity than THC in a mouse model of cannabinoid activity when directly administered and even when accounting for route of administration, sex, pharmacokinetic, and pharmacodynamic differences. These data provide critical insight into the bioactivity of THC metabolites that will inform the interpretation of future cannabinoid research and represent a model for how THC consumption and metabolism may affect cannabis use in humans.

3.
Microvasc Res ; 148: 104550, 2023 07.
Article in English | MEDLINE | ID: mdl-37230164

ABSTRACT

Using swine as an experimental model, we examined whether the cannabinoid receptors (CB1R and CB2R) modulated vasomotor tone in isolated pial arteries. It was hypothesized that the CB1R would mediate cerebral artery vasorelaxation in an endothelial-dependent manner. First-order pial arteries were isolated from female Landrace pigs (age = 2 months; N = 27) for wire and pressure myography. Arteries were pre-contracted with a thromboxane A2 analogue (U-46619) and vasorelaxation in response to the CB1R and CB2R receptor agonist CP55940 was examined in the following conditions: 1) untreated; 2) inhibition of the CB1R (AM251); or 3) inhibition of the CB2R receptor (AM630). The data revealed that CP55940 elicits a CB1R-dependent relaxation in pial arteries. CB1R expression was confirmed using immunoblot and immunohistochemical analyses. Subsequently, the role of different endothelial-dependent pathways in the CB1R-mediated vasorelaxation was examined using: 1) denudation (removal of the endothelium); 2) inhibition of cyclooxygenase (COX; Naproxen); 3) inhibition of nitric oxide synthase (NOS; L-NAME); and 4) combined inhibition of COX + NOS. The data revealed CB1R-mediated vasorelaxation was endothelial-dependent, with contributions from COX-derived prostaglandins, NO, and endothelium-dependent hyperpolarizing factor (EDHF). Pressurized arteries underwent myogenic curves (20-100 mmHg) under the following conditions: 1) untreated; 2) inhibition of the CB1R. The data revealed CB1R inhibition increased basal myogenic tone, but not myogenic reactivity. As the vascular responses were assessed in isolated pial arteries, this work reveals that the CB1R modulates cerebrovascular tone independently of changes in brain metabolism.


Subject(s)
Cyclohexanols , Nitric Oxide , Vasodilation , Animals , Female , Cerebral Arteries/metabolism , Endothelium, Vascular/metabolism , Nitric Oxide/metabolism , Swine , Cyclohexanols/pharmacology
4.
Nature ; 547(7664): 468-471, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28678776

ABSTRACT

The cannabinoid receptor 1 (CB1) is the principal target of the psychoactive constituent of marijuana, the partial agonist Δ9-tetrahydrocannabinol (Δ9-THC). Here we report two agonist-bound crystal structures of human CB1 in complex with a tetrahydrocannabinol (AM11542) and a hexahydrocannabinol (AM841) at 2.80 Å and 2.95 Å resolution, respectively. The two CB1-agonist complexes reveal important conformational changes in the overall structure, relative to the antagonist-bound state, including a 53% reduction in the volume of the ligand-binding pocket and an increase in the surface area of the G-protein-binding region. In addition, a 'twin toggle switch' of Phe2003.36 and Trp3566.48 (superscripts denote Ballesteros-Weinstein numbering) is experimentally observed and appears to be essential for receptor activation. The structures reveal important insights into the activation mechanism of CB1 and provide a molecular basis for predicting the binding modes of Δ9-THC, and endogenous and synthetic cannabinoids. The plasticity of the binding pocket of CB1 seems to be a common feature among certain class A G-protein-coupled receptors. These findings should inspire the design of chemically diverse ligands with distinct pharmacological properties.


Subject(s)
Cannabinoid Receptor Agonists/chemistry , Dronabinol/analogs & derivatives , Droperidol/analogs & derivatives , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/chemistry , Binding Sites , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/pharmacology , Crystallography, X-Ray , Dronabinol/chemical synthesis , Dronabinol/chemistry , Dronabinol/pharmacology , Droperidol/chemical synthesis , Droperidol/chemistry , Droperidol/pharmacology , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Ligands , Molecular Docking Simulation , Protein Binding , Protein Conformation , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism
5.
Int J Mol Sci ; 24(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36768458

ABSTRACT

Very recently, we have developed a new generation of ligands targeting the cannabinoid receptor type 2 (CB2R), namely JR compounds, which combine the pharmacophoric portion of the CB2R positive allosteric modulator (PAM), EC21a, with that of the CB2R selective orthosteric agonist LV62, both synthesized in our laboratories. The functional examination enabled us to identify JR14a, JR22a, and JR64a as the most promising compounds of the series. In the current study, we focused on the assessment of the bitopic (dualsteric) nature of these three compounds. Experiments in cAMP assays highlighted that only JR22a behaves as a CB2R bitopic (dualsteric) ligand. In parallel, computational studies helped us to clarify the binding mode of these three compounds at CB2R, confirming the bitopic (dualsteric) nature of JR22a. Finally, the potential of JR22a to prevent neuroinflammation was investigated on a human microglial cell inflammatory model.


Subject(s)
Allosteric Site , Humans , Ligands , Receptors, Cannabinoid , Allosteric Regulation
6.
Eur J Neurosci ; 55(4): 1063-1078, 2022 02.
Article in English | MEDLINE | ID: mdl-33370468

ABSTRACT

There is significant interest in the use of cannabinoids for the treatment of many epilepsies including absence epilepsy (AE). Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model many aspects of AE including the presence of spike-and-wave discharges (SWDs) on electroencephalogram (EEG) and behavioral comorbidities, such as elevated anxiety. However, the effects of cannabis plant-based phytocannabinoids have not been tested in GAERS. Therefore, we investigated how SWDs in GAERS are altered by the two most common phytocannabinoids, Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), and exposure to smoke from two different chemovars of cannabis. Animals were implanted with bipolar electrodes in the somatosensory cortex and EEGs were recorded for 2 hr. Injected THC (1-10 mg/kg, i.p.) dose-dependently increased SWDs to over 200% of baseline. In contrast, CBD (30-100 mg/kg, i.p.) produced a ~50% reduction in SWDs. Exposure to smoke from a commercially available chemovar of high-THC cannabis (Mohawk, Aphria Inc.) increased SWDs whereas a low-THC/high-CBD chemovar of cannabis (Treasure Island, Aphria Inc.) did not significantly affect SWDs in GAERS. Pre-treatment with a CB1R antagonist (SR141716A) did not prevent the high-THC cannabis smoke from increasing SWDs, suggesting that the THC-mediated increase may not be CB1R-dependent. Plasma concentrations of THC and CBD were similar to previously reported values following injection and smoke exposure. Compared to injected CBD, it appears Treasure Island did not increase plasma levels sufficiently to observe an anti-epileptic effect. Together these experiments provide initial evidence that acute phytocannabinoid administration exerts the biphasic modulation of SWDs and may differentially impact patients with AE.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Epilepsy, Absence , Animals , Cannabidiol/pharmacology , Cannabinoid Receptor Agonists , Cannabinoids/pharmacology , Dronabinol , Electroencephalography , Epilepsy, Absence/drug therapy , Epilepsy, Absence/genetics , Humans , Rats , Rats, Wistar
7.
Neurobiol Learn Mem ; 192: 107624, 2022 07.
Article in English | MEDLINE | ID: mdl-35513236

ABSTRACT

Executive functions including working memory (WM) and attention are altered following Cannabis exposure in humans. To test for similar effects in a rodent model, we exposed adult male rats to acute Cannabis smoke before testing them on touchscreen-based tasks that assess these executive processes. The trial-unique, delayed nonmatching-to-location (TUNL) task was used to evaluate WM, task performance at different spatial pattern separations, and response latencies. The five-choice serial reaction time task (5-CSRTT) was used to measure attention, impulsivity, perseveration, and response latencies. Rats were exposed acutely to high- Δ9-tetrahydrocannabinol (THC), low-CBD (Mohawk) and low-THC, high-CBD (Treasure Island) strains of Cannabis smoke using a chamber inhalation system. The effects of Cannabis smoke were directly compared to systemic Δ9-THC injection (3.0 mg/kg; i.p.). TUNL task performance was significantly impaired following acute high-THC smoke exposure or THC injections, but not low-THC smoke exposure, with no effects on response latencies. Fewer total trials and selection trials were also performed following THC injections. Performance was poorer for smaller separation distances in all groups. Neither acute smoke exposure, nor injected THC, impacted attentional processes, impulsivity, perseverations, or response latencies in the 5-CSRTT. Pharmacokinetic analysis of rat plasma revealed significantly higher THC levels following injections than smoke exposure 30 min following treatment. Exposure to low-THC, high-CBD Cannabis smoke significantly increased CBD in plasma, relative to the other treatments. Taken together, our results suggest that WM processes as measured by the TUNL task are more sensitive to THC exposure than the attentional and impulsivity measures assessed using the 5-CSRTT.


Subject(s)
Cannabidiol , Cannabis , Animals , Cannabidiol/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Dronabinol/pharmacology , Male , Memory, Short-Term , Rats , Rats, Long-Evans , Reaction Time , Smoke
8.
Molecules ; 27(9)2022 May 07.
Article in English | MEDLINE | ID: mdl-35566369

ABSTRACT

1,8-naphthyridine-3-carboxamide structures were previously identified as a promising scaffold from which to obtain CB2R agonists with anticancer and anti-inflammatory activity. This work describes the synthesis and functional characterization of new 1,8-naphthyridin-2(1H)-one-3-carboxamides with high affinity and selectivity for CB2R. The new compounds were able to pharmacologically modulate the cAMP response without modulating CB2R-dependent ß-arrestin2 recruitment. These structures were also evaluated for their anti-cancer activity against SH-SY5Y and SK-N-BE cells. They were able to reduce the cell viability of both neuroblastoma cancer cell lines with micromolar potency (IC50 of FG158a = 11.8 µM and FG160a = 13.2 µM in SH-SY5Y cells) by a CB2R-mediated mechanism. Finally, in SH-SY5Y cells one of the newly synthesized compounds, FG158a, was able to modulate ERK1/2 expression by a CB2R-mediated effect, thus suggesting that this signaling pathway might be involved in its potential anti-cancer effect.


Subject(s)
Cannabinoids , Neuroblastoma , Cannabinoid Receptor Agonists/chemistry , Cell Survival , Humans , Neuroblastoma/drug therapy , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2
9.
Bioorg Med Chem ; 50: 116421, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34634617

ABSTRACT

Allosteric modulators of cannabinoid 1 receptor (CB1R) show translational promise over orthosteric ligands due to their potential to elicit therapeutic benefit without cannabimimetic side effects. The prototypic 2-phenylindole CB1R allosteric modulator, GAT211 (1), demonstrates preclinical efficacy in various disease models. The limited systematic structure-activity relationship (SAR) data at the C2 position of the indole ring within GAT211 invites the opportunity for further modifications to improve GAT211's pharmacological profile while serving to amplify and variegate this library of therapeutically attractive agents. These considerations prompted this focused SAR study in which we substituted the GAT211 C2-phenyl ring with heteroaromatic substituents. The synthesized GAT211 analogs were then evaluated in vitro as CB1R allosteric modulators in cAMP and ß-arrestin2 assays with CP55,940 as the orthosteric ligand. Furan and thiophene rings (15c-f and 15m) were the best-tolerated substituents at the C2 position of GAT211 for engagement with human CB1R (hCB1R). The SAR around the novel ligands reported allowed direct experimental characterization of the interaction profile of that pharmacophore with its binding domain in functional, human CB1R, thus offering guidance for accessing subsequent-generation hCB1R allosteric modulators as potential therapeutics. The most potent analog, 15d, markedly promoted orthosteric ligand binding to hCB1R. Pharmacological profiling in the GTPγS and mouse vas deferens assays demonstrated that 15d behaves as a CB1R agonist-positive allosteric modulator (ago-PAM), as confirmed electrophysiologically in autoptic neurons. In vivo, 15d was efficacious as a topical agent that significantly reduced intraocular pressure (IOP) in the ocular normotensive murine model of glaucoma. Since elevated IOP is a decisive risk factor for glaucoma and attendant vision loss, our data support the proposition that the 2-phenylindole class of CB1R ago-PAMs has therapeutic potential for glaucoma and other diseases where potentiation of CB1R signaling may be therapeutic.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Drug Design , Indoles/pharmacology , Receptor, Cannabinoid, CB1/agonists , Allosteric Regulation/drug effects , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/chemistry , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Intraocular Pressure/drug effects , Molecular Structure , Receptor, Cannabinoid, CB1/metabolism , Structure-Activity Relationship
10.
J Neurosci Res ; 98(12): 2496-2509, 2020 12.
Article in English | MEDLINE | ID: mdl-32881145

ABSTRACT

The cannabinoid type 1 (CB1 ) receptor and the dopamine type 2 (D2 ) receptor are co-localized on medium spiny neuron terminals in the globus pallidus where they modulate neural circuits involved in voluntary movement. Physical interactions between the two receptors have been shown to alter receptor signaling in cell culture. The objectives of the current study were to identify the presence of CB1 /D2 heteromers in the globus pallidus of C57BL/6J male mice, define how CB1 /D2 heteromer levels are altered following treatment with cannabinoids and/or antipsychotics, and determine if fluctuating levels of CB1 /D2 heteromers have functional consequences. Using in situ proximity ligation assays, we observed CB1 /D2 heteromers in the globus pallidus of C57BL/6J mice. The abundance of the heteromers increased following treatment with the nonselective cannabinoid receptor agonist, CP55,940. In contrast, treatment with the typical antipsychotic haloperidol reduced the number of CB1 /D2 heteromers, whereas the atypical antipsychotic olanzapine treatment had no effect. Co-treatment with CP55,940 and haloperidol had similar effects to haloperidol alone, whereas co-treatment with CP55,940 and olanzapine had similar effects to CP55,940. The observed changes were found to have functional consequences as the differential effects of haloperidol and olanzapine also applied to γ-aminobutyric acid release in STHdhQ7/Q7 cells and motor function in C57BL/6J male mice. This work highlights the clinical relevance of co-exposure to cannabinoids and different antipsychotics over acute and prolonged time periods.


Subject(s)
Antipsychotic Agents/administration & dosage , Cannabinoid Receptor Agonists/administration & dosage , Cannabinoids/administration & dosage , Receptor, Cannabinoid, CB1/metabolism , Receptors, Dopamine D2/metabolism , Animals , Cell Line, Transformed , Drug Therapy, Combination , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Receptor, Cannabinoid, CB1/agonists
11.
Mol Pharmacol ; 96(5): 619-628, 2019 11.
Article in English | MEDLINE | ID: mdl-31515283

ABSTRACT

Cannabinoid receptor 1 (CB1) is a potential therapeutic target for the treatment of pain, obesity and obesity-related metabolic disorders, and addiction. The crystal structure of human CB1 has been determined in complex with the stabilizing antagonist AM6538. In the present study, we characterize AM6538 as a tight-binding/irreversible antagonist of CB1, as well as two derivatives of AM6538 (AM4112 and AM6542) as slowly dissociating CB1 antagonists across binding simulations and cellular signaling assays. The long-lasting nature of AM6538 was explored in vivo wherein AM6538 continues to block CP55,940-mediated behaviors in mice up to 5 days after a single injection. In contrast, the effects of SR141716A abate in mice 2 days after injection. These studies demonstrate the functional outcome of CB1 antagonist modification and open the path for development of long-lasting CB1 antagonists.


Subject(s)
Cannabinoid Receptor Antagonists/metabolism , Cannabinoid Receptor Antagonists/pharmacology , Nitrates/metabolism , Nitrates/pharmacology , Piperidines/metabolism , Piperidines/pharmacology , Pyrazoles/metabolism , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Animals , Binding Sites/drug effects , Binding Sites/physiology , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Protein Binding/drug effects , Protein Binding/physiology , Protein Structure, Secondary , Receptor, Cannabinoid, CB1/chemistry
12.
Drug Metab Rev ; 50(1): 14-25, 2018 02.
Article in English | MEDLINE | ID: mdl-29355038

ABSTRACT

Allosteric modulation of the type 1 cannabinoid receptor (CB1R) holds great therapeutic potential. This is because allosteric modulators do not possess intrinsic efficacy, but instead augment (positive allosteric modulation) or diminish (negative allosteric modulation) the receptor's response to endogenous ligand. Consequently, CB1R allosteric modulators have an effect ceiling which allows for the tempering of CB1R signaling without the desensitization, tolerance, dependence, and psychoactivity associated with orthosteric compounds. Pain, movement disorders, epilepsy, obesity are all potential therapeutic targets for CB1R allosteric modulation. Several challenges exist for the development of CB1R allosteric modulators, such as receptor subtype specificity, translation to in vivo systems, and mixed allosteric/agonist/inverse agonist activity. Despite these challenges, elucidation of crystal structures of CB1R and compound design based on structure-activity relationships will advance the field. In this review, we will cover recent progress for CB1R allosteric modulators and discuss the future promise of this research.


Subject(s)
Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Allosteric Site , Animals , Humans , Indoles/chemistry , Indoles/pharmacology , Ligands , Models, Molecular , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Receptor, Cannabinoid, CB1/chemistry , Receptor, Cannabinoid, CB1/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Thiophenes/chemistry , Thiophenes/pharmacology
13.
Mol Pharmacol ; 89(6): 652-66, 2016 06.
Article in English | MEDLINE | ID: mdl-27053685

ABSTRACT

Activation of dopamine receptor 2 long (D2L) switches the signaling of type 1 cannabinoid receptor (CB1) from Gαi to Gαs, a process thought to be mediated through CB1-D2L heteromerization. Given the clinical importance of D2 antagonists, the goal of this study was to determine if D2 antagonists could modulate CB1 signaling. Interactions between CB1 and D2L, Gαi, Gαs, and ß-arrestin1 were studied using bioluminescence resonance energy transfer 2 (BRET(2)) in STHdh(Q7/Q7) cells. CB1-dependent extracellular regulated kinase (ERK)1/2, CREB phosphorylation, and CB1 internalization following cotreatment of CB1 agonist and D2 antagonist were quantified. Preassembled CB1-Gαi complexes were detected by BRET(2) Arachidonyl-2'-chloroethylamide (ACEA), a selective CB1 agonist, caused a rapid and transient increase in BRET efficiency (BRETEff) between Gαi-Rluc and CB1-green fluorescent protein 2 (GFP(2)), and a Gαi-dependent increase in ERK phosphorylation. Physical interactions between CB1 and D2L were observed using BRET(2) Cotreatment of STHdh(Q7/Q7) cells with ACEA and haloperidol, a D2 antagonist, inhibited BRETEff signals between Gαi-Rluc and CB1-GFP(2) and reduced the EMax and pEC50 of ACEA-mediated Gαi-dependent ERK phosphorylation. ACEA and haloperidol cotreatments produced a delayed and sustained increase in BRETEff between Gαs-Rluc and CB1-GFP(2) and increased the EMax and pEC50 of ACEA-induced Gαs-dependent cAMP response element-binding protein phosphorylation. In cells expressing CB1 and D2L treated with ACEA, binding of haloperidol to D2 receptors switched CB1 coupling from Gαi to Gαs In addition, haloperidol treatment reduced ACEA-induced ß-arrestin1 recruitment to CB1 and CB1 internalization. D2 antagonists allosterically modulate cannabinoid-induced CB1 coupling, signaling, and ß-arrestin1 recruitment through binding to CB1-D2L heteromers. These findings indicate that D2 antagonism, like D2 agonists, change agonist-mediated CB1 coupling and signaling.


Subject(s)
Corpus Striatum/cytology , Dopamine D2 Receptor Antagonists/pharmacology , Neurons/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptors, Dopamine D2/metabolism , Animals , Arachidonic Acids/pharmacology , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Endocytosis/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Haloperidol/pharmacology , Humans , Kinetics , Male , Mice, Inbred C57BL , Models, Biological , Neurons/drug effects , Phosphorylation/drug effects , Protein Binding/drug effects , Protein Isoforms/metabolism , Protein Multimerization/drug effects , beta-Arrestins/metabolism
14.
Mol Pharmacol ; 89(3): 364-75, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26700564

ABSTRACT

Huntington disease (HD) is an inherited, autosomal dominant, neurodegenerative disorder with limited treatment options. Prior to motor symptom onset or neuronal cell loss in HD, levels of the type 1 cannabinoid receptor (CB1) decrease in the basal ganglia. Decreasing CB1 levels are strongly correlated with chorea and cognitive deficit. CB1 agonists are functionally selective (biased) for divergent signaling pathways. In this study, six cannabinoids were tested for signaling bias in in vitro models of medium spiny projection neurons expressing wild-type (STHdh(Q7/Q7)) or mutant huntingtin protein (STHdh(Q111/Q111)). Signaling bias was assessed using the Black and Leff operational model. Relative activity [ΔlogR (τ/KA)] and system bias (ΔΔlogR) were calculated relative to the reference compound WIN55,212-2 for Gαi/o, Gαs, Gαq, Gßγ, and ß-arrestin1 signaling following treatment with 2-arachidonoylglycerol (2-AG), anandamide (AEA), CP55,940, Δ(9)-tetrahydrocannabinol (THC), cannabidiol (CBD), and THC+CBD (1:1), and compared between wild-type and HD cells. The Emax of Gαi/o-dependent extracellular signal-regulated kinase (ERK) signaling was 50% lower in HD cells compared with wild-type cells. 2-AG and AEA displayed Gαi/o/Gßγ bias and normalized CB1 protein levels and improved cell viability, whereas CP55,940 and THC displayed ß-arrestin1 bias and reduced CB1 protein levels and cell viability in HD cells. CBD was not a CB1 agonist but inhibited THC-dependent signaling (THC+CBD). Therefore, enhancing Gαi/o-biased endocannabinoid signaling may be therapeutically beneficial in HD. In contrast, cannabinoids that are ß-arrestin-biased--such as THC found at high levels in modern varieties of marijuana--may be detrimental to CB1 signaling, particularly in HD where CB1 levels are already reduced.


Subject(s)
Cell Survival/physiology , Huntington Disease/metabolism , Neurons/metabolism , Receptor, Cannabinoid, CB1/metabolism , Animals , Cannabidiol/metabolism , Cannabidiol/pharmacology , Cannabinoids/metabolism , Cannabinoids/pharmacology , Cell Line, Transformed , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Mice , Mice, Inbred C57BL , Neurons/drug effects , Receptor, Cannabinoid, CB1/agonists , Signal Transduction/drug effects , Signal Transduction/physiology
15.
BMC Evol Biol ; 16(1): 147, 2016 Jul 16.
Article in English | MEDLINE | ID: mdl-27421266

ABSTRACT

BACKGROUND: In the duplication-degeneration-complementation (DDC) model, a duplicated gene has three possible fates: it may lose functionality through the accumulation of mutations (nonfunctionalization), acquire a new function (neofunctionalization), or each duplicate gene may retain a subset of functions of the ancestral gene (subfunctionalization). The role that promoter evolution plays in retention of duplicated genes in eukaryotic genomes is not well understood. Fatty acid-binding proteins (Fabp) belong to a multigene family that are highly conserved in sequence and function, but differ in their gene regulation, suggesting selective pressure is exerted via regulatory elements in the promoter. RESULTS: In this study, we describe the PPAR regulation of zebrafish fabp1a, fabp1b.1, and fabp1b.2 promoters and compare them to the PPAR regulation of the spotted gar fabp1 promoter, representative of the ancestral fabp1 gene. Evolution of the fabp1 promoter was inferred by sequence analysis, and differential PPAR-agonist activation of fabp1 promoter activity in zebrafish liver and intestine explant cells, and in HEK293A cells transiently transfected with wild-type and mutated fabp1promoter-reporter gene constructs. The promoter activity of spotted gar fabp1, representative of the ancestral fabp1, was induced by both PPARα- and PPARγ-specific agonists, but displayed a biphasic response to PPARα activation. Zebrafish fabp1a was PPARα-selective, fabp1b.1 was PPARγ-selective, and fabp1b.2 was not regulated by PPAR. CONCLUSIONS: The zebrafish fabp1 promoters underwent two successive rounds of subfunctionalization with respect to PPAR regulation leading to retention of three zebrafish fabp1 genes with stimuli-specific regulation. Using a pharmacological approach, we demonstrated here the divergent regulation of the zebrafish fabp1a, fabp1b.1, and fabp1b.2 with regard to subfunctionalization of PPAR regulation following two rounds of gene duplication.


Subject(s)
Fatty Acid-Binding Proteins/genetics , Gene Duplication , Genes, Duplicate , Peroxisome Proliferators , Zebrafish Proteins/genetics , Animals , Gene Expression Regulation , Humans , Mutation , PPAR alpha/genetics , Peroxisome Proliferators/pharmacology , Promoter Regions, Genetic , Response Elements , Zebrafish
16.
Genome ; 59(6): 403-12, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27228313

ABSTRACT

Gene duplication is thought to facilitate increasing complexity in the evolution of life. The fate of most duplicated genes is nonfunctionalization: functional decay resulting from the accumulation of mutations. According to the duplication-degeneration-complementation (DDC) model, duplicated genes are retained by subfunctionalization, where the functions of the ancestral gene are sub-divided between duplicate genes, or by neofunctionalization, where one of the duplicates acquires a new function. Here, we report the differential regulation of the zebrafish tandemly duplicated fatty acid-binding protein genes, fabp1b.1 and fabp1b.2, by peroxisome proliferator-activated receptors (PPAR). fabp1b.1 mRNA levels were induced in tissue explants of liver, but not intestine, by PPAR agonists. fabp1b.1 promoter activity was induced to a greater extent by rosiglitazone (PPARγ-selective agonist) compared to WY 14,643 (PPARα-selective agonist) in HEK293A cells. Mutation of a peroxisome proliferator response element (PPRE) at -1232 bp in the fabp1b.1 promoter reduced PPAR-dependent activation. fabp1b.2 promoter activity was not affected by PPAR agonists. Differential regulation of the duplicated fabp1b promoters may be the result of PPRE loss in fabp1b.2 during a meiotic crossing-over event. Retention of PPAR inducibility in fabp1b.1 and not fabp1b.2 suggests unique regulation and function of the fabp1b duplicates.


Subject(s)
Fatty Acid-Binding Proteins/genetics , Peroxisome Proliferator-Activated Receptors/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Base Sequence , Evolution, Molecular , Gene Duplication , Genes, Duplicate , Genetic Variation , HEK293 Cells , Humans , Mutation , Promoter Regions, Genetic , RNA, Messenger/genetics , Transfection
17.
J Biol Chem ; 289(36): 24845-62, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25037227

ABSTRACT

Modulation of type 1 cannabinoid receptor (CB1) activity has been touted as a potential means of treating addiction, anxiety, depression, and neurodegeneration. Different agonists of CB1 are known to evoke varied responses in vivo. Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor that can signal through multiple pathways. To understand cannabinoid-specific functional selectivity, different groups have examined the effect of individual cannabinoids on various signaling pathways in heterologous expression systems. In the current study, we compared the functional selectivity of six cannabinoids, including two endocannabinoids (2-arachidonyl glycerol (2-AG) and anandamide (AEA)), two synthetic cannabinoids (WIN55,212-2 and CP55,940), and two phytocannabinoids (cannabidiol (CBD) and Δ(9)-tetrahydrocannabinol (THC)) on arrestin2-, Gα(i/o)-, Gßγ-, Gα(s)-, and Gα(q)-mediated intracellular signaling in the mouse STHdh(Q7/Q7) cell culture model of striatal medium spiny projection neurons that endogenously express CB1. In this system, 2-AG, THC, and CP55,940 were more potent mediators of arrestin2 recruitment than other cannabinoids tested. 2-AG, AEA, and WIN55,212-2, enhanced Gα(i/o) and Gßγ signaling, with 2-AG and AEA treatment leading to increased total CB1 levels. 2-AG, AEA, THC, and WIN55,212-2 also activated Gα(q)-dependent pathways. CP55,940 and CBD both signaled through Gα(s). CP55,940, but not CBD, activated downstream Gα(s) pathways via CB1 targets. THC and CP55,940 promoted CB1 internalization and decreased CB1 protein levels over an 18-h period. These data demonstrate that individual cannabinoids display functional selectivity at CB1 leading to activation of distinct signaling pathways. To effectively match cannabinoids with therapeutic goals, these compounds must be screened for their signaling bias.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/pharmacology , Neurons/metabolism , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Animals , Arachidonic Acids/pharmacology , Arrestin/genetics , Arrestin/metabolism , Benzoxazines/pharmacology , Blotting, Western , Cells, Cultured , Corpus Striatum/cytology , Corpus Striatum/metabolism , Cyclohexanols/pharmacology , Dendritic Spines/metabolism , Dronabinol/pharmacology , Endocannabinoids/pharmacology , Fluorescence Resonance Energy Transfer , GTP-Binding Proteins/metabolism , Glycerides/pharmacology , Ligands , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Models, Biological , Morpholines/pharmacology , Naphthalenes/pharmacology , Neurons/cytology , Polyunsaturated Alkamides/pharmacology , Receptor, Cannabinoid, CB1/genetics , Signal Transduction/drug effects
18.
Neurosci Biobehav Rev ; 161: 105681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641090

ABSTRACT

Schizophrenia is a complex neuropsychiatric disorder with significant morbidity. Treatment options that address the spectrum of symptoms are limited, highlighting the need for innovative therapeutic approaches. Gamma Entrainment Using Sensory Stimulation (GENUS) is an emerging treatment for neuropsychiatric disorders that uses sensory stimulation to entrain impaired oscillatory network activity and restore brain function. Aberrant oscillatory activity often underlies the symptoms experienced by patients with schizophrenia. We propose that GENUS has therapeutic potential for schizophrenia. This paper reviews the current status of schizophrenia treatment and explores the use of sensory stimulation as an adjunctive treatment, specifically through gamma entrainment. Impaired gamma frequency entrainment is observed in patients, particularly in response to auditory and visual stimuli. Thus, sensory stimulation, such as music listening, may have therapeutic potential for individuals with schizophrenia. GENUS holds novel therapeutic potential to improve the lives of individuals with schizophrenia, but further research is required to determine the efficacy of GENUS, optimize its delivery and therapeutic window, and develop strategies for its implementation in specific patient populations.


Subject(s)
Gamma Rhythm , Schizophrenia , Humans , Schizophrenia/therapy , Schizophrenia/physiopathology , Gamma Rhythm/physiology , Cognitive Dysfunction/therapy , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Acoustic Stimulation
19.
J Chromatogr A ; 1730: 465123, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38981146

ABSTRACT

Psilocybin is a psychedelic compound found in some hallucinogenic "magic mushrooms". Psilocin is the active metabolite of Psilocybin, and it is the subject of several studies for the treatment of psychological disorders, such as anxiety, depression, and post-traumatic stress disorder. As such, the pharmacokinetic properties of psilocin should be evaluated to ensure its safety and efficacy as part of the drug development process. Based on the previously published studies, reversed-phase liquid chromatography (LC) was tested for psilocin quantification. The analysis, however, showed a major interference in mouse plasma that was not, to the best of our knowledge, reported previously. We, therefore, aimed to identify and separate the interference, using various chromatographic columns, mobile phase conditions, and mass spectrometers (MS) instruments. Chromatographic separation was achieved on an ultra high performance liquid chromatography (UHPLC) system, and a quadrupole-linear ion trap equipped with an electrospray ionization (ESI) source was used in positive ion mode with multiple reaction monitoring (MRM). Several chromatographic conditions and column chemistries, including C-18 and Phenyl-hexyl were initially tested, and failed to separate the interference. Exact mass measurement and MS/MS analysis were used to determine the structure of the interfering compound, which was confirmed to be tryptophan. Using the identified structure of the interfering compound, a fast and reliable hydrophilic interaction liquid chromatography (HILIC)-MS/MS method was developed and validated, that was capable of separating psilocin from the interference while achieving a 0.5 ng/ml lower limit of quantification (LLOQ). The validated method was successfully applied to a pharmacokinetic study where psilocin was orally administered to C57BL/6 mouse subjects. Psilocin concentration in all the analyzed mouse plasma samples was successfully determined.


Subject(s)
Psilocybin , Tandem Mass Spectrometry , Animals , Mice , Tandem Mass Spectrometry/methods , Psilocybin/analogs & derivatives , Psilocybin/blood , Psilocybin/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Male , Hallucinogens/blood , Hallucinogens/pharmacokinetics , Reproducibility of Results , Mice, Inbred C57BL , Chromatography, Liquid/methods , Chromatography, Reverse-Phase/methods
20.
Sci Rep ; 14(1): 18314, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112591

ABSTRACT

The type 1 cannabinoid receptor (CB1R) mediates neurotransmitter release and synaptic plasticity in the central nervous system. Endogenous, plant-derived, synthetic cannabinoids bind to CB1R, initiating the inhibitory G-protein (Gi) and the ß-arrestin signaling pathways. Within the Gi signaling pathway, CB1R activates G protein-gated, inwardly-rectifying potassium (GIRK) channels. The ß-arrestin pathway reduces CB1R expression on the cell surface through receptor internalization. Because of their association with analgesia and drug tolerance, GIRK channels and receptor internalization are of interest to the development of pharmaceuticals. This research used immortalized mouse pituitary gland cells transduced with a pH-sensitive, fluorescently-tagged human CB1R (AtT20-SEPCB1) to measure GIRK channel activity and CB1R internalization. Cannabinoid-induced GIRK channel activity is measured by using a fluorescent membrane-potential sensitive dye. We developed a kinetic imaging assay that visualizes and measures CB1R internalization. All cannabinoids stimulated a GIRK channel response with a rank order potency of WIN55,212-2 > (±)CP55,940 > Δ9-THC > AEA. Efficacy was expressed relative to (±)CP55,940 with a rank order efficacy of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. All cannabinoids stimulated CB1R internalization with a rank order potency of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. Internalization efficacy was normalized to (±)CP55,940 with a rank order efficacy of WIN55,212-2 > AEA > (±)CP55,940 > Δ9-THC. (±)CP55,940 was significantly more potent and efficacious than AEA and Δ9-THC at stimulating a GIRK channel response; no significant differences between potency and efficacy were observed with CB1R internalization. No significant differences were found when comparing a cannabinoid's GIRK channel and CB1R internalization response. In conclusion, AtT20-SEPCB1 cells can be used to assess cannabinoid-induced CB1R internalization. While cannabinoids display differential Gi signaling when compared to each other, this did not extend to CB1R internalization.


Subject(s)
Benzoxazines , G Protein-Coupled Inwardly-Rectifying Potassium Channels , Naphthalenes , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Animals , Mice , Humans , Kinetics , Naphthalenes/pharmacology , Benzoxazines/pharmacology , Cannabinoids/metabolism , Cannabinoids/pharmacology , Morpholines/pharmacology , Signal Transduction/drug effects , Cell Line , Cyclohexanols
SELECTION OF CITATIONS
SEARCH DETAIL