Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 51(2): 405-411, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37728668

ABSTRACT

BACKGROUND: The aim of this work is to provide the currently missing evidence that may allow an update of the Paediatric Dosage Card provided by the European Association of Nuclear Medicine (EANM) for conventional PET/CT systems. METHODS: In a total of 2082 consecutive [18F]FDG-PET scans performed within the EuroNet-PHL-C2 trial, the administered [18F]FDG activity was compared to the activity recommended by the EANM Paediatric Dosage Card. None of these scans had been rejected beforehand by the reference nuclear medicine panel of the trial because of poor image quality. For detailed quality assessment, a subset of 91 [18F]FDG-PET scans, all performed in different patients at staging, was selected according to pre-defined criteria, which (a) included only patients who had received substantially lower activities than those recommended by the EANM Paediatric Dosage Card, and (b) included as wide a range of different PET systems and imaging parameters as possible to ensure that the conclusions drawn in this work are as generally valid as possible. The image quality of the subset was evaluated visually by two independent readers using a quality scoring system as well as analytically based on a volume-of-interest analysis in 244 lesions and the healthy liver. Finally, recommendations for an update of the EANM Paediatric Dosage Card were derived based on the available data. RESULTS: The activity recommended by the EANM Paediatric Dosage Card was undercut by a median of 99.4 MBq in 1960 [18F]FDG-PET scans and exceeded by a median of 15.1 MBq in 119 scans. In the subset analysis (n = 91), all image data were visually classified as clinically useful. In addition, only a very weak correlation (r = 0.06) between activity reduction and tumour-to-background ratio was found. Due to the intended heterogeneity of the dataset, the noise could not be analysed statistically sound as the high range of different imaging variables resulted in very small subsets. Finally, a suggestion for an update of the EANM Paediatric Dosage Card was developed, based on the analysis presented, resulting in a mean activity reduction by 39%. CONCLUSION: The results of this work allow for a conservative update of the EANM Paediatric Dosage Card for [18F]FDG-PET/CT scans performed with conventional PET/CT systems.


Subject(s)
Neoplasms , Nuclear Medicine , Child , Humans , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Clinical Trials as Topic
2.
Eur J Nucl Med Mol Imaging ; 51(8): 2428-2441, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38528164

ABSTRACT

PURPOSE: To evaluate the dosimetry and pharmacokinetics of the novel radiolabelled somatostatin receptor antagonist [177Lu]Lu-satoreotide tetraxetan in patients with advanced neuroendocrine tumours (NETs). METHODS: This study was part of a phase I/II trial of [177Lu]Lu-satoreotide tetraxetan, administered at a median cumulative activity of 13.0 GBq over three planned cycles (median activity/cycle: 4.5 GBq), in 40 patients with progressive NETs. Organ absorbed doses were monitored at each cycle using patient-specific dosimetry; the cumulative absorbed-dose limits were set at 23.0 Gy for the kidneys and 1.5 Gy for bone marrow. Absorbed dose coefficients (ADCs) were calculated using both patient-specific and model-based dosimetry for some patients. RESULTS: In all evaluated organs, maximum [177Lu]Lu-satoreotide tetraxetan uptake was observed at the first imaging timepoint (4 h after injection), followed by an exponential decrease. Kidneys were the main route of elimination, with a cumulative excretion of 57-66% within 48 h following the first treatment cycle. At the first treatment cycle, [177Lu]Lu-satoreotide tetraxetan showed a median terminal blood half-life of 127 h and median ADCs of [177Lu]Lu-satoreotide tetraxetan were 5.0 Gy/GBq in tumours, 0.1 Gy/GBq in the bone marrow, 0.9 Gy/GBq in kidneys, 0.2 Gy/GBq in the liver and 0.8 Gy/GBq in the spleen. Using image-based dosimetry, the bone marrow and kidneys received median cumulative absorbed doses of 1.1 and 10.8 Gy, respectively, after three cycles. CONCLUSION: [177Lu]Lu-satoreotide tetraxetan showed a favourable dosimetry profile, with high and prolonged tumour uptake, supporting its acceptable safety profile and promising efficacy. TRIAL REGISTRATION: NCT02592707. Registered October 30, 2015.


Subject(s)
Neuroendocrine Tumors , Humans , Neuroendocrine Tumors/radiotherapy , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/metabolism , Male , Middle Aged , Female , Aged , Adult , Radiometry , Lutetium/pharmacokinetics , Tissue Distribution , Somatostatin/analogs & derivatives , Somatostatin/pharmacokinetics , Disease Progression , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/therapeutic use , Aged, 80 and over , Octreotide/analogs & derivatives , Octreotide/pharmacokinetics , Octreotide/therapeutic use , Radioisotopes
3.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791531

ABSTRACT

This work reports on a model that describes patient-specific absorbed dose-dependent DNA damage response in peripheral blood mononuclear cells of thyroid cancer patients during radioiodine therapy and compares the results with the ex vivo DNA damage response in these patients. Blood samples of 18 patients (nine time points up to 168 h post-administration) were analyzed for radiation-induced γ-H2AX + 53BP1 DNA double-strand break foci (RIF). A linear one-compartment model described the absorbed dose-dependent time course of RIF (Parameters: c characterizes DSB damage induction; k1 and k2 are rate constants describing fast and slow repair). The rate constants were compared to ex vivo repair rates. A total of 14 patient datasets could be analyzed; c ranged from 0.012 to 0.109 mGy-1, k2 from 0 to 0.04 h-1. On average, 96% of the damage is repaired quickly with k1 (range: 0.19-3.03 h-1). Two patient subgroups were distinguished by k1-values (n = 6, k1 > 1.1 h-1; n = 8, k1 < 0.6 h-1). A weak correlation with patient age was observed. While induction of RIF was similar among ex vivo and in vivo, the respective repair rates failed to correlate. The lack of correlation between in vivo and ex vivo repair rates and the applicability of the model to other therapies will be addressed in further studies.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Thyroid Neoplasms , Humans , Thyroid Neoplasms/radiotherapy , Thyroid Neoplasms/blood , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Middle Aged , Male , Female , DNA Breaks, Double-Stranded/radiation effects , Adult , Aged , DNA Damage , Iodine Radioisotopes/therapeutic use , Tumor Suppressor p53-Binding Protein 1/metabolism , Histones/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/radiation effects , Models, Biological
4.
Eur J Nucl Med Mol Imaging ; 51(1): 183-195, 2023 12.
Article in English | MEDLINE | ID: mdl-37721581

ABSTRACT

PURPOSE: We present the results of an open-label, phase I/II study evaluating the safety and efficacy of the novel somatostatin receptor (SSTR) antagonist [177Lu]Lu-satoreotide tetraxetan in 40 patients with previously treated, progressive neuroendocrine tumours (NETs), in which dosimetry was used to guide maximum administered activity. METHODS: This study was conducted in two parts. Part A consisted of 15 patients who completed three cycles of [177Lu]Lu-satoreotide tetraxetan at a fixed administered activity and peptide amount per cycle (4.5 GBq/300 µg). Part B, which included 25 patients who received one to five cycles of [177Lu]Lu-satoreotide tetraxetan, evaluated different administered activities (4.5 or 6.0 GBq/cycle) and peptide amounts (300, 700, or 1300 µg/cycle), limited to a cumulative absorbed radiation dose of 23 Gy to the kidneys and 1.5 Gy to the bone marrow. RESULTS: Median cumulative administered activity of [177Lu]Lu-satoreotide tetraxetan was 13.0 GBq over three cycles (13.1 GBq in part A and 12.9 GBq in part B). Overall, 17 (42.5%) patients experienced grade ≥ 3 treatment­related adverse events; the most common were lymphopenia, thrombocytopenia, and neutropenia. No grade 3/4 nephrotoxicity was observed. Two patients developed myeloid neoplasms considered treatment related by the investigator. Disease control rate for part A and part B was 94.7% (95% confidence interval [CI]: 82.3-99.4), and overall response rate was 21.1% (95% CI: 9.6-37.3). CONCLUSION: [177Lu]Lu-satoreotide tetraxetan, administered at a median cumulative activity of 13.0 GBq over three cycles, has an acceptable safety profile with a promising clinical response in patients with progressive, SSTR-positive NETs. A 5-year long-term follow-up study is ongoing. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02592707. Registered October 30, 2015.


Subject(s)
Neuroendocrine Tumors , Organometallic Compounds , Humans , Neuroendocrine Tumors/radiotherapy , Neuroendocrine Tumors/drug therapy , Receptors, Somatostatin , Octreotide/adverse effects , Follow-Up Studies , Organometallic Compounds/adverse effects
5.
Eur J Nucl Med Mol Imaging ; 50(11): 3225-3234, 2023 09.
Article in English | MEDLINE | ID: mdl-37300572

ABSTRACT

PURPOSE: Dosimetry is rarely performed for the treatment of differentiated thyroid cancer patients with Na[131I]I (radioiodine), and information regarding absorbed doses delivered is limited. Collection of dosimetry data in a multi-centre setting requires standardised quantitative imaging and dosimetry. A multi-national, multi-centre clinical study was performed to assess absorbed doses delivered to normal organs for differentiated thyroid cancer patients treated with Na[131I]I. METHODS: Patients were enrolled in four centres and administered fixed activities of 1.1 or 3.7 GBq of Na[131I]I using rhTSH stimulation or under thyroid hormone withdrawal according to local protocols. Patients were imaged using SPECT(/CT) at variable imaging time-points following standardised acquisition and reconstruction protocols. Whole-body retention data were collected. Dosimetry for normal organs was performed at two dosimetry centres and results collated. RESULTS: One hundred and five patients were recruited. Median absorbed doses per unit administered activity of 0.44, 0.14, 0.05 and 0.16 mGy/MBq were determined for the salivary glands of patients treated at centre 1, 2, 3 and 4, respectively. Median whole-body absorbed doses for 1.1 and 3.7 GBq were 0.05 Gy and 0.16 Gy, respectively. Median whole-body absorbed doses per unit administered activity of 0.04, 0.05, 0.04 and 0.04 mGy/MBq were calculated for centre 1, 2, 3 and 4, respectively. CONCLUSIONS: A wide range of normal organ doses were observed for differentiated thyroid cancer patients treated with Na[131I]I, highlighting the necessity for individualised dosimetry. The results show that data may be collated from multiple centres if minimum standards for the acquisition and dosimetry protocols can be achieved.


Subject(s)
Iodine Radioisotopes , Thyroid Neoplasms , Humans , Iodine Radioisotopes/therapeutic use , Radiometry/methods , Thyroid Neoplasms/radiotherapy , Thyroid Neoplasms/drug therapy , Salivary Glands
6.
Eur J Nucl Med Mol Imaging ; 50(9): 2830-2845, 2023 07.
Article in English | MEDLINE | ID: mdl-37246997

ABSTRACT

Prostate-specific membrane antigen (PSMA) is expressed by the majority of clinically significant prostate adenocarcinomas, and patients with target-positive disease can easily be identified by PSMA PET imaging. Promising results with PSMA-targeted radiopharmaceutical therapy have already been obtained in early-phase studies using various combinations of targeting molecules and radiolabels. Definitive evidence of the safety and efficacy of [177Lu]Lu-PSMA-617 in combination with standard-of-care has been demonstrated in patients with metastatic castration-resistant prostate cancer, whose disease had progressed after or during at least one taxane regimen and at least one novel androgen-axis drug. Preliminary data suggest that 177Lu-PSMA-radioligand therapy (RLT) also has high potential in additional clinical situations. Hence, the radiopharmaceuticals [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T are currently being evaluated in ongoing phase 3 trials. The purpose of this guideline is to assist nuclear medicine personnel, to select patients with highest potential to benefit from 177Lu-PSMA-RLT, to perform the procedure in accordance with current best practice, and to prepare for possible side effects and their clinical management. We also provide expert advice, to identify those clinical situations which may justify the off-label use of [177Lu]Lu-PSMA-617 or other emerging ligands on an individual patient basis.


Subject(s)
Nuclear Medicine , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Radiopharmaceuticals/adverse effects , Heterocyclic Compounds, 1-Ring/therapeutic use , Dipeptides/therapeutic use , Lutetium/therapeutic use , Treatment Outcome
7.
J Radiol Prot ; 43(4)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37669663

ABSTRACT

In September 2022, the International Commission on Radiological Protection (ICRP) organised a workshop in Estoril, Portugal, on the 'Review and Revision of the System of Radiological Protection: A Focus on Research Priorities'. The workshop, which was a side event of the European Radiation Protection Week, offered an opportunity to comment on a recent paper published by ICRP on areas of research to support the System of Radiological Protection. Altogether, about 150 individuals participated in the workshop. After the workshop, 16 of the 30 organisations in formal relations with ICRP provided written feedback. All participants and organisations followed ICRP's view that further research in various areas will offer additional support in improving the System in the short, medium, and long term. In general, it was emphasised that any research should be outcome-focused in that it should improve protection of people or the environment. Many research topics mentioned by the participants were in line with those already identified by ICRP in the paper noted above. In addition, further ideas were expressed such as, for example, that lessons learned during the COVID-19 pandemic with regards to the non-radiological social, economic and environment impacts, should be analysed for their usefulness to enhance radiological protection, and that current protection strategies and application of current radiological protection principles may need to be adapted to military scenarios like those observed recently during the military conflict in the Ukraine or the detonation of a nuclear weapon. On a broader perspective, it was discussed how radiation research and radiological protection can contribute towards the Sustainable Development Goals announced by the United Nations in 2015. This paper summarises the views expressed during the workshop and the major take home messages identified by ICRP.

8.
Eur J Nucl Med Mol Imaging ; 49(6): 1964-1969, 2022 05.
Article in English | MEDLINE | ID: mdl-34910233

ABSTRACT

AIM: Recent advancements in PET technology have brought with it significant improvements in PET performance and image quality. In particular, the extension of the axial field of view of PET systems, and the introduction of semiconductor technology into the PET detector, initially for PET/MR, and more recently available long-field-of-view PET/CT systems (≥ 25 cm) have brought a step change improvement in the sensitivity of PET scanners. Given the requirement to limit paediatric doses, this increase in sensitivity is extremely welcome for the imaging of children and young people. This is even more relevant with PET/MR, where the lack of CT exposures brings further dose reduction benefits to this population. In this short article, we give some details around the benefits around new PET technology including PET/MR and its implications on the EANM paediatric dosage card. MATERIAL AND METHODS : Reflecting on EANM adult guidance on injected activities, and making reference to bed overlap and the concept of MBq.min bed-1 kg-1, we use published data on image quality from PET/MR systems to update the paediatric dosage card for PET/MR and extended axial field of view (≥ 25 cm) PET/CT systems. However, this communication does not cover the expansion of paediatric dosing for the half-body and total-body scanners that have recently come to market. RESULTS: In analogy to the existing EANM dosage card, new parameters for the EANM paediatric dosage card were developed (class B, baseline value: 10.7 MBq, minimum recommended activity 10 MBq). The recommended administered activities for the systems considered in this communication range from 11 MBq [18F]FDG for a child with a weight of 3 kg to 149 MBq [18F]FDG for a paediatric patient weight of 68 kg, assuming a scan of 3 min per bed position. The mean effective dose over all ages (1 year and older) is 2.85 mSv. CONCLUSION: With this, recommendations for paediatric dosing are given for systems that have not been considered previously.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Adolescent , Adult , Child , Humans , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Radiopharmaceuticals , Technology
9.
Eur J Nucl Med Mol Imaging ; 50(1): 61-66, 2022 12.
Article in English | MEDLINE | ID: mdl-36006443

ABSTRACT

Artificial intelligence (AI) is coming into the field of nuclear medicine, and it is likely here to stay. As a society, EANM can and must play a central role in the use of AI in nuclear medicine. In this position paper, the EANM explains the preconditions for the implementation of AI in NM and takes position.


Subject(s)
Nuclear Medicine , Humans , Artificial Intelligence , Radionuclide Imaging
10.
Eur J Nucl Med Mol Imaging ; 49(12): 3981-3988, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35759008

ABSTRACT

PURPOSE: As α-emitters for radiopharmaceutical therapies are administered systemically by intravenous injection, blood will be irradiated by α-particles that induce clustered DNA double-strand breaks (DSBs). Here, we investigated the induction and repair of DSB damage in peripheral blood mononuclear cells (PBMCs) as a function of the absorbed dose to the blood following internal ex vivo irradiation with [223Ra]RaCl2. METHODS: Blood samples of ten volunteers were irradiated by adding [223Ra]RaCl2 solution with different activity concentrations resulting in absorbed doses to the blood of 3 mGy, 25 mGy, 50 mGy and 100 mGy. PBMCs were isolated, divided in three parts and either fixed directly (d-samples) or after 4 h or 24 h culture. After immunostaining, the induced γ-H2AX α-tracks were counted. The time-dependent decrease in α-track frequency was described with a model assuming a repair rate R and a fraction of non-repairable damage Q. RESULTS: For 25 mGy, 50 mGy and 100 mGy, the numbers of α-tracks were significantly increased compared to baseline at all time points. Compared to the corresponding d-samples, the α-track frequency decreased significantly after 4 h and after 24 h. The repair rates R were (0.24 ± 0.05) h-1 for 25 mGy, (0.16 ± 0.04) h-1 for 50 mGy and (0.13 ± 0.02) h-1 for 100 mGy, suggesting faster repair at lower absorbed doses, while Q-values were similar. CONCLUSION: The results obtained suggest that induction and repair of the DSB damage depend on the absorbed dose to the blood. Repair rates were similar to what has been observed for irradiation with low linear energy transfer.


Subject(s)
DNA Repair , Leukocytes, Mononuclear , DNA/radiation effects , DNA Damage , Dose-Response Relationship, Radiation , Humans , Radiopharmaceuticals
11.
Eur J Nucl Med Mol Imaging ; 49(13): 4452-4463, 2022 11.
Article in English | MEDLINE | ID: mdl-35809090

ABSTRACT

Artificial intelligence (AI) will change the face of nuclear medicine and molecular imaging as it will in everyday life. In this review, we focus on the potential applications of AI in the field, both from a physical (radiomics, underlying statistics, image reconstruction and data analysis) and a clinical (neurology, cardiology, oncology) perspective. Challenges for transferability from research to clinical practice are being discussed as is the concept of explainable AI. Finally, we focus on the fields where challenges should be set out to introduce AI in the field of nuclear medicine and molecular imaging in a reliable manner.


Subject(s)
Artificial Intelligence , Nuclear Medicine , Humans , Radionuclide Imaging , Image Processing, Computer-Assisted/methods , Molecular Imaging
12.
Eur J Nucl Med Mol Imaging ; 48(1): 67-72, 2021 01.
Article in English | MEDLINE | ID: mdl-33057773

ABSTRACT

The EC Directive 2013/59/Euratom states in article 56 that exposures of target volumes in nuclear medicine treatments shall be individually planned and their delivery appropriately verified. The Directive also mentions that medical physics experts should always be appropriately involved in those treatments. Although it is obvious that, in nuclear medicine practice, every nuclear medicine physician and physicist should follow national rules and legislation, the EANM considered it necessary to provide guidance on how to interpret the Directive statements for nuclear medicine treatments.For this purpose, the EANM proposes to distinguish three levels in compliance to the optimization principle in the directive, inspired by the indication of levels in prescribing, recording and reporting of absorbed doses after radiotherapy defined by the International Commission on Radiation Units and Measurements (ICRU): Most nuclear medicine treatments currently applied in Europe are standardized. The minimum requirement for those treatments is ICRU level 1 ("activity-based prescription and patient-averaged dosimetry"), which is defined by administering the activity within 10% of the intended activity, typically according to the package insert or to the respective EANM guidelines, followed by verification of the therapy delivery, if applicable. Non-standardized treatments are essentially those in developmental phase or approved radiopharmaceuticals being used off-label with significantly (> 25% more than in the label) higher activities. These treatments should comply with ICRU level 2 ("activity-based prescription and patient-specific dosimetry"), which implies recording and reporting of the absorbed dose to organs at risk and optionally the absorbed dose to treatment regions. The EANM strongly encourages to foster research that eventually leads to treatment planning according to ICRU level 3 ("dosimetry-guided patient-specific prescription and verification"), whenever possible and relevant. Evidence for superiority of therapy prescription on basis of patient-specific dosimetry has not been obtained. However, the authors believe that a better understanding of therapy dosimetry, i.e. how much and where the energy is delivered, and radiobiology, i.e. radiation-related processes in tissues, are keys to the long-term improvement of our treatments.


Subject(s)
Nuclear Medicine , Europe , European Union , Humans , Radiometry , Radionuclide Imaging
13.
Eur J Nucl Med Mol Imaging ; 48(11): 3365-3377, 2021 10.
Article in English | MEDLINE | ID: mdl-33912987

ABSTRACT

With an increasing variety of radiopharmaceuticals for diagnostic or therapeutic nuclear medicine as valuable diagnostic or treatment option, radiobiology plays an important role in supporting optimizations. This comprises particularly safety and efficacy of radionuclide therapies, specifically tailored to each patient. As absorbed dose rates and absorbed dose distributions in space and time are very different between external irradiation and systemic radionuclide exposure, distinct radiation-induced biological responses are expected in nuclear medicine, which need to be explored. This calls for a dedicated nuclear medicine radiobiology. Radiobiology findings and absorbed dose measurements will enable an improved estimation and prediction of efficacy and adverse effects. Moreover, a better understanding on the fundamental biological mechanisms underlying tumor and normal tissue responses will help to identify predictive and prognostic biomarkers as well as biomarkers for treatment follow-up. In addition, radiobiology can form the basis for the development of radiosensitizing strategies and radioprotectant agents. Thus, EANM believes that, beyond in vitro and preclinical evaluations, radiobiology will bring important added value to clinical studies and to clinical teams. Therefore, EANM strongly supports active collaboration between radiochemists, radiopharmacists, radiobiologists, medical physicists, and physicians to foster research toward precision nuclear medicine.


Subject(s)
Neoplasms , Nuclear Medicine , Biomarkers , Humans , Radiobiology , Radionuclide Imaging
14.
Article in German | MEDLINE | ID: mdl-34298572

ABSTRACT

A 29-year-old woman suffered major traumatic brain injury caused by a car accident. As diagnostic measures had revealed an early pregnancy (9th week), treatment on the intensive care unit was continued for 5 months, after unfavourable cerebral prognosis was followed by an irreversible loss of brain function in the 10th week of pregnancy. After assisted vaginal delivery of a healthy child in the 31th week of pregnancy on the critical care unit, organ procurement took place according to the presumed will of the patient. The article presents the details of the critical care therapy and discusses the supportive medical measures. Those measures served primarily to uphold the pregnancy und support the healthy development and delivery of the fetus and only in second instance the organ preservation aiming on organ donation. Necessary measures included maintenance of vital functions, hemostasis of electrolytes, nutrition, treatment of infection, prevention of adverse effects on the fetus, substitution of hormones and vitamins as well as the preparation of a planned or an unplanned delivery.


Subject(s)
Organ Transplantation , Tissue and Organ Procurement , Adult , Brain/diagnostic imaging , Child , Critical Care , Female , Humans , Intensive Care Units , Pregnancy
15.
Eur J Nucl Med Mol Imaging ; 46(8): 1723-1732, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31028426

ABSTRACT

PURPOSE: The aim of this study was to investigate the time- and dose-dependency of DNA double-strand break (DSB) induction and repair in peripheral blood leucocytes of prostate cancer patients during therapy with 177Lu-PSMA. METHODS: Blood samples from 16 prostate cancer patients receiving their first 177Lu-PSMA therapy were taken before and at seven time-points (between 1 h and 96 h) after radionuclide administration. Absorbed doses to the blood were calculated using integrated time-activity curves of the blood and the whole-body. For DSB quantification, leucocytes were isolated, fixed in ethanol and immunostained with γ-H2AX and 53BP1 antibodies. Colocalizing foci of both DSB markers were manually counted in a fluorescence microscope. RESULTS: The average number of radiation-induced foci (RIF) per cell increased within the first 4 h after administration, followed by a decrease indicating DNA repair. The number of RIF during the first 2.6 h correlated linearly with the absorbed dose to the blood (R2 = 0.58), in good agreement with previously published in-vitro data. At late time-points (48 h and 96 h after administration), the number of RIF correlated linearly with the absorbed dose rate (R2 = 0.56). In most patients, DNA DSBs were repaired effectively. However, in some patients RIF did not disappear completely even 96 h after administration. CONCLUSION: The general pattern of the time- and dose-dependent induction and disappearance of RIF during 177Lu-PSMA therapy is similar to that of other radionuclide therapies.


Subject(s)
DNA Damage , Dipeptides/adverse effects , Heterocyclic Compounds, 1-Ring/adverse effects , Leukocytes/radiation effects , Prostatic Neoplasms/radiotherapy , Radiopharmaceuticals/adverse effects , Aged , Aged, 80 and over , DNA Breaks, Double-Stranded , Dipeptides/administration & dosage , Dipeptides/therapeutic use , Dose-Response Relationship, Radiation , Heterocyclic Compounds, 1-Ring/administration & dosage , Heterocyclic Compounds, 1-Ring/therapeutic use , Humans , Lutetium , Male , Middle Aged , Prostate-Specific Antigen , Prostatic Neoplasms/blood , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/therapeutic use , Radiotherapy Dosage
16.
Eur J Nucl Med Mol Imaging ; 46(12): 2536-2544, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31440799

ABSTRACT

Prostate-specific membrane antigen (PSMA) is expressed in most prostate cancers and can be identified by PSMA-ligand imaging, which has already become clinically accepted in several countries in- and outside Europe. PSMA-directed radioligand therapy (PSMA-RLT) with Lutetium-177 (177Lu-PSMA) is currently undergoing clinical validation. Retrospective observational data have documented favourable safety and striking clinical responses. Recent results from a prospective clinical trial (phase II) have been published confirming high response rates, low toxicity and reduction of pain in metastatic castration-resistant prostate cancer (mCRPC) patients who had progressed after conventional treatments. Such patients typically survive for periods less than 1.5 years. This has led some facilities to adopt compassionate or unproven use of this therapy, even in the absence of validation within a randomised-controlled trial. As a result, a consistent body of evidence exists to support efficacy and safety data of this treatment. The purpose of this guideline is to assist nuclear medicine specialists to deliver PSMA-RLT as an "unproven intervention in clinical practice", in accordance with the best currently available knowledge.


Subject(s)
Antigens, Surface/metabolism , Glutamate Carboxypeptidase II/metabolism , Lutetium/therapeutic use , Nuclear Medicine , Practice Guidelines as Topic , Radioisotopes/therapeutic use , Documentation , Europe , Humans , Ligands , Lutetium/adverse effects , Male , Prostatic Neoplasms/radiotherapy , Radioisotopes/adverse effects , Radiometry , Safety
20.
Eur J Nucl Med Mol Imaging ; 43(12): 2122-2130, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27329046

ABSTRACT

PURPOSE: The aim of this study was to synthesize and preclinically evaluate an 18F-PSMA positron emission tomography (PET) tracer. Prostate-specific membrane antigen (PSMA) specificity, biodistribution, and dosimetry in healthy and tumor-bearing mice were determined. METHODS: Several conditions for the labeling of 18F-PSMA-11 via 18F-AlF-complexation were screened to study the influence of reaction temperature, peptide amount, ethanol volume, and reaction time. After synthesis optimization, biodistribution and dosimetry studies were performed in C57BL6 mice. For proof of PSMA-specificity, mice were implanted with PSMA-negative (PC3) and PSMA-positive (LNCaP) tumors in contralateral flanks. Static and dynamic microPET/computed tomography (CT) imaging was performed. RESULTS: Quantitative labeling yields could be achieved with >97 % radiochemical purity. The 18F-PSMA-11 uptake was more than 24-fold higher in PSMA-high LNCaP than in PSMA-low PC3 tumors (18.4 ± 3.3 %ID/g and 0.795 ± 0.260 %ID/g, respectively; p < 4.2e-5). Results were confirmed by ex vivo gamma counter analysis of tissues after the last imaging time point. The highest absorbed dose was reported for the kidneys. The maximum effective dose for an administered activity of 200 MBq was 1.72 mSv. CONCLUSION: 18F-PSMA-11 using direct labeling of chelate-attached peptide with aluminum-fluoride detected PSMA-expressing tumors with high tumor-to-liver ratios. The kidneys were the dose-limiting organs. Even by applying the most stringent dosimetric calculations, injected activities of up to 0.56 GBq are feasible.


Subject(s)
Antigens, Surface/metabolism , Biomarkers, Tumor/metabolism , Glutamate Carboxypeptidase II/metabolism , Organometallic Compounds/pharmacokinetics , Positron-Emission Tomography/methods , Prostatic Neoplasms/metabolism , Radiation Exposure/analysis , Animals , Cell Line, Tumor , Drug Evaluation, Preclinical , Edetic Acid/analogs & derivatives , Fluorine Radioisotopes/pharmacokinetics , Gallium Isotopes , Gallium Radioisotopes , Isotope Labeling/methods , Male , Metabolic Clearance Rate , Mice , Mice, Inbred C57BL , Oligopeptides , Organ Specificity , Organometallic Compounds/chemical synthesis , Prostatic Neoplasms/diagnostic imaging , Radiation Dosage , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution , Whole-Body Counting
SELECTION OF CITATIONS
SEARCH DETAIL