ABSTRACT
This review article aims to address common research questions in passive polarized vision for robotics. What kind of polarization sensing can we embed into robots? Can we find our geolocation and true north heading by detecting light scattering from the sky as animals do? How should polarization images be related to the physical properties of reflecting surfaces in the context of scene understanding? This review article is divided into three main sections to address these questions, as well as to assist roboticists in identifying future directions in passive polarized vision for robotics. After an introduction, three key interconnected areas will be covered in the following sections: embedded polarization imaging; polarized vision for robotics navigation; and polarized vision for scene understanding. We will then discuss how polarized vision, a type of vision commonly used in the animal kingdom, should be implemented in robotics; this type of vision has not yet been exploited in robotics service. Passive polarized vision could be a supplemental perceptive modality of localization techniques to complement and reinforce more conventional ones.
ABSTRACT
Color-polarization filter array (CPFA) sensors are able to capture linear polarization and color information in a single shot. For a scene that contains a high dynamic range of irradiance and polarization signatures, some pixel values approach the saturation and noise levels of the sensor. The most common CPFA configuration is overdetermined, and contains four different linear polarization analyzers. Assuming that not all pixel responses are equally reliable in CPFA channels, one can therefore apply the high dynamic range imaging scheme to improve the Stokes estimation from a single CPFA image. Here I present this alternative methodology and show qualitative and quantitative results on real data.
ABSTRACT
Recent imaging techniques enable the joint capture of spectral and polarization image data. In order to permit the design of computational imaging techniques and future processing of this information, it is interesting to describe the related image statistics. In particular, in this article, we present observations for different correlations between spectropolarimetric channels. The analysis is performed on several publicly available databases that are unified for joint processing. We perform global investigation and analysis on several specific clusters of materials or reflection types. We observe that polarization channels generally have more inter-channel correlation than the spectral channels.
ABSTRACT
Snapshot polarization imaging has gained interest in the last few decades. Recent research and technology achievements defined the polarization Filter Array (PFA). It is dedicated to division-of-focal plane polarimeters, which permits to analyze the direction of light electric field oscillation. Its filters form a mosaicked pattern, in which each pixel only senses a fraction of the total polarization states, so the other missing polarization states have to be interpolated. As for Color or Spectral Filter Arrays (CFA or SFA), several dedicated demosaicking methods exist in the PFA literature. Such methods are mainly based on spatial correlation disregarding inter-channel correlation. We show that polarization channels are strongly correlated in images. We therefore propose to extend some demosaicking methods from CFA/SFA to PFA, and compare them with those that are PFA-oriented. Objective and subjective analysis show that the pseudo panchromatic image difference method provides the best results and can be used as benchmark for PFA demosaicking.
ABSTRACT
Spectral filter arrays imaging exhibits a strong similarity with color filter arrays. This permits us to embed this technology in practical vision systems with little adaptation of the existing solutions. In this communication, we define an imaging pipeline that permits high dynamic range (HDR)-spectral imaging, which is extended from color filter arrays. We propose an implementation of this pipeline on a prototype sensor and evaluate the quality of our implementation results on real data with objective metrics and visual examples. We demonstrate that we reduce noise, and, in particular we solve the problem of noise generated by the lack of energy balance. Data are provided to the community in an image database for further research.
ABSTRACT
Multispectral acquisition improves machine vision since it permits capturing more information on object surface properties than color imaging. The concept of spectral filter arrays has been developed recently and allows multispectral single shot acquisition with a compact camera design. Due to filter manufacturing difficulties, there was, up to recently, no system available for a large span of spectrum, i.e., visible and Near Infra-Red acquisition. This article presents the achievement of a prototype of camera that captures seven visible and one near infra-red bands on the same sensor chip. A calibration is proposed to characterize the sensor, and images are captured. Data are provided as supplementary material for further analysis and simulations. This opens a new range of applications in security, robotics, automotive and medical fields.
ABSTRACT
Thanks to some technical progress in interferencefilter design based on different technologies, we can finally successfully implement the concept of multispectral filter array-based sensors. This article provides the relevant state-of-the-art for multispectral imaging systems and presents the characteristics of the elements of our multispectral sensor as a case study. The spectral characteristics are based on two different spatial arrangements that distribute eight different bandpass filters in the visible and near-infrared area of the spectrum. We demonstrate that the system is viable and evaluate its performance through sensor spectral simulation.
ABSTRACT
We study the relationship between reflectance and the degree of linear polarization of radiation that bounces off the surface of an unvarnished oil painting. We design a VNIR-SWIR (400 nm to 2500 nm) polarimetric reflectance imaging spectroscopy setup that deploys unpolarized light and allows us to estimate the Stokes vector at the pixel level. We observe a strong negative correlation between the S0 component of the Stokes vector (which can be used to represent the reflectance) and the degree of linear polarization in the visible interval (average -0.81), while the correlation is weaker and varying in the infrared range (average -0.50 in the NIR range between 780 and 1500 nm, and average -0.87 in the SWIR range between 1500 and 2500 nm). By tackling the problem with multi-resolution image analysis, we observe a dependence of the correlation on the local complexity of the surface. Indeed, we observe a general trend that strengthens the negative correlation for the effect of artificial flattening provoked by low image resolutions.