Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Development ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136544

ABSTRACT

Hematopoietic Stem and Progenitor Cells (HSPCs) give rise to all cell types of the hematopoietic system through various processes including asymmetric divisions. However, the contribution of stromal cells of the hematopoietic niches in the control of HSPC asymmetric divisions remains unknown. Using polyacrylamide microwells as minimalist niches, we show that specific heterotypic interaction with osteoblast and endothelial cell promote asymmetric division of human HSPC. Upon interaction, HSPCs polarize in interphase with the centrosome, the Golgi apparatus, and lysosomes positioned close to the site of contact. Subsequently, during mitosis, HSPCs orient their spindle perpendicular to the plane of contact. This division mode gives rise to siblings with unequal amounts of lysosomes and of CD34 differentiation marker. Such asymmetric inheritance generates heterogeneity in the progeny, which is likely to contribute to the plasticity of the early steps of hematopoiesis.

2.
Biotechnol Bioeng ; 121(4): 1422-1434, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38225905

ABSTRACT

Acoustic levitation, which allows contactless manipulation of micro-objects with ultrasounds, is a promising technique for spheroids formation and culture. This acoustofluidic technique favors cell-cell interactions, away from the walls of the chip, which leads to the spontaneous self-organization of cells. Using this approach, we generated spheroids of mesenchymal stromal cells, hepatic and endothelial cells, and showed that long-term culture of cells in acoustic levitation is feasible. We also demonstrated that this self-organization and its dynamics depended weakly on the acoustic parameters but were strongly dependent on the levitated cell type. Moreover, spheroid organization was modified by actin cytoskeleton inhibitors or calcium-mediated interaction inhibitors. Our results confirmed that acoustic levitation is a rising technique for fundamental research and biotechnological industrial application in the rapidly growing field of microphysiological systems. It allowed easily obtaining spheroids of specific and predictable shape and size, which could be cultivated over several days, without requiring hydrogels or extracellular matrix.


Subject(s)
Mesenchymal Stem Cells , Spheroids, Cellular , Humans , Endothelial Cells , Acoustics , Extracellular Matrix
3.
Eur J Cardiothorac Surg ; 66(1)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38984816

ABSTRACT

Full Circumferential Tracheal Replacement (FCTR) is a surgical challenge, indicated in rare cases of extensive tracheal resection, with no consensus on surgical technique or materials. A systematic review according to PRISMA guidelines was carried out from 2000 to 2022 to identify cases of FCTR, to compare surgical indications, the nature of the tracheal substitutes and their immunological characteristics, surgical replacement techniques and vascularization. Thirty-seven patients, including five children, underwent FCTR surgery using 4 different techniques: thyrotracheal complex allograft (n = 2), aorta (n = 12), autologous surgical reconstruction (n = 19), tissue-engineered decellularized trachea (n = 4). The mean follow-up was 4 years. Of the 15 deceased patients, 10 died of the progression of the initial pathology. For the majority of the teams, particular care was given to the vascularization of the substitute, in order to guarantee long-term biointegration. This included either direct vascularization via vascular anastomosis, or an indirect technique involving envelopment of the avascular substitute in a richly vascularized tissue. Stent placement was standard, except for autologous surgical reconstructions where tracheal caliber was stable. Internal stents were frequently complicated by granulation and stenosis. Although epithelial coverage is essential to limit endoluminal proliferation and act as a barrier, fully functional ciliated airway epithelium did not seem to be necessary. In order to facilitate future comparisons, a standardized clinical trial, respecting regulatory constraints, including routine follow-up with tracheal biomechanics assessment and scheduled biopsies could be proposed. It would help collecting information such as dynamics and mechanisms of tracheal bio-integration and regeneration.


Subject(s)
Trachea , Humans , Trachea/surgery , Plastic Surgery Procedures/methods , Tissue Engineering/methods
4.
Adv Healthc Mater ; 13(14): e2302830, 2024 06.
Article in English | MEDLINE | ID: mdl-38366136

ABSTRACT

Tissue engineering holds great promise for regenerative medicine, drug discovery, and as an alternative to animal models. However, as soon as the dimensions of engineered tissue exceed the diffusion limit of oxygen and nutriments, a necrotic core forms leading to irreversible damage. To overcome this constraint, the establishment of a functional perfusion network is essential. In this work, digital light processing bioprinting is used to encapsulate endothelial progenitor cells (EPCs) in 3D light-cured hydrogel scaffolds to guide them toward vascular network formation. In these scaffolds, EPCs proliferate and self-organize within a few days into branched tubular structures with predefined geometry, forming capillary-like vascular tubes or trees of diameters in the range of 10 to 100 µm. Presenting a confluent monolayer wall of cells strongly connect by tight junctions around a central lumen-like space, these structures can be microinjected with a fluorescent dye and are stable for several weeks in vitro. These endothelial structures can be recovered and manipulated in an alginate patch without altering their shape or viability. This approach opens new opportunities for future applications, such as stacking with other cell sheets or multicellular constructs to yield bioengineered tissue with higher complexity and functionality.


Subject(s)
Bioprinting , Endothelial Progenitor Cells , Tissue Engineering , Tissue Scaffolds , Humans , Bioprinting/methods , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Endothelial Progenitor Cells/cytology , Endothelial Progenitor Cells/metabolism , Hydrogels/chemistry , Capillaries/physiology , Alginates/chemistry , Printing, Three-Dimensional
5.
Stem Cell Rev Rep ; 20(5): 1353-1356, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38492134

ABSTRACT

Addressing the challenges in managing ischemic tissue repair and remodelling remains a prominent clinical concern. Current research is heavily concentrated on identifying innovative cell-based therapies with the potential to enhance revascularization in patients affected by these diseases. We have previously developed and validated a manufacturing process for human umbilical cord mesenchymal stromal cells (UC-MSCs)-based cell therapy medicinal product, according to Good Manufacturing Practices. In this study, we demonstrate that these UC-MSCs enhance the proliferation and migration of endothelial cells and the formation of capillary structures. Moreover, UC-MSCs and endothelial cells interact, allowing UC-MSCs to acquire a perivascular cell phenotype and consequently provide direct support to the newly formed vascular network. This characterization of the proangiogenic properties of this UC-MSCs based-cell therapy medicinal product is an essential step for its therapeutic assessment in the clinical context of vascular regeneration.


Subject(s)
Cell Proliferation , Mesenchymal Stem Cells , Neovascularization, Physiologic , Umbilical Cord , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Umbilical Cord/cytology , Cell Movement , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Cells, Cultured , Cell Differentiation , Endothelial Cells/cytology , Endothelial Cells/metabolism
6.
EBioMedicine ; 103: 105145, 2024 May.
Article in English | MEDLINE | ID: mdl-38713924

ABSTRACT

BACKGROUND: There is increased evidence that the effects of stem cells can mostly be duplicated by administration of their secretome which might streamline the translation towards the clinics. METHODS: The 12-patient SECRET-HF phase 1 trial has thus been designed to determine the feasibility and safety of repeated intravenous injections of the extracellular vesicle (EV)-enriched secretome of cardiovascular progenitor cells differentiated from pluripotent stem cells in severely symptomatic patients with drug-refractory left ventricular (LV) dysfunction secondary to non-ischemic dilated cardiomyopathy. Here we report the case of the first treated patient (baseline NYHA class III; LV Ejection Fraction:25%) in whom a dose of 20 × 109 particles/kg was intravenously infused three times three weeks apart. FINDINGS: In addition to demonstrating the feasibility of producing a cardiac cell secretome compliant with Good Manufacturing Practice standards, this case documents the excellent tolerance of its repeated delivery, without any adverse events during or after infusions. Six months after the procedure, the patient is in NYHA Class II with improved echo parameters, a reduced daily need for diuretics (from 240 mg to 160 mg), no firing from the previously implanted automatic internal defibrillator and no alloimmunization against the drug product, thereby supporting its lack of immunogenicity. INTERPRETATION: The rationale underlying the intravenous route is that the infused EV-enriched secretome may act by rewiring endogenous immune cells, both circulating and in peripheral organs, to take on a reparative phenotype. These EV-modified immune cells could then traffic to the heart to effect tissue repair, including mitigation of inflammation which is a hallmark of cardiac failure. FUNDING: This trial is funded by the French Ministry of Health (Programme Hospitalier de Recherche CliniqueAOM19330) and the "France 2030" National Strategy Program (ANR-20-F2II-0003). It is sponsored by Assistance Publique-Hôpitaux de Paris.


Subject(s)
Heart Failure , Secretome , Humans , Heart Failure/therapy , Heart Failure/metabolism , Heart Failure/etiology , Secretome/metabolism , Male , Extracellular Vesicles/metabolism , Middle Aged , Treatment Outcome
7.
Adv Biol (Weinh) ; : e2400208, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162336

ABSTRACT

The management of extensive tracheal resection followed by circumferential replacement remains a surgical challenge. Numerous techniques are proposed with mixed results. Partial decellularization of the trachea with the removal of the mucosal and submucosal cells is a promising method, reducing immunogenicity while preserving the biomechanical properties of the final matrix. Despite many research protocols and proofs of concept, no standardized clinical grade protocol is described. Furthermore, local and systemic biointegration mechanisms of decellularized trachea are not well known. Therefore, in a translational research perspective, this work set up a partial tracheal decellularization protocol in line with Cell and Tissue Products regulations. Extensive characterization of the final product is performed in vitro and in vivo. The results show that the Partially Decellularized Trachea (PDT) is cell-free in the mucosa and submucosa, while the cartilage structure is preserved, maintaining the biomechanical properties of the trachea. When implanted in the muscle in vivo for 28 days, no systemic inflammation is observed, and locally, the PDT shows an excellent biointegration and vascularization. No signs of graft rejection are observed. These encouraging results confirmed the efficacy of the clinical grade PDT production protocol, which is an important step for future clinical applications.

8.
Stem Cell Res Ther ; 15(1): 109, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38637891

ABSTRACT

BACKGROUND: The STROMA-CoV-2 study was a French phase 2b, multicenter, double-blind, randomized, placebo-controlled clinical trial that did not identify a significant efficacy of umbilical cord-derived mesenchymal stromal cells in patients with SARS-CoV-2-induced acute respiratory distress syndrome. Safety on day 28 was found to be good. The aim of our extended study was to assess the 6- and 12-month safety of UC-MSCs administration in the STROMA-CoV-2 cohort. METHODS: A detailed multi-domain assessment was conducted at 6 and 12 months following hospital discharge focusing on adverse events, lung computed tomography-scan, pulmonary and muscular functional status, and quality of life in the STROMA-CoV-2 cohort including SARS-CoV-2-related early (< 96 h) mild-to-severe acute respiratory distress syndrome. RESULTS: Between April 2020 and October 2020, 47 patients were enrolled, of whom 19 completed a 1-year follow-up. There were no significant differences in any endpoints or adverse effects between the UC-MSCs and placebo groups at the 6- and 12-month assessments. Ground-glass opacities persisted at 1 year in 5 patients (26.3%). Furthermore, diffusing capacity for carbon monoxide remained altered over 1 year, although no patient required oxygen or non-invasive ventilatory support. Quality of life revealed declines in mental, emotional and physical health throughout the follow-up period, and the six-minute walking distance remained slightly impaired at the 1-year patient assessment. CONCLUSIONS: This study suggests a favorable safety profile for the use of intravenous UC-MSCs in the context of the first French wave of SARS-CoV-2-related moderate-to-severe acute respiratory distress syndrome, with no adverse effects observed at 1 year.


Subject(s)
COVID-19 , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Humans , COVID-19/therapy , Double-Blind Method , Quality of Life , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2 , Treatment Outcome , Umbilical Cord
SELECTION OF CITATIONS
SEARCH DETAIL