Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell ; 178(3): 731-747.e16, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31257032

ABSTRACT

N6-methyladenosine (m6A) is the most abundant modification on mRNA and is implicated in critical roles in development, physiology, and disease. A major limitation has been the inability to quantify m6A stoichiometry and the lack of antibody-independent methodologies for interrogating m6A. Here, we develop MAZTER-seq for systematic quantitative profiling of m6A at single-nucleotide resolution at 16%-25% of expressed sites, building on differential cleavage by an RNase. MAZTER-seq permits validation and de novo discovery of m6A sites, calibration of the performance of antibody-based approaches, and quantitative tracking of m6A dynamics in yeast gametogenesis and mammalian differentiation. We discover that m6A stoichiometry is "hard coded" in cis via a simple and predictable code, accounting for 33%-46% of the variability in methylation levels and allowing accurate prediction of m6A loss and acquisition events across evolution. MAZTER-seq allows quantitative investigation of m6A regulation in subcellular fractions, diverse cell types, and disease states.


Subject(s)
Adenosine/analogs & derivatives , RNA, Messenger/chemistry , Sequence Analysis, RNA/methods , Adenosine/analysis , Adenosine/immunology , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Animals , Antibodies/immunology , Chromatography, High Pressure Liquid , Embryoid Bodies/metabolism , Embryonic Stem Cells , Endoribonucleases/metabolism , Humans , Meiosis , Methylation , Mice , Nucleotide Motifs , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Tandem Mass Spectrometry
2.
Nat Immunol ; 20(2): 243, 2019 02.
Article in English | MEDLINE | ID: mdl-30635652

ABSTRACT

In the version of this article initially published, the penultimate sentence of the abstract included a typographical error ('cxgenes'). The correct word is 'genes'. The error has been corrected in the HTML and PDF version of the article.

3.
Nat Immunol ; 20(2): 173-182, 2019 02.
Article in English | MEDLINE | ID: mdl-30559377

ABSTRACT

N6-methyladenosine (m6A) is the most common mRNA modification. Recent studies have revealed that depletion of m6A machinery leads to alterations in the propagation of diverse viruses. These effects were proposed to be mediated through dysregulated methylation of viral RNA. Here we show that following viral infection or stimulation of cells with an inactivated virus, deletion of the m6A 'writer' METTL3 or 'reader' YTHDF2 led to an increase in the induction of interferon-stimulated genes. Consequently, propagation of different viruses was suppressed in an interferon-signaling-dependent manner. Significantly, the mRNA of IFNB, the gene encoding the main cytokine that drives the type I interferon response, was m6A modified and was stabilized following repression of METTL3 or YTHDF2. Furthermore, we show that m6A-mediated regulation of interferon genes was conserved in mice. Together, our findings uncover the role m6A serves as a negative regulator of interferon response by dictating the fast turnover of interferon mRNAs and consequently facilitating viral propagation.


Subject(s)
Adenosine/analogs & derivatives , Host-Pathogen Interactions/genetics , Immunity, Innate/genetics , Interferon Type I/genetics , RNA, Messenger/metabolism , Adenosine/metabolism , Animals , Cell Line, Tumor , Cytomegalovirus/immunology , Disease Models, Animal , Female , Fibroblasts , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Host-Pathogen Interactions/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/virology , Interferon Type I/immunology , Male , Methylation , Methyltransferases/genetics , Methyltransferases/immunology , Methyltransferases/metabolism , Mice , Mice, Inbred ICR , Mice, Knockout , Muromegalovirus/immunology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , RNA-Binding Proteins/metabolism
4.
Genes Dev ; 34(19-20): 1373-1391, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32943573

ABSTRACT

The N6-methyladenosine (m6A) modification is the most prevalent post-transcriptional mRNA modification, regulating mRNA decay and splicing. It plays a major role during normal development, differentiation, and disease progression. The modification is regulated by a set of writer, eraser, and reader proteins. The YTH domain family of proteins consists of three homologous m6A-binding proteins, Ythdf1, Ythdf2, and Ythdf3, which were suggested to have different cellular functions. However, their sequence similarity and their tendency to bind the same targets suggest that they may have overlapping roles. We systematically knocked out (KO) the Mettl3 writer, each of the Ythdf readers, and the three readers together (triple-KO). We then estimated the effect in vivo in mouse gametogenesis, postnatal viability, and in vitro in mouse embryonic stem cells (mESCs). In gametogenesis, Mettl3-KO severity is increased as the deletion occurs earlier in the process, and Ythdf2 has a dominant role that cannot be compensated by Ythdf1 or Ythdf3, due to differences in readers' expression pattern across different cell types, both in quantity and in spatial location. Knocking out the three readers together and systematically testing viable offspring genotypes revealed a redundancy in the readers' role during early development that is Ythdf1/2/3 gene dosage-dependent. Finally, in mESCs there is compensation between the three Ythdf reader proteins, since the resistance to differentiate and the significant effect on mRNA decay occur only in the triple-KO cells and not in the single KOs. Thus, we suggest a new model for the Ythdf readers function, in which there is profound dosage-dependent redundancy when all three readers are equivalently coexpressed in the same cell types.


Subject(s)
Dosage Compensation, Genetic , Gametogenesis/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Animals , Cell Line , Embryonic Stem Cells , Fertility/genetics , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Developmental , Mice , Mice, Knockout
5.
Nature ; 593(7857): 119-124, 2021 05.
Article in English | MEDLINE | ID: mdl-33731940

ABSTRACT

The mammalian body plan is established shortly after the embryo implants into the maternal uterus, and our understanding of post-implantation developmental processes remains limited. Although pre- and peri-implantation mouse embryos are routinely cultured in vitro1,2, approaches for the robust culture of post-implantation embryos from egg cylinder stages until advanced organogenesis remain to be established. Here we present highly effective platforms for the ex utero culture of post-implantation mouse embryos, which enable the appropriate development of embryos from before gastrulation (embryonic day (E) 5.5) until the hindlimb formation stage (E11). Late gastrulating embryos (E7.5) are grown in three-dimensional rotating bottles, whereas extended culture from pre-gastrulation stages (E5.5 or E6.5) requires a combination of static and rotating bottle culture platforms. Histological, molecular and single-cell RNA sequencing analyses confirm that the ex utero cultured embryos recapitulate in utero development precisely. This culture system is amenable to the introduction of a variety of embryonic perturbations and micro-manipulations, the results of which can be followed ex utero for up to six days. The establishment of a system for robustly growing normal mouse embryos ex utero from pre-gastrulation to advanced organogenesis represents a valuable tool for investigating embryogenesis, as it eliminates the uterine barrier and allows researchers to mechanistically interrogate post-implantation morphogenesis and artificial embryogenesis in mammals.


Subject(s)
Embryo Culture Techniques , Embryo, Mammalian/embryology , Embryonic Development , In Vitro Techniques , Organogenesis , Animals , Embryo Culture Techniques/methods , Embryo, Mammalian/cytology , Female , Gastrulation , Male , Mice , Time Factors , Uterus
6.
Circulation ; 139(4): 533-545, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30586742

ABSTRACT

BACKGROUND: N6-Methyladenosine (m6A) methylation is the most prevalent internal posttranscriptional modification on mammalian mRNA. The role of m6A mRNA methylation in the heart is not known. METHODS: To determine the role of m6A methylation in the heart, we isolated primary cardiomyocytes and performed m6A immunoprecipitation followed by RNA sequencing. We then generated genetic tools to modulate m6A levels in cardiomyocytes by manipulating the levels of the m6A RNA methylase methyltransferase-like 3 (METTL3) both in culture and in vivo. We generated cardiac-restricted gain- and loss-of-function mouse models to allow assessment of the METTL3-m6A pathway in cardiac homeostasis and function. RESULTS: We measured the level of m6A methylation on cardiomyocyte mRNA, and found a significant increase in response to hypertrophic stimulation, suggesting a potential role for m6A methylation in the development of cardiomyocyte hypertrophy. Analysis of m6A methylation showed significant enrichment in genes that regulate kinases and intracellular signaling pathways. Inhibition of METTL3 completely abrogated the ability of cardiomyocytes to undergo hypertrophy when stimulated to grow, whereas increased expression of the m6A RNA methylase METTL3 was sufficient to promote cardiomyocyte hypertrophy both in vitro and in vivo. Finally, cardiac-specific METTL3 knockout mice exhibit morphological and functional signs of heart failure with aging and stress, showing the necessity of RNA methylation for the maintenance of cardiac homeostasis. CONCLUSIONS: Our study identified METTL3-mediated methylation of mRNA on N6-adenosines as a dynamic modification that is enhanced in response to hypertrophic stimuli and is necessary for a normal hypertrophic response in cardiomyocytes. Enhanced m6A RNA methylation results in compensated cardiac hypertrophy, whereas diminished m6A drives eccentric cardiomyocyte remodeling and dysfunction, highlighting the critical importance of this novel stress-response mechanism in the heart for maintaining normal cardiac function.


Subject(s)
Adenosine/analogs & derivatives , Hypertrophy, Left Ventricular/enzymology , Methyltransferases/metabolism , Myocytes, Cardiac/enzymology , Ventricular Function, Left , Ventricular Remodeling , Adenosine/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Female , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Male , Methyltransferases/deficiency , Methyltransferases/genetics , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/pathology , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Signal Transduction
7.
Cell Rep ; 39(5): 110778, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35508130

ABSTRACT

Antibody-mediated immunity is initiated by B cell differentiation into multiple cell subsets, including plasmablast, memory, and germinal center (GC) cells. B cell differentiation trajectories are determined by transcription factors, yet very few mechanisms that specifically determine early B cell fates have been described. Here, we report a post-transcriptional mechanism that suppresses the plasmablast genetic program and promotes GC B cell fate commitment. Single-cell RNA-sequencing analysis reveals that antigen-specific B cell precursors at the pre-GC stage upregulate YTHDF2, which enhances the decay of methylated transcripts. Ythdf2-deficient B cells exhibit intact proliferation and activation, whereas differentiation into GC B cells is blocked. Mechanistically, B cells require YTHDF2 to attenuate the plasmablast genetic program during GC seeding, and transcripts of key plasmablast-regulating genes are methylated and bound by YTHDF2. Collectively, this study reveals how post-transcriptional suppression of gene expression directs appropriate B cell fate commitment during initiation of the adaptive immune response.


Subject(s)
Germinal Center , Plasma Cells , B-Lymphocytes , Lymphocyte Activation , Transcription Factors/metabolism
8.
Cell Stem Cell ; 28(9): 1549-1565.e12, 2021 09 02.
Article in English | MEDLINE | ID: mdl-33915080

ABSTRACT

Isolating human MEK/ERK signaling-independent pluripotent stem cells (PSCs) with naive pluripotency characteristics while maintaining differentiation competence and (epi)genetic integrity remains challenging. Here, we engineer reporter systems that allow the screening for defined conditions that induce molecular and functional features of human naive pluripotency. Synergistic inhibition of WNT/ß-CATENIN, protein kinase C (PKC), and SRC signaling consolidates the induction of teratoma-competent naive human PSCs, with the capacity to differentiate into trophoblast stem cells (TSCs) and extraembryonic naive endodermal (nEND) cells in vitro. Divergent signaling and transcriptional requirements for boosting naive pluripotency were found between mouse and human. P53 depletion in naive hPSCs increased their contribution to mouse-human cross-species chimeric embryos upon priming and differentiation. Finally, MEK/ERK inhibition can be substituted with the inhibition of NOTCH/RBPj, which induces alternative naive-like hPSCs with a diminished risk for deleterious global DNA hypomethylation. Our findings set a framework for defining the signaling foundations of human naive pluripotency.


Subject(s)
Pluripotent Stem Cells , Animals , Cell Differentiation , Embryo, Mammalian , Humans , Mice , Signal Transduction , Trophoblasts
9.
Epigenomes ; 4(1)2020 Mar 14.
Article in English | MEDLINE | ID: mdl-34968239

ABSTRACT

The rising field of RNA modifications is stimulating massive research nowadays. m6A, the most abundant mRNA modification is highly conserved during evolution. Through the last decade, the essential components of this dynamic mRNA modification machinery were found and classified into writer, eraser and reader proteins. m6A modification is now known to take part in diverse biological processes such as embryonic development, cell circadian rhythms and cancer stem cell proliferation. In addition, there is already firm evidence for the importance of m6A modification in stem cell differentiation and gametogenesis, both in males and females. This review attempts to summarize the important results of recent years studying the mechanism underlying stem cell differentiation and gametogenesis processes.

10.
Cell Stem Cell ; 23(3): 412-425.e10, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30122475

ABSTRACT

Mbd3, a member of nucleosome remodeling and deacetylase (NuRD) co-repressor complex, was previously identified as an inhibitor for deterministic induced pluripotent stem cell (iPSC) reprogramming, where up to 100% of donor cells successfully complete the process. NuRD can assume multiple mutually exclusive conformations, and it remains unclear whether this deterministic phenotype can be attributed to a specific Mbd3/NuRD subcomplex. Moreover, since complete ablation of Mbd3 blocks somatic cell proliferation, we aimed to explore functionally relevant alternative ways to neutralize Mbd3-dependent NuRD activity. We identify Gatad2a, a NuRD-specific subunit, whose complete deletion specifically disrupts Mbd3/NuRD repressive activity on the pluripotency circuitry during iPSC differentiation and reprogramming without ablating somatic cell proliferation. Inhibition of Gatad2a facilitates deterministic murine iPSC reprogramming within 8 days. We validate a distinct molecular axis, Gatad2a-Chd4-Mbd3, within Mbd3/NuRD as being critical for blocking reestablishment of naive pluripotency and further highlight signaling-dependent and post-translational modifications of Mbd3/NuRD that influence its interactions and assembly.


Subject(s)
DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , GATA Transcription Factors/metabolism , Induced Pluripotent Stem Cells/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Transcription Factors/metabolism , Animals , Cells, Cultured , Female , Induced Pluripotent Stem Cells/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Mice, Transgenic
11.
Cell Res ; 28(5): 505-506, 2018 May.
Article in English | MEDLINE | ID: mdl-29679051
SELECTION OF CITATIONS
SEARCH DETAIL