Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters

Publication year range
1.
Circulation ; 145(14): 1084-1101, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35236094

ABSTRACT

BACKGROUND: In most eukaryotic cells, the mitochondrial DNA (mtDNA) is transmitted uniparentally and present in multiple copies derived from the clonal expansion of maternally inherited mtDNA. All copies are therefore near-identical, or homoplasmic. The presence of >1 mtDNA variant in the same cytoplasm can arise naturally or result from new medical technologies aimed at preventing mitochondrial genetic diseases and improving fertility. The latter is called divergent nonpathologic mtDNA heteroplasmy (DNPH). We hypothesized that DNPH is maladaptive and usually prevented by the cell. METHODS: We engineered and characterized DNPH mice throughout their lifespan using transcriptomic, metabolomic, biochemical, physiologic, and phenotyping techniques. We focused on in vivo imaging techniques for noninvasive assessment of cardiac and pulmonary energy metabolism. RESULTS: We show that DNPH impairs mitochondrial function, with profound consequences in critical tissues that cannot resolve heteroplasmy, particularly cardiac and skeletal muscle. Progressive metabolic stress in these tissues leads to severe pathology in adulthood, including pulmonary hypertension and heart failure, skeletal muscle wasting, frailty, and premature death. Symptom severity is strongly modulated by the nuclear context. CONCLUSIONS: Medical interventions that may generate DNPH should address potential incompatibilities between donor and recipient mtDNA.


Subject(s)
Frailty , Heart Diseases , Hypertension, Pulmonary , Adult , Animals , DNA, Mitochondrial/genetics , Frailty/pathology , Heart Diseases/pathology , Heteroplasmy , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Mice , Mitochondria/genetics
2.
Nature ; 535(7613): 561-5, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27383793

ABSTRACT

Human mitochondrial DNA (mtDNA) shows extensive within population sequence variability. Many studies suggest that mtDNA variants may be associated with ageing or diseases, although mechanistic evidence at the molecular level is lacking. Mitochondrial replacement has the potential to prevent transmission of disease-causing oocyte mtDNA. However, extension of this technology requires a comprehensive understanding of the physiological relevance of mtDNA sequence variability and its match with the nuclear-encoded mitochondrial genes. Studies in conplastic animals allow comparison of individuals with the same nuclear genome but different mtDNA variants, and have provided both supporting and refuting evidence that mtDNA variation influences organismal physiology. However, most of these studies did not confirm the conplastic status, focused on younger animals, and did not investigate the full range of physiological and phenotypic variability likely to be influenced by mitochondria. Here we systematically characterized conplastic mice throughout their lifespan using transcriptomic, proteomic,metabolomic, biochemical, physiological and phenotyping studies. We show that mtDNA haplotype profoundly influences mitochondrial proteostasis and reactive oxygen species generation,insulin signalling, obesity, and ageing parameters including telomere shortening and mitochondrial dysfunction, resulting in profound differences in health longevity between conplastic strains.


Subject(s)
Aging/genetics , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetic Variation/genetics , Metabolism/genetics , Mitochondria/genetics , Mitochondria/metabolism , Aging/physiology , Animals , Female , Genome, Mitochondrial/genetics , Haplotypes , Insulin/metabolism , Longevity/genetics , Male , Metabolism/physiology , Metabolomics , Mice , Mice, Congenic , Mitochondria/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Obesity/genetics , Obesity/metabolism , Phenotype , Proteomics , Reactive Oxygen Species/metabolism , Telomere Shortening , Transcriptome , Unfolded Protein Response
3.
Int J Mol Sci ; 23(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36077045

ABSTRACT

The Schuurs−Hoeijmakers syndrome (SHMS) or PACS1 Neurodevelopment Disorder (PACS1-NDD) is a rare autosomal dominant disease caused by mutations in the PACS1 gene. To date, only 87 patients have been reported and, surprisingly, most of them carry the same variant (c.607C>T; p.R203W). The most relevant clinical features of the syndrome include neurodevelopment delay, seizures or a recognizable facial phenotype. Moreover, some of these characteristics overlap with other syndromes, such as the PACS2 or Wdr37 syndromes. The encoded protein phosphofurin acid cluster sorting 1 (PACS-1) is able to bind to different client proteins and direct them to their subcellular final locations. Therefore, although its main function is protein trafficking, it could perform other roles related to its client proteins. In patients with PACS1-NDD, a gain-of-function or a dominant negative mechanism for the mutated protein has been suggested. This, together with the fact that most of the patients carry the same genetic variant, makes it a good candidate for novel therapeutic approaches directed to decreasing the toxic effect of the mutated protein. Some of these strategies include the use of antisense oligonucleotides (ASOs) or targeting of its client proteins.


Subject(s)
Vesicular Transport Proteins , Humans , Mutation , Phenotype , Protein Transport , Syndrome , Vesicular Transport Proteins/genetics
4.
Br J Clin Pharmacol ; 86(8): 1661-1666, 2020 08.
Article in English | MEDLINE | ID: mdl-32110830

ABSTRACT

Voriconazole is an antifungal metabolised by CYP2C19 enzyme, which can be inhibited by proton-pump inhibitors (PPIs). A prospective observational study was carried out to determine the influence of PPIs on voriconazole pharmacokinetic. The 78 patients included were divided into 4 groups: omeprazole (n = 32), pantoprazole (n = 25), esomeprazole (n = 3) and no PPI (n = 18). Patients with no PPI had no significant difference in plasma voriconazole concentration when compared with those with PPI (2.63 ± 2.13 µg/mL [95% confidence interval {CI} 1.57-3.69] vs 2.11 ± 1.73 µg/mL [95%CI 1.67-2.55], P > .05). However, voriconazole plasma concentration was significantly lower in patients treated with pantoprazole vs those treated with omeprazole (1.44 ± 1.22 µg/mL [95%CI 0.94-1.94) vs 2.67 ± 1.88 µg/mL [95%CI 2.02-3.32], P = .013) suggesting a greater CYP2C19 enzyme inhibitory effect of omeprazole. This study demonstrates the greater CYP inhibition capacity of omeprazole and should be helpful for the choice of PPIs for patients treated with voriconazole.


Subject(s)
Omeprazole/therapeutic use , Pantoprazole/therapeutic use , Proton Pump Inhibitors/therapeutic use , Voriconazole/blood , 2-Pyridinylmethylsulfinylbenzimidazoles , Drug Interactions , Enzyme Inhibitors , Esomeprazole , Humans , Prospective Studies
5.
Int J Mol Sci ; 21(3)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033219

ABSTRACT

Characteristic or classic phenotype of Cornelia de Lange syndrome (CdLS) is associated with a recognisable facial pattern. However, the heterogeneity in causal genes and the presence of overlapping syndromes have made it increasingly difficult to diagnose only by clinical features. DeepGestalt technology, and its app Face2Gene, is having a growing impact on the diagnosis and management of genetic diseases by analysing the features of affected individuals. Here, we performed a phenotypic study on a cohort of 49 individuals harbouring causative variants in known CdLS genes in order to evaluate Face2Gene utility and sensitivity in the clinical diagnosis of CdLS. Based on the profile images of patients, a diagnosis of CdLS was within the top five predicted syndromes for 97.9% of our cases and even listed as first prediction for 83.7%. The age of patients did not seem to affect the prediction accuracy, whereas our results indicate a correlation between the clinical score and affected genes. Furthermore, each gene presents a different pattern recognition that may be used to develop new neural networks with the goal of separating different genetic subtypes in CdLS. Overall, we conclude that computer-assisted image analysis based on deep learning could support the clinical diagnosis of CdLS.


Subject(s)
De Lange Syndrome/diagnosis , De Lange Syndrome/genetics , Face/pathology , Adolescent , Adult , Child , Child, Preschool , De Lange Syndrome/pathology , Facies , Female , Genetic Variation/genetics , Humans , Image Processing, Computer-Assisted/methods , Infant , Male , Neural Networks, Computer , Phenotype , Young Adult
6.
Int J Mol Sci ; 20(24)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817290

ABSTRACT

There are three human enzymes with HMG-CoA lyase activity that are able to synthesize ketone bodies in different subcellular compartments. The mitochondrial HMG-CoA lyase was the first to be described, and catalyzes the cleavage of 3-hydroxy-3-methylglutaryl CoA to acetoacetate and acetyl-CoA, the common final step in ketogenesis and leucine catabolism. This protein is mainly expressed in the liver and its function is metabolic, since it produces ketone bodies as energetic fuels when glucose levels are low. Another isoform is encoded by the same gene for the mitochondrial HMG-CoA lyase (HMGCL), but it is located in peroxisomes. The last HMG-CoA lyase to be described is encoded by a different gene, HMGCLL1, and is located in the cytosolic side of the endoplasmic reticulum membrane. Some activity assays and tissue distribution of this enzyme have shown the brain and lung as key tissues for studying its function. Although the roles of the peroxisomal and cytosolic HMG-CoA lyases remain unknown, recent studies highlight the role of ketone bodies in metabolic remodeling, homeostasis, and signaling, providing new insights into the molecular and cellular function of these enzymes.


Subject(s)
Cytosol/enzymology , Mitochondria/enzymology , Oxo-Acid-Lyases/metabolism , Peroxisomes/enzymology , Energy Metabolism , Evolution, Molecular , Humans , Isoenzymes/classification , Isoenzymes/genetics , Isoenzymes/metabolism , Ketone Bodies/metabolism , Liver/enzymology , Oxo-Acid-Lyases/classification , Oxo-Acid-Lyases/genetics
9.
An Pediatr (Engl Ed) ; 100(5): 352-362, 2024 May.
Article in English | MEDLINE | ID: mdl-38735830

ABSTRACT

Cornelia de Lange syndrome (CdLS) is a rare congenital developmental disorder with multisystemic involvement. The clinical presentation is highly variable, but the classic phenotype, characterized by distinctive craniofacial features, pre- and postnatal growth retardation, extremity reduction defects, hirsutism and intellectual disability can be distinguished from the nonclassic phenotype, which is generally milder and more difficult to diagnose. In addition, the clinical features overlap with those of other neurodevelopmental disorders, so the use of consensus clinical criteria and artificial intelligence tools may be helpful in confirming the diagnosis. Pathogenic variants in NIPBL, which encodes a protein related to the cohesin complex, have been identified in more than 60% of patients, and pathogenic variants in other genes related to this complex in another 15%: SMC1A, SMC3, RAD21, and HDAC8. Technical advances in large-scale sequencing have allowed the description of additional genes (BRD4, ANKRD11, MAU2), but the lack of molecular diagnosis in 15% of individuals and the substantial clinical heterogeneity of the syndrome suggest that other genes and mechanisms may be involved. Although there is no curative treatment, there are symptomatic/palliative treatments that paediatricians should be aware of. The main medical complication in classic SCdL is gastro-esophageal reflux (GER), which should be treated early.


Subject(s)
De Lange Syndrome , Phenotype , Child , Humans , De Lange Syndrome/diagnosis , De Lange Syndrome/genetics
10.
Cureus ; 16(4): e57378, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38694681

ABSTRACT

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a rare polymalformative genetic disorder with multisystemic involvement. Despite numerous clinical and molecular studies, the specific evaluation of the quality of life (QoL) and its relationship with syndrome-specific risk factors has not been explored. METHODS: The QoL of 33 individuals diagnosed with CdLS, aged between 4 and 21 years, was assessed using the Kidslife questionnaire. Specifically, the influence of 14 risk factors on overall QoL and 8 of its domains was analyzed. RESULTS: The study revealed below-median QoL (45.3 percentile), with the most affected domains being physical well-being, personal development, and self-determination. When classifying patients based on their QoL and affected domains, variants in the NIPBL gene, clinical scores ≥11, and severe behavioral and communication issues were found to be the main risk factors. CONCLUSIONS: We emphasize the need for a comprehensive approach to CdLS that encompasses clinical, molecular, psychosocial, and emotional aspects. The "Kidslife questionnaire" proved to be a useful tool for evaluating QoL, risk factors, and the effectiveness of implemented strategies. In this study, we underscore the importance of implementing corrective measures to improve the clinical score. Furthermore, we highlight the necessity of applying specific therapies for behavioral problems after ruling out underlying causes such as pain or gastroesophageal reflux and implementing measures that facilitate communication and promote social interaction.

11.
J Clin Med ; 12(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37373745

ABSTRACT

BACKGROUND: PACS1 neurodevelopmental disorder (PACS1-NDD) (MIM# 615009) is a rare autosomal dominant disease characterized by neurodevelopmental delay, dysmorphic facial features, and congenital malformations. Heart disease (HD) is frequently present in individuals with PACS1-NDD, but a compressive review of these anomalies and an evaluation of cardiac function in a cohort of patients are lacking. METHODS: (i) Cardiac evaluation in 11 PACS1-NDD patients was conducted using conventional echocardiography. (ii) Heart function was assessed by tissue Doppler imaging, and two-dimensional speckle tracking was performed in seven patients and matched controls. (iii) This systematic review focused on determining HD prevalence in individuals with PACS1-NDD. RESULTS: In our cohort, 7 of 11 patients presented HD. (Among them, three cases of ascending aortic dilatation (AAD) were detected and one mitral valve prolapse (MVP).) None of the patients showed echocardiographic pathological values, and the left global longitudinal strain was not significantly different between patients and controls (patients -24.26 ± 5.89% vs. controls -20.19 ± 1.75%, p = 0.3176). In the literature review, almost 42% (42/100) of individuals with PACS1-NDD reportedly experienced HD. Septal defects were the most common malformation, followed by patent ductus arteriosus. CONCLUSIONS: Our results show a high prevalence of HD in PACS1-NDD patients; in this way, AAD and MVP are reported for the first time in this syndrome. Furthermore, a detailed cardiac function evaluation in our cohort did not reveal evidence of cardiac dysfunction in individuals with PACS1-NDD. Cardiology evaluation should be included for all individuals with Schuurs-Hoeijmakers syndrome.

12.
Front Genet ; 13: 993064, 2022.
Article in English | MEDLINE | ID: mdl-36246631

ABSTRACT

Ultimate advances in genetic technologies have permitted the detection of transmitted cases of congenital diseases due to parental gonadosomatic mosaicism. Regarding Cornelia de Lange syndrome (CdLS), up to date, only a few cases are known to follow this inheritance pattern. However, the high prevalence of somatic mosaicism recently reported in this syndrome (∼13%), together with the disparity observed in tissue distribution of the causal variant, suggests that its prevalence in this disorder could be underestimated. Here, we report a new case of parental gonadosomatic mosaicism in SMC1A gene that causes inherited CdLS, in which the mother of the patient carries the causative variant in very low allele frequencies in buccal swab and blood. While the affected child presents with typical CdLS phenotype, his mother does not show any clinical manifestations. As regards SMC1A, the difficulty of clinical identification of carrier females has been already recognized, as well as the gender differences observed in CdLS expressivity when the causal variant is found in this gene. Currently, the use of DNA deep-sequencing techniques is highly recommended when it comes to molecular diagnosis of patients, as well as in co-segregation studies. These enable us to uncover gonadosomatic mosaic events in asymptomatic or oligosymptomatic parents that had been overlooked so far, which might have great implications regarding genetic counseling for recurrence risk.

13.
Article in English | MEDLINE | ID: mdl-36482071

ABSTRACT

Objective: The aim of this study was to expand knowledge about endocrine disorders in individuals with Cornelia de Lange syndrome (CdLS), a rare developmental genetic disorder with anomalies in multiple organs and systems. Methods: Hormone levels, clinical scores, anthropometric measurements, and molecular analysis were assessed in 24 individuals with CdLS. Results: Hyperprolactinemia was the most common endocrine disorder. Three patients showed subclinical hypothyroidism. In the gonadotropic axis, mildly delayed puberty was observed, as well as genital anomalies, such as cryptorchidism. Despite short stature, levels of insulin-like growth factor 1 and insulin-like growth factor-binding protein 3 were normal, on average. Three prepubertal individuals without risk factors had higher than normal values for the homeostatic model assessment of insulin resistance (HOMA-IR) and for insulinemia, suggesting insulin resistance. Furthermore, two adults had elevated BMIs associated with HOMA-IR values over the cut-off values. Conclusion: CdLS can lead to dysregulation of the endocrine system, particularly in patients with high HOMA-IR values and insulinemia who are at risk of insulin resistance. Therefore, clinical follow-ups with hormonal assessments are proposed for individuals with CdLS.

14.
Int J Cardiovasc Imaging ; 38(11): 2291-2302, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36434327

ABSTRACT

This study assesses a possible cardiac dysfunction in individuals with Cornelia de Lange syndrome (CdLS) without diagnosed congenital heart disease (CHD) and its association with other factors. Twenty patients and 20 controls were included in the study divided into three age-dependent groups (A: < 10 yrs, B: 10-20 yrs, C: > 20 yrs), and were evaluated using conventional echocardiography, tissue doppler imaging (TDI), two-dimensional speckle tracking and genetic and biochemical analyses. The left ventricular global longitudinal strain (GLS) was altered (< 15.9%) in 55% of patients, being pathological in the older group (A: 19.7 ± 6.6; B: -17.2 ± 4.7; C: -13.6 ± 2.9). The speckle tracking technique revealed a downward trend in the values of strain, strain rate and velocity, especially in the oldest group. Likewise, the ejection fraction (LVEF) and shortening fraction (LVFS) values, although preserved, also showed a decreased with age (p < 0.05). The analytical markers of cardiovascular risk and cardiac function showed no alterations. The molecular analyses revealed 16 individuals carrying pathogenic variants in NIPBL, two with variants in SMC1A, one with a variant in RAD21 and one with a HDAC8 variant. This is the first systematic approach that demonstrates that individuals with CdLS may present early cardiomyopathy, which can be detected by speckle tracking technique even before the appearance of clinical symptoms and the alteration of other echocardiographic or analytical parameters. For all these reasons, cardiological followup is suggested even in the absence of CHD, especially from adolescence onwards.


Subject(s)
Cardiomyopathies , De Lange Syndrome , Heart Defects, Congenital , Adolescent , Humans , Child , De Lange Syndrome/diagnostic imaging , De Lange Syndrome/genetics , Predictive Value of Tests , Echocardiography/methods , Stroke Volume , Histone Deacetylases , Repressor Proteins , Cell Cycle Proteins/genetics
15.
Genes (Basel) ; 13(8)2022 08 08.
Article in English | MEDLINE | ID: mdl-36011323

ABSTRACT

Cornelia de Lange syndrome (CdLS) is a multisystemic genetic disorder characterized by distinctive facial features, growth retardation, and intellectual disability, as well as various systemic conditions. It is caused by genetic variants in genes related to the cohesin complex. Single-nucleotide variations are the best-known genetic cause of CdLS; however, copy number variants (CNVs) clearly underlie a substantial proportion of cases of the syndrome. The NIPBL gene was thought to be the locus within which clinically relevant CNVs contributed to CdLS. However, in the last few years, pathogenic CNVs have been identified in other genes such as HDAC8, RAD21, and SMC1A. Here, we studied an affected girl presenting with a classic CdLS phenotype heterozygous for a de novo ~32 kbp intragenic duplication affecting exon 10 of HDAC8. Molecular analyses revealed an alteration in the physiological splicing that included a 96 bp insertion between exons 9 and 10 of the main transcript of HDAC8. The aberrant transcript was predicted to generate a truncated protein whose accessibility to the active center was restricted, showing reduced ease of substrate entry into the mutated enzyme. Lastly, we conclude that the duplication is responsible for the patient's phenotype, highlighting the contribution of CNVs as a molecular cause underlying CdLS.


Subject(s)
De Lange Syndrome , Cell Cycle Proteins/genetics , De Lange Syndrome/genetics , De Lange Syndrome/pathology , Exons , Heterozygote , Histone Deacetylases/genetics , Humans , Phenotype , Repressor Proteins/genetics
16.
Redox Biol ; 54: 102353, 2022 08.
Article in English | MEDLINE | ID: mdl-35777200

ABSTRACT

Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue.


Subject(s)
Insulin Resistance , Adipose Tissue/metabolism , Animals , Homeostasis , Intra-Abdominal Fat/metabolism , Mice , Obesity/genetics , Obesity/metabolism , Proteomics
17.
Nat Commun ; 12(1): 4551, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34315879

ABSTRACT

Cornelia de Lange syndrome (CdLS) is a rare disease affecting multiple organs and systems during development. Mutations in the cohesin loader, NIPBL/Scc2, were first described and are the most frequent in clinically diagnosed CdLS patients. The molecular mechanisms driving CdLS phenotypes are not understood. In addition to its canonical role in sister chromatid cohesion, cohesin is implicated in the spatial organization of the genome. Here, we investigate the transcriptome of CdLS patient-derived primary fibroblasts and observe the downregulation of genes involved in development and system skeletal organization, providing a link to the developmental alterations and limb abnormalities characteristic of CdLS patients. Genome-wide distribution studies demonstrate a global reduction of NIPBL at the NIPBL-associated high GC content regions in CdLS-derived cells. In addition, cohesin accumulates at NIPBL-occupied sites at CpG islands potentially due to reduced cohesin translocation along chromosomes, and fewer cohesin peaks colocalize with CTCF.


Subject(s)
Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , De Lange Syndrome/genetics , Genome, Human , Transcriptome/genetics , Cell Differentiation/genetics , Chromatin/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Protein Stability , Cohesins
18.
Pharmgenomics Pers Med ; 14: 117-133, 2021.
Article in English | MEDLINE | ID: mdl-33519226

ABSTRACT

INTRODUCTION: The genetic admixture of the Brazilian population has considerable relevance to the implementation of the principles of pharmacogenomics (PGx), as it may compromise the extrapolation of data obtained in more homogeneous world populations. PURPOSE: This study aims to investigate a panel of 117 polymorphisms in 35 pharmacogenes, which contains label recommendations or clinical evidence by international drug regulatory agencies, in Amazonian Native American populations, and compare the results obtained with continental population data from the 1000 Genomes Project Consortium. PATIENTS AND METHODS: The study population is composed of 109 Native American individuals from three Brazilian Amazon groups. The genotyping of the PGx polymorphisms was performed by allelic discrimination using TaqMan® OpenArray Genotyping with a panel of 120 customized assays on the QuantStudio™ 12K Flex Real-Time PCR System. RESULTS: Statistical differences within the Native American populations were observed regarding both genotypes and phenotypes of some genes of the CYP family. The discriminant analysis of principal components (DAPCs) between the NAM group and the continental populations of the 1000 Genomes Project resulted in the clustering of the three Native American populations. Additionally, in general, the NAM group was determined to be closely situated between East Asia, America, and South Asia groups, which enabled us to infer a genetic similarity between these populations. The DAPC analysis further demonstrated that eight polymorphisms and six polymorphisms were more relevant in differentiating the NAM from the continental populations and the NAM populations among themselves, respectively. CONCLUSION: Some investigated polymorphisms show differences among world populations, particularly with populations of European origin, for whom precision medicine protocols are primarily designed. The accumulated knowledge regarding these variations may assist in the design of specific protocols for Native American populations and populations admixed with them.

19.
Sci Rep ; 11(1): 15459, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326454

ABSTRACT

Postzygotic mosaicism (PZM) in NIPBL is a strong source of causality for Cornelia de Lange syndrome (CdLS) that can have major clinical implications. Here, we further delineate the role of somatic mosaicism in CdLS by describing a series of 11 unreported patients with mosaic disease-causing variants in NIPBL and performing a retrospective cohort study from a Spanish CdLS diagnostic center. By reviewing the literature and combining our findings with previously published data, we demonstrate a negative selection against somatic deleterious NIPBL variants in blood. Furthermore, the analysis of all reported cases indicates an unusual high prevalence of mosaicism in CdLS, occurring in 13.1% of patients with a positive molecular diagnosis. It is worth noting that most of the affected individuals with mosaicism have a clinical phenotype at least as severe as those with constitutive pathogenic variants. However, the type of genetic change does not vary between germline and somatic events and, even in the presence of mosaicism, missense substitutions are located preferentially within the HEAT repeat domain of NIPBL. In conclusion, the high prevalence of mosaicism in CdLS as well as the disparity in tissue distribution provide a novel orientation for the clinical management and genetic counselling of families.


Subject(s)
Cell Cycle Proteins/genetics , De Lange Syndrome/blood , De Lange Syndrome/genetics , Adolescent , Adult , Child , Child, Preschool , Comparative Genomic Hybridization , De Lange Syndrome/epidemiology , Female , Gene Deletion , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mosaicism , Mutation, Missense , Phenotype , Retrospective Studies , Spain/epidemiology , Young Adult
20.
Curr Med Chem ; 27(4): 549-569, 2020.
Article in English | MEDLINE | ID: mdl-31296152

ABSTRACT

The current review is focussing different factors that contribute and directly correlate to the onset and progression of Age-related Macular Degeneration (AMD). In particular, the susceptibility to AMD due to genetic and non-genetic factors and the establishment of risk scores, based on the analysis of different genes to measure the risk of developing the disease. A correlation with the actual therapeutic landscape to treat AMD patients from the point of view of pharmacokinetics and pharmacogenetics is also exposed. Treatments commonly used, as well as different regimes of administration, will be especially important in trying to classify individuals as "responders" and "non-responders". Analysis of different genes correlated with drug response and also the emerging field of microRNAs (miRNAs) as possible biomarkers for early AMD detection and response will be also reviewed. This article aims to provide the reader a review of different publications correlated with AMD from the molecular and kinetic point of view as well as its commonly used treatments, major pitfalls and future directions that, to our knowledge, could be interesting to assess and follow in order to develop a personalized medicine model for AMD.


Subject(s)
Macular Degeneration , Pharmacogenetics , Bevacizumab , Biomarkers , Humans , Precision Medicine
SELECTION OF CITATIONS
SEARCH DETAIL