Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Bacteriol ; 201(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-30988031

ABSTRACT

Certain Pseudomonas aeruginosa strains produce a homolog of colicin M, namely, PaeM, that specifically inhibits peptidoglycan biosynthesis of susceptible P. aeruginosa strains by hydrolyzing the lipid II intermediate precursor. Two variants of this pyocin were identified whose sequences mainly differed in the N-terminal protein moiety, i.e., the region involved in the binding to the FiuA outer membrane receptor and translocation into the periplasm. The antibacterial activity of these two variants, PaeM1 and PaeM2, was tested against various P. aeruginosa strains comprising reference strains PAO1 and PA14, PaeM-producing strains, and 60 clinical isolates. Seven of these strains, including PAO1, were susceptible to only one variant (2 to PaeM1 and 5 to PaeM2), and 11 were affected by both. The remaining strains, including PA14 and four PaeM1 producers, were resistant to both variants. The differences in the antibacterial spectra of the two PaeM homologs prompted us to investigate the molecular determinants allowing their internalization into P. aeruginosa cells, taking the PAO1 strain that is susceptible to PaeM2 but resistant to PaeM1 as the indicator strain. Heterologous expression of fiuA gene orthologs from different strains into PAO1, site-directed mutagenesis experiments, and construction of PaeM chimeric proteins provided evidence that the cell susceptibility and discrimination differences between the PaeM variants resulted from a polymorphism of both the pyocin and the outer membrane receptor FiuA. Moreover, we found that a third component, TonB1, a protein involved in iron transport in P. aeruginosa, working together with FiuA and the ExbB/ExbD complex, was directly implicated in this discrimination.IMPORTANCE Bacterial antibiotic resistance constitutes a threat to human health, imposing the need for identification of new targets and development of new strategies to fight multiresistant pathogens. Bacteriocins and other weapons that bacteria have themselves developed to kill competitors are therefore of great interest and a valuable source of inspiration for us. Attention was paid here to two variants of a colicin M homolog (PaeM) produced by certain strains of P. aeruginosa that inhibit the growth of their congeners by blocking cell wall peptidoglycan synthesis. Molecular determinants allowing recognition of these pyocins by the outer membrane receptor FiuA were identified, and a receptor polymorphism affecting the susceptibility of P. aeruginosa clinical strains was highlighted, providing new insights into the potential use of these pyocins as an alternative to antibiotics.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Drug Resistance, Bacterial , Polymorphism, Genetic , Pseudomonas aeruginosa/genetics , Pyocins/pharmacology , Anti-Bacterial Agents/pharmacology , Cell Wall/chemistry , Mutagenesis, Site-Directed , Peptidoglycan/chemistry , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Receptors, Cell Surface
2.
J Gen Virol ; 98(8): 2181-2189, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28771128

ABSTRACT

ssRNA bacteriophages are very abundant but poorly studied, particularly in relation to their effect on bacterial evolution. We isolated a new Pseudomonas aeruginosa levivirus, vB_PaeL_PcyII-10_LeviOr01, from hospital waste water. Its genome comprises 3669 nucleotides and encodes four putative proteins. Following bacterial infection, a carrier state is established in a fraction of the cells, conferring superinfection immunity. Such cells also resist other phages that use type IV pili as a receptor. The carrier population is composed of a mixture of cells producing phage, and susceptible cells that are non-carriers. Carrier cells accumulate phage until they burst, releasing large quantities of virions. The continuous presence of phage favours the emergence of host variants bearing mutations in genes involved in type IV pilus biogenesis, but also in genes affecting lipopolysaccharide (LPS) synthesis. The establishment of a carrier state in which phage particles are continuously released was previously reported for some dsRNA phages, but has not previously been described for a levivirus. The present results highlight the importance of the carrier state, an association that benefits both phages and bacteria and plays a role in bacterial evolution.


Subject(s)
Host-Parasite Interactions , Levivirus/physiology , Pseudomonas Phages/physiology , Pseudomonas aeruginosa/virology , Genome, Viral , Levivirus/isolation & purification , Pseudomonas Phages/isolation & purification , RNA, Viral/genetics , Sequence Analysis, DNA , Virus Release , Virus Replication
3.
Microbiology (Reading) ; 163(6): 848-855, 2017 06.
Article in English | MEDLINE | ID: mdl-28682742

ABSTRACT

Pseudomonas aeruginosa lipopolysaccharides (LPS) serve as primary receptors for many bacteriophages and, consequently, their biosynthesis is frequently affected in phage-resistant mutants. We previously isolated phage-resistant PAO1 mutants using three different phages, and showed that they were affected in the synthesis of LPS. Here we have investigated in detail the effect of mutations in seven genes involved in different steps of the production of core and oligosaccharide chains. The band profile of purified LPS was analysed by PAGE, and we further characterized the O-chains and core structures by MALDI mass spectrometry (MS). Mild LPS extraction conditions and native LPS MS analyses helped unveil lipid A molecular species with three phosphate residues in the close vicinity of the already highly charged inner-core region. No other MS direct analysis has allowed this peculiarity to be demonstrated for native lipid A high-molecular-weight molecular species, in normal growth conditions and without involving separation techniques. The present results shed light on the possible interactions between the phages and the LPS structures in the early phase of infection.


Subject(s)
Bacteriophages/physiology , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Pseudomonas aeruginosa/metabolism , Bacteriophages/genetics , Mass Spectrometry , Mutation , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/virology , Receptors, Virus/chemistry , Receptors, Virus/metabolism
4.
Microbiology (Reading) ; 162(5): 748-763, 2016 05.
Article in English | MEDLINE | ID: mdl-26921273

ABSTRACT

Coevolution between bacteriophages (phages) and their prey is the result of mutualistic interactions. Here, we show that pseudolysogeny is a frequent outcome of infection by virulent phages of Pseudomonas aeruginosa and that selection of resistant bacterial mutants is favoured by continuous production of phages. We investigated the frequency and characteristics of P. aeruginosa strain PAO1 variants resisting infection by different combinations of virulent phages belonging to four genera. The frequency of resistant bacteria was 10- 5 for single phage infection and 10- 6 for infections with combinations of two or four phages. The genome of 27 variants was sequenced and the comparison with the genome of the parental PAO1 strain allowed the identification of point mutations or small indels. Four additional variants were characterized by a candidate gene approach. In total, 27 independent mutations were observed affecting 14 genes and a regulatory region. The mutations affected genes involved in biosynthesis of type IV pilus, alginate, LPS and O-antigen. Half of the variants possessed changes in homopolymer tracts responsible for frameshift mutations and these phase variation mutants were shown to be unstable. Eleven double mutants were detected. The presence of free phage DNA was observed in association with exclusion of superinfection in half of the variants and no chromosomal mutation could be found in three of them. Upon further growth of these pseudolysogens, some variants with new chromosomal mutations were recovered, presumably due to continuous evolutionary pressure.


Subject(s)
Bacteriophages/growth & development , DNA, Bacterial/genetics , Genome, Bacterial/genetics , Lysogeny/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/virology , Alginates , Bacteriophages/genetics , Bacteriophages/pathogenicity , Base Sequence , Biofilms/growth & development , DNA, Viral/genetics , Fimbriae, Bacterial/genetics , Genome, Viral/genetics , Glucuronic Acid/genetics , Hexuronic Acids , Lipopolysaccharides/genetics , Mutation/genetics , O Antigens/genetics , Pseudomonas aeruginosa/classification , Sequence Analysis, DNA
5.
Antibiotics (Basel) ; 9(6)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570896

ABSTRACT

Pseudomonas aeruginosa is responsible for long-term infections and is particularly resistant to treatments when hiding inside the extracellular matrix or biofilms. Phage therapy might represent an alternative to antibiotic treatment, but up to 10% of clinical strains appear to resist multiple phages. We investigated the characteristics of P. aeruginosa clinical strains naturally resistant to phages and compared them to highly susceptible strains. The phage-resistant strains were defective in lipopolysaccharide (LPS) biosynthesis, were nonmotile and displayed an important degree of autolysis, releasing phages and pyocins. Complete genome sequencing of three resistant strains showed the existence of a large accessory genome made of multiple insertion elements, genomic islands, pyocins and prophages, including two phages performing lateral transduction. Mutations were found in genes responsible for the synthesis of LPS and/or type IV pilus, the major receptors for most phages. CRISPR-Cas systems appeared to be absent or inactive in phage-resistant strains, confirming that they do not play a role in the resistance to lytic phages but control the insertion of exogenous sequences. We show that, despite their apparent weakness, the multiphage-resistant strains described in this study displayed selective advantages through the possession of various functions, including weapons to eliminate other strains of the same or closely related species.

6.
PLoS One ; 14(4): e0215456, 2019.
Article in English | MEDLINE | ID: mdl-30990839

ABSTRACT

Bacteria and their bacteriophages coexist and coevolve for the benefit of both in a mutualistic association. Multiple mechanisms are used by bacteria to resist phages in a trade-off between survival and maintenance of fitness. In vitro studies allow inquiring into the fate of virus and host in different conditions aimed at mimicking natural environment. We analyse here the mutations emerging in a clinical Pseudomonas aeruginosa strain in response to infection by Ab09, a N4-like lytic podovirus and describe a variety of chromosomal deletions and mutations conferring resistance. Some deletions result from illegitimate recombination taking place during long-term maintenance of the phage genome. Phage variants with mutations in a tail fiber gene are selected during pseudolysogeny with the capacity to infect resistant cells and produce large plaques. These results highlight the complex host/phage association and suggest that phage Ab09 promotes bacterial chromosome rearrangements. Finally this study points to the possible role of two bacterial genes in Ab09 phage adhesion to the cell, rpsB encoding protein S2 of the 30S ribosomal subunit and ORF1587 encoding a Wzy-like membrane protein involved in LPS biosynthesis.


Subject(s)
Bacterial Proteins , Chromosomes, Bacterial , Genome, Viral , Podoviridae , Pseudomonas aeruginosa , Virus Attachment , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Podoviridae/genetics , Podoviridae/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/virology , Sequence Deletion
7.
Methods Mol Biol ; 1693: 85-98, 2018.
Article in English | MEDLINE | ID: mdl-29119434

ABSTRACT

Bacteria and bacteriophages coexist and coevolve, bacteriophages being obligatory predators exerting an evolutionary pressure on their prey. Mechanisms in action vary depending on the bacterial genomic content and on the regulation of the bacteriophage cycle. To assess the multiplicity of bacterial genes involved in resistance as well as the changes in the bacteriophage interactions with the bacteria, it is necessary to isolate and investigate large numbers of independent resistant variants. Here we describe protocols that have been applied to the study of Pseudomonas aeruginosa and four of its virulent bacteriophages belonging to the Podoviridae and Myoviridae bacteriophage families. Mutations are identified using whole genome sequencing of resistant variants. Phenotypic analyses are performed to describe the changes conferred by the mutations.


Subject(s)
Pseudomonas Infections/microbiology , Pseudomonas Phages/physiology , Pseudomonas aeruginosa/virology , Humans , Pseudomonas Infections/genetics , Pseudomonas Infections/virology , Pseudomonas Phages/isolation & purification , Pseudomonas aeruginosa/genetics
8.
PLoS One ; 12(1): e0169684, 2017.
Article in English | MEDLINE | ID: mdl-28060939

ABSTRACT

Bacteriophage vB_PaeP_PAO1_phiC725A (short name phiC725A) was isolated following mitomycin C induction of C7-25, a clinical Pseudomonas aeruginosa strain carrying phiC725A as a prophage. The phiC725A genome sequence shows similarity to F116, a P. aeruginosa podovirus capable of generalized transduction. Likewise, phiC725A is a podovirus with long tail fibers. PhiC725A was able to lysogenize two additional P. aeruginosa strains in which it was maintained both as a prophage and in an episomal state. Investigation by deep sequencing showed that bacterial DNA carried inside phage particles originated predominantly from a 700-800kb region, immediately flanking the attL prophage insertion site, whether the phages were induced from a lysogen or recovered after infection. This indicates that during productive replication, recombination of phage genomes with the bacterial chromosome at the att site occurs occasionally, allowing packaging of adjacent bacterial DNA.


Subject(s)
DNA, Bacterial , Pseudomonas Phages/physiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/virology , Virus Assembly , Gene Order , Genome, Bacterial , Genome, Viral , Lysogeny , Pseudomonas Phages/ultrastructure , Virion
9.
Genome Announc ; 4(6)2016 Nov 17.
Article in English | MEDLINE | ID: mdl-27856570

ABSTRACT

vB_PaeP_PcyII-10_P3P1 and vB_PaeM_PcyII-10_PII10A are Pseudomonas aeruginosa bacteriophages belonging, respectively, to the Lit1virus genus of the Podoviridae family and the Pbunavirus genus of the Myoviridae family. Their genomes are 72,778 bp and 65,712 bp long, containing 94 and 93 predicted open reading frames, respectively.

10.
PLoS One ; 10(6): e0130548, 2015.
Article in English | MEDLINE | ID: mdl-26115051

ABSTRACT

Twenty two distinct bacteriophages were isolated from sewage water from five locations in the city of Abidjan, Côte d'Ivoire over a two-year period, using a collection of Pseudomonas aeruginosa strains with diverse genotypes. The phages were characterized by their virulence spectrum on a panel of selected P. aeruginosa strains from cystic fibrosis patients and by whole genome sequencing. Twelve virions representing the observed diversity were visualised by electron microscopy. The combined observations showed that 17 phages, distributed into seven genera, were virulent, and that five phages were related to temperate phages belonging to three genera. Some showed similarity with known phages only at the protein level. The vast majority of the genetic variations among virulent phages from the same genus resulted from seemingly non-random horizontal transfer events, inside a population of P. aeruginosa phages with limited diversity. This suggests the existence of a single environmental reservoir or ecotype in which continuous selection is taking place. In contrast, mostly point mutations were observed among phages potentially capable of lysogenisation. This is the first study of P. aeruginosa phage diversity in an African city and it shows that a large variety of phage species can be recovered in a limited geographical site at least when different bacterial strains are used. The relative temporal and spatial stability of the Abidjan phage population might reflect equilibrium in the microbial community from which they are released.


Subject(s)
Pseudomonas aeruginosa/virology , Bacteriophages/genetics , Cote d'Ivoire , Genome, Viral/genetics , Microscopy, Electron , Molecular Sequence Data , Virion/genetics , Virion/ultrastructure
11.
PLoS One ; 9(4): e93777, 2014.
Article in English | MEDLINE | ID: mdl-24699529

ABSTRACT

A novel temperate bacteriophage of Pseudomonas aeruginosa, phage vB_PaeP_Tr60_Ab31 (alias Ab31) is described. Its genome is composed of structural genes related to those of lytic P. putida phage AF, and regulatory genes similar to those of temperate phage PAJU2. The virion structure resembles that of phage AF and other lytic Podoviridae (S. enterica Epsilon 15 and E. coli phiv10) with similar tail spikes. Ab31 was able to infect P. aeruginosa strain PA14 and two genetically related strains called Tr60 and Tr162, out of 35 diverse strains from cystic fibrosis patients. Analysis of resistant host variants revealed different phenotypes, including induction of pigment and alginate overproduction. Whole genome sequencing of resistant variants highlighted the existence of a large deletion of 234 kbp in two strains, encompassing a cluster of genes required for the production of CupA fimbriae. Stable lysogens formed by Ab31 in strain Tr60, permitted the identification of the insertion site. During colonization of the lung in cystic fibrosis patients, P. aeruginosa adapts by modifying its genome. We suggest that bacteriophages such as Ab31 may play an important role in this adaptation by selecting for bacterial characteristics that favor persistence of bacteria in the lung.


Subject(s)
Chimera , Cystic Fibrosis/microbiology , Drug Resistance, Bacterial/genetics , Pseudomonas Phages/genetics , Humans , Pseudomonas aeruginosa/genetics
SELECTION OF CITATIONS
SEARCH DETAIL