Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 533(7601): 95-9, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27096366

ABSTRACT

Genome-wide association studies (GWAS) have identified numerous genetic variants associated with complex diseases, but mechanistic insights are impeded by a lack of understanding of how specific risk variants functionally contribute to the underlying pathogenesis. It has been proposed that cis-acting effects of non-coding risk variants on gene expression are a major factor for phenotypic variation of complex traits and disease susceptibility. Recent genome-scale epigenetic studies have highlighted the enrichment of GWAS-identified variants in regulatory DNA elements of disease-relevant cell types. Furthermore, single nucleotide polymorphism (SNP)-specific changes in transcription factor binding are correlated with heritable alterations in chromatin state and considered a major mediator of sequence-dependent regulation of gene expression. Here we describe a novel strategy to functionally dissect the cis-acting effect of genetic risk variants in regulatory elements on gene expression by combining genome-wide epigenetic information with clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in human pluripotent stem cells. By generating a genetically precisely controlled experimental system, we identify a common Parkinson's disease associated risk variant in a non-coding distal enhancer element that regulates the expression of α-synuclein (SNCA), a key gene implicated in the pathogenesis of Parkinson's disease. Our data suggest that the transcriptional deregulation of SNCA is associated with sequence-dependent binding of the brain-specific transcription factors EMX2 and NKX6-1. This work establishes an experimental paradigm to functionally connect genetic variation with disease-relevant phenotypes.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Genetic Predisposition to Disease/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics , Alleles , Brain/metabolism , CRISPR-Cas Systems/genetics , Epigenesis, Genetic/genetics , Genetic Engineering , Genome, Human/genetics , Homeodomain Proteins/metabolism , Humans , Models, Genetic , Pluripotent Stem Cells/metabolism , Risk , Transcription Factors/metabolism
2.
Am J Respir Crit Care Med ; 194(12): 1514-1522, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27314401

ABSTRACT

RATIONALE: The relationship between the development and/or progression of interstitial lung abnormalities (ILA) and clinical outcomes has not been previously investigated. OBJECTIVES: To determine the risk factors for, and the clinical consequences of, having ILA progression in participants from the Framingham Heart Study. METHODS: ILA were assessed in 1,867 participants who had serial chest computed tomography (CT) scans approximately 6 years apart. Mixed effect regression (and Cox) models were used to assess the association between ILA progression and pulmonary function decline (and mortality). MEASUREMENTS AND MAIN RESULTS: During the follow-up period 660 (35%) participants did not have ILA on either CT scan, 37 (2%) had stable to improving ILA, and 118 (6%) had ILA with progression (the remaining participants without ILA were noted to be indeterminate on at least one CT scan). Increasing age and increasing copies of the MUC5B promoter polymorphism were associated with ILA progression. After adjustment for covariates, ILA progression was associated with a greater FVC decline when compared with participants without ILA (20 ml; SE, ±6 ml; P = 0.0005) and with those with ILA without progression (25 ml; SE, ±11 ml; P = 0.03). Over a median follow-up time of approximately 4 years, after adjustment, ILA progression was associated with an increase in the risk of death (hazard ratio, 3.9; 95% confidence interval, 1.3-10.9; P = 0.01) when compared with those without ILA. CONCLUSIONS: These findings demonstrate that ILA progression in the Framingham Heart Study is associated with an increased rate of pulmonary function decline and increased risk of death.


Subject(s)
Disease Progression , Lung/abnormalities , Lung/diagnostic imaging , Age Factors , Aged , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Middle Aged , Polymorphism, Genetic , Proportional Hazards Models , Respiratory Function Tests/statistics & numerical data , Risk Factors , Tomography, X-Ray Computed
3.
Am J Respir Crit Care Med ; 194(1): 77-83, 2016 07 01.
Article in English | MEDLINE | ID: mdl-26771117

ABSTRACT

RATIONALE: Galectin-3 (Gal-3) has been implicated in the development of pulmonary fibrosis in experimental studies, and Gal-3 levels have been found to be elevated in small studies of human pulmonary fibrosis. OBJECTIVES: We sought to study whether circulating Gal-3 concentrations are elevated early in the course of pulmonary fibrosis. METHODS: We examined 2,596 Framingham Heart Study participants (mean age, 57 yr; 54% women; 14% current smokers) who underwent Gal-3 assessment using plasma samples and pulmonary function testing between 1995 and 1998. Of this sample, 1,148 underwent subsequent volumetric chest computed tomography. MEASUREMENTS AND MAIN RESULTS: Higher Gal-3 concentrations were associated with lower lung volumes (1.4% decrease in percentage of predicted FEV1 per 1 SD increase in log Gal-3; 95% confidence interval [CI], 0.8-2.0%; P < 0.001; 1.2% decrease in percentage of predicted FVC; 95% CI, 0.6-1.8%; P < 0.001) and decreased diffusing capacity of the lung for carbon monoxide (2.1% decrease; 95% CI, 1.3-2.9%; P < 0.001). These associations remained significant after multivariable adjustment (P ≤ 0.008 for all). Compared with the lowest quartile, participants in the highest Gal-3 quartile were more than twice as likely to have interstitial lung abnormalities visualized by computed tomography (multivariable-adjusted odds ratio, 2.67; 95% CI, 1.49-4.76; P < 0.001). CONCLUSIONS: Elevated Gal-3 concentrations are associated with interstitial lung abnormalities coupled with a restrictive pattern, including decreased lung volumes and altered gas exchange. These findings suggest a potential role for Gal-3 in early stages of pulmonary fibrosis.


Subject(s)
Galectin 3/genetics , Lung/abnormalities , Pulmonary Fibrosis/genetics , Female , Galectin 3/blood , Humans , Lung/diagnostic imaging , Male , Middle Aged , Odds Ratio , Pulmonary Fibrosis/blood , Pulmonary Fibrosis/diagnostic imaging , Respiratory Function Tests , Tomography, X-Ray Computed
4.
PLoS Genet ; 10(2): e1004188, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24586208

ABSTRACT

Transcriptional dysregulation has long been recognized as central to the pathogenesis of Huntington's disease (HD). MicroRNAs (miRNAs) represent a major system of post-transcriptional regulation, by either preventing translational initiation or by targeting transcripts for storage or for degradation. Using next-generation miRNA sequencing in prefrontal cortex (Brodmann Area 9) of twelve HD and nine controls, we identified five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-615-3p and miR-1247-5p) up-regulated in HD at genome-wide significance (FDR q-value<0.05). Three of these, miR-196a-5p, miR-196b-5p and miR-615-3p, were expressed at near zero levels in control brains. Expression was verified for all five miRNAs using reverse transcription quantitative PCR and all but miR-1247-5p were replicated in an independent sample (8HD/8C). Ectopic miR-10b-5p expression in PC12 HTT-Q73 cells increased survival by MTT assay and cell viability staining suggesting increased expression may be a protective response. All of the miRNAs but miR-1247-5p are located in intergenic regions of Hox clusters. Total mRNA sequencing in the same samples identified fifteen of 55 genes within the Hox cluster gene regions as differentially expressed in HD, and the Hox genes immediately adjacent to the four Hox cluster miRNAs as up-regulated. Pathway analysis of mRNA targets of these miRNAs implicated functions for neuronal differentiation, neurite outgrowth, cell death and survival. In regression models among the HD brains, huntingtin CAG repeat size, onset age and age at death were independently found to be inversely related to miR-10b-5p levels. CAG repeat size and onset age were independently inversely related to miR-196a-5p, onset age was inversely related to miR-196b-5p and age at death was inversely related to miR-615-3p expression. These results suggest these Hox-related miRNAs may be involved in neuroprotective response in HD. Recently, miRNAs have shown promise as biomarkers for human diseases and given their relationship to disease expression, these miRNAs are biomarker candidates in HD.


Subject(s)
Cell Differentiation/genetics , Genes, Homeobox , Huntington Disease/genetics , MicroRNAs/biosynthesis , Animals , Autopsy , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Huntington Disease/pathology , MicroRNAs/genetics , Neurons/cytology , Neuroprotective Agents , PC12 Cells , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , RNA, Messenger/genetics , Rats
5.
Am J Med Genet B Neuropsychiatr Genet ; 174(3): 315-323, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28190298

ABSTRACT

Bipolar disorder (BD) is a common, recurring psychiatric illness with unknown pathogenesis. Recent studies suggest that microRNA (miRNA) levels in brains of BD patients are significantly altered, and these changes may offer insight into BD pathology or etiology. Previously, we observed significant alterations of miR-29c levels in extracellular vesicles (EVs) extracted from prefrontal cortex (Brodmann area 9, BA9) of BD patients. In this study, we show that EVs extracted from the anterior cingulate cortex (BA24), a crucial area for modulating emotional expression and affect, have increased levels of miR-149 in BD patients compared to controls. Because miR-149 has been shown to inhibit glial proliferation, increased miR-149 expression in BA24-derived EVs is consistent with the previously reported reduced glial cell numbers in BA24 of patients diagnosed with either familial BD or familial major depressive disorder. qPCR analysis of laser-microdissected neuronal and glial cells from BA24 cortical samples of BD patients verified that the glial, but not neuronal, population exhibits significantly increased miR-149 expression. Finally, we report altered expression of both miR-149 and miR-29c in EVs extracted from brains of Flinders Sensitive Line rats, a well-validated animal model exhibiting depressive-like behaviors and glial (astrocytic) dysfunction. These findings warrant future investigations into the potential of using EV miRNA signatures as biomarkers to further enhance the biological definition of BD. © 2017 Wiley Periodicals, Inc.


Subject(s)
Bipolar Disorder/diagnosis , Bipolar Disorder/genetics , MicroRNAs/genetics , Animals , Biomarkers/blood , Brain/pathology , Depressive Disorder, Major/pathology , Disease Models, Animal , Extracellular Vesicles/genetics , Female , Gyrus Cinguli/metabolism , Humans , Male , MicroRNAs/blood , Rats
6.
N Engl J Med ; 368(23): 2192-200, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23692170

ABSTRACT

BACKGROUND: A common promoter polymorphism (rs35705950) in MUC5B, the gene encoding mucin 5B, is associated with idiopathic pulmonary fibrosis. It is not known whether this polymorphism is associated with interstitial lung disease in the general population. METHODS: We performed a blinded assessment of interstitial lung abnormalities detected in 2633 participants in the Framingham Heart Study by means of volumetric chest computed tomography (CT). We evaluated the relationship between the abnormalities and the genotype at the rs35705950 locus. RESULTS: Of the 2633 chest CT scans that were evaluated, interstitial lung abnormalities were present in 177 (7%). Participants with such abnormalities were more likely to have shortness of breath and chronic cough and reduced measures of total lung and diffusion capacity, as compared with participants without such abnormalities. After adjustment for covariates, for each copy of the minor rs35705950 allele, the odds of interstitial lung abnormalities were 2.8 times greater (95% confidence interval [CI], 2.0 to 3.9; P<0.001), and the odds of definite CT evidence of pulmonary fibrosis were 6.3 times greater (95% CI, 3.1 to 12.7; P<0.001). Although the evidence of an association between the MUC5B genotype and interstitial lung abnormalities was greater among participants who were older than 50 years of age, a history of cigarette smoking did not appear to influence the association. CONCLUSIONS: The MUC5B promoter polymorphism was found to be associated with interstitial lung disease in the general population. Although this association was more apparent in older persons, it did not appear to be influenced by cigarette smoking. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT00005121.).


Subject(s)
Lung Diseases, Interstitial/genetics , Mucin-5B/genetics , Polymorphism, Genetic , Aged , Female , Genotype , Humans , Longitudinal Studies , Lung/diagnostic imaging , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/physiopathology , Male , Middle Aged , Respiratory Function Tests , Smoking , Tomography, X-Ray Computed , Total Lung Capacity
7.
JAMA ; 315(7): 672-81, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26881370

ABSTRACT

IMPORTANCE: Interstitial lung abnormalities have been associated with lower 6-minute walk distance, diffusion capacity for carbon monoxide, and total lung capacity. However, to our knowledge, an association with mortality has not been previously investigated. OBJECTIVE: To investigate whether interstitial lung abnormalities are associated with increased mortality. DESIGN, SETTING, AND POPULATION: Prospective cohort studies of 2633 participants from the FHS (Framingham Heart Study; computed tomographic [CT] scans obtained September 2008-March 2011), 5320 from the AGES-Reykjavik Study (Age Gene/Environment Susceptibility; recruited January 2002-February 2006), 2068 from the COPDGene Study (Chronic Obstructive Pulmonary Disease; recruited November 2007-April 2010), and 1670 from ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints; between December 2005-December 2006). EXPOSURES: Interstitial lung abnormality status as determined by chest CT evaluation. MAIN OUTCOMES AND MEASURES: All-cause mortality over an approximate 3- to 9-year median follow-up time. Cause-of-death information was also examined in the AGES-Reykjavik cohort. RESULTS: Interstitial lung abnormalities were present in 177 (7%) of the 2633 participants from FHS, 378 (7%) of 5320 from AGES-Reykjavik, 156 (8%) of 2068 from COPDGene, and in 157 (9%) of 1670 from ECLIPSE. Over median follow-up times of approximately 3 to 9 years, there were more deaths (and a greater absolute rate of mortality) among participants with interstitial lung abnormalities when compared with those who did not have interstitial lung abnormalities in the following cohorts: 7% vs 1% in FHS (6% difference [95% CI, 2% to 10%]), 56% vs 33% in AGES-Reykjavik (23% difference [95% CI, 18% to 28%]), and 11% vs 5% in ECLIPSE (6% difference [95% CI, 1% to 11%]). After adjustment for covariates, interstitial lung abnormalities were associated with a higher risk of death in the FHS (hazard ratio [HR], 2.7 [95% CI, 1.1 to 6.5]; P = .03), AGES-Reykjavik (HR, 1.3 [95% CI, 1.2 to 1.4]; P < .001), COPDGene (HR, 1.8 [95% CI, 1.1 to 2.8]; P = .01), and ECLIPSE (HR, 1.4 [95% CI, 1.1 to 2.0]; P = .02) cohorts. In the AGES-Reykjavik cohort, the higher rate of mortality could be explained by a higher rate of death due to respiratory disease, specifically pulmonary fibrosis. CONCLUSIONS AND RELEVANCE: In 4 separate research cohorts, interstitial lung abnormalities were associated with a greater risk of all-cause mortality. The clinical implications of this association require further investigation.


Subject(s)
Cause of Death , Pulmonary Disease, Chronic Obstructive/mortality , Cohort Studies , Coronary Artery Disease/epidemiology , Coronary Artery Disease/mortality , Female , Humans , Male , Neoplasms/mortality , Prevalence , Proportional Hazards Models , Prospective Studies , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Emphysema/epidemiology , Pulmonary Emphysema/mortality , Radiography , Smoking/epidemiology
8.
Mov Disord ; 30(14): 1961-4, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26573701

ABSTRACT

BACKGROUND: Biomarkers for Huntington's disease progression could accelerate therapeutic developments and improve patient care. Brain microRNAs relating to clinical features of Huntington's disease may represent a potential Huntington's disease biomarker in blood. OBJECTIVE: This study was undertaken to examine candidate microRNAs in plasma to determine whether changes observed in HD brains are detectable in peripheral samples. METHODS: Four microRNAs from 26 manifest Huntington's disease, four asymptomatic Huntington's disease gene carriers, and eight controls were quantified in plasma using reverse transcription quantitative polymerase chain reaction. Linear regression was used to assess microRNA levels across control, asymptomatic gene carriers, and manifest patients. RESULTS: miR-10b-5p (P = 0.0068) and miR-486-5p (P = 0.044) were elevated in Huntington's disease plasma. miR-10b-5p was decreased in asymptomatic gene carriers as compared with patients with Huntington's disease (P = 0.049), but no difference between asymptomatic gene carriers and healthy controls was observed (P = 0.24). CONCLUSIONS: These findings suggest that microRNA changes observed in Huntington's disease brain may be detectable in plasma and have potential clinical utility.


Subject(s)
Brain/pathology , Huntington Disease/metabolism , MicroRNAs/blood , Adolescent , Adult , Biomarkers/blood , Child , Child, Preschool , Disease Progression , Female , Humans , Huntington Disease/genetics , Huntington Disease/pathology , Infant , Male , Middle Aged , Young Adult
9.
BMC Pulm Med ; 15: 134, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26514822

ABSTRACT

BACKGROUND: Evidence suggests that individuals with interstitial lung abnormalities (ILA) on a chest computed tomogram (CT) may have an increased risk to develop a clinically significant interstitial lung disease (ILD). Although methods used to identify individuals with ILA on chest CT have included both automated quantitative and qualitative visual inspection methods, there has been not direct comparison between these two methods. To investigate this relationship, we created lung density metrics and compared these to visual assessments of ILA. METHODS: To provide a comparison between ILA detection methods based on visual assessment we generated measures of high attenuation areas (HAAs, defined by attenuation values between -600 and -250 Hounsfield Units) in >4500 participants from both the COPDGene and Framingham Heart studies (FHS). Linear and logistic regressions were used for analyses. RESULTS: Increased measures of HAAs (in ≥ 10 % of the lung) were significantly associated with ILA defined by visual inspection in both cohorts (P < 0.0001); however, the positive predictive values were not very high (19 % in COPDGene and 13 % in the FHS). In COPDGene, the association between HAAs and ILA defined by visual assessment were modified by the percentage of emphysema and body mass index. Although increased HAAs were associated with reductions in total lung capacity in both cohorts, there was no evidence for an association between measurement of HAAs and MUC5B promoter genotype in the FHS. CONCLUSION: Our findings demonstrate that increased measures of lung density may be helpful in determining the severity of lung volume reduction, but alone, are not strongly predictive of ILA defined by visual assessment. Moreover, HAAs were not associated with MUC5B promoter genotype.


Subject(s)
Image Processing, Computer-Assisted/methods , Lung Diseases, Interstitial/diagnostic imaging , Lung/diagnostic imaging , Pulmonary Emphysema/diagnostic imaging , Aged , Aged, 80 and over , Body Mass Index , Cohort Studies , Female , Forced Expiratory Volume , Humans , Linear Models , Logistic Models , Lung/physiopathology , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/physiopathology , Male , Middle Aged , Mucin-5B/genetics , Promoter Regions, Genetic , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Emphysema/genetics , Pulmonary Emphysema/physiopathology , Spirometry , Tomography, X-Ray Computed , Total Lung Capacity , Vital Capacity
10.
PLoS Genet ; 8(6): e1002794, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22761592

ABSTRACT

Parkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR) of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1) transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR-significant group of genes (177 genes covered by 189 probes), suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs) selected from a recent meta-analysis of PD genome-wide association studies (GWAS) were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression-SNP (eSNP) analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK) gene and a probe in the spermine oxidase (SMOX) gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD-relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms.


Subject(s)
Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Oxidoreductases Acting on CH-NH Group Donors/genetics , Parkinson Disease/genetics , Prefrontal Cortex/metabolism , Age of Onset , Aged, 80 and over , Binding Sites , Forkhead Box Protein O1 , Gene Expression Regulation , Gene Regulatory Networks/genetics , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lewy Bodies/genetics , Lewy Bodies/metabolism , Male , Oligonucleotide Array Sequence Analysis , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Parkinson Disease/metabolism , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Polyamine Oxidase
11.
PLoS Genet ; 8(3): e1002548, 2012.
Article in English | MEDLINE | ID: mdl-22438815

ABSTRACT

More than 800 published genetic association studies have implicated dozens of potential risk loci in Parkinson's disease (PD). To facilitate the interpretation of these findings, we have created a dedicated online resource, PDGene, that comprehensively collects and meta-analyzes all published studies in the field. A systematic literature screen of -27,000 articles yielded 828 eligible articles from which relevant data were extracted. In addition, individual-level data from three publicly available genome-wide association studies (GWAS) were obtained and subjected to genotype imputation and analysis. Overall, we performed meta-analyses on more than seven million polymorphisms originating either from GWAS datasets and/or from smaller scale PD association studies. Meta-analyses on 147 SNPs were supplemented by unpublished GWAS data from up to 16,452 PD cases and 48,810 controls. Eleven loci showed genome-wide significant (P < 5 × 10(-8)) association with disease risk: BST1, CCDC62/HIP1R, DGKQ/GAK, GBA, LRRK2, MAPT, MCCC1/LAMP3, PARK16, SNCA, STK39, and SYT11/RAB25. In addition, we identified novel evidence for genome-wide significant association with a polymorphism in ITGA8 (rs7077361, OR 0.88, P  =  1.3 × 10(-8)). All meta-analysis results are freely available on a dedicated online database (www.pdgene.org), which is cross-linked with a customized track on the UCSC Genome Browser. Our study provides an exhaustive and up-to-date summary of the status of PD genetics research that can be readily scaled to include the results of future large-scale genetics projects, including next-generation sequencing studies.


Subject(s)
Databases, Genetic , Genome-Wide Association Study , Parkinson Disease/genetics , Genome, Human , Humans , Internet , Polymorphism, Single Nucleotide
12.
Neurogenetics ; 14(3-4): 173-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23644918

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and behavioral disturbances. It is caused by the expansion of the HTT CAG repeat, which is the major determinant of age at onset (AO) of motor symptoms. Aberrant function of N-methyl-D-aspartate receptors and/or overexposure to dopamine has been suggested to cause significant neurotoxicity, contributing to HD pathogenesis. We used genetic association analysis in 1,628 HD patients to evaluate candidate polymorphisms in N-methyl-D-aspartate receptor subtype genes (GRIN2A rs4998386 and rs2650427, and GRIN2B rs1806201) and functional polymorphisms in genes in the dopamine pathway (DAT1 3' UTR 40-bp variable number tandem repeat (VNTR), DRD4 exon 3 48-bp VNTR, DRD2 rs1800497, and COMT rs4608) as potential modifiers of the disease process. None of the seven polymorphisms tested was found to be associated with significant modification of motor AO, either in a dominant or additive model, after adjusting for ancestry. The results of this candidate-genetic study therefore do not provide strong evidence to support a modulatory role for these variations within glutamatergic and dopaminergic genes in the AO of HD motor manifestations.


Subject(s)
Huntington Disease/genetics , Polymorphism, Genetic , Receptors, Dopamine/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Age of Onset , Catechol O-Methyltransferase/genetics , Dopamine Plasma Membrane Transport Proteins/genetics , Genetic Association Studies , Humans , Huntington Disease/epidemiology , Neural Pathways/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D4/genetics
13.
Hum Mol Genet ; 20(8): 1478-87, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21258085

ABSTRACT

Although family history is a well-established risk factor for Parkinson's disease (PD), fewer than 5% of PD cases can be attributed to known genetic mutations. The etiology for the remainder of PD cases is unclear; however, neuronal accumulation of the protein α-synuclein is common to nearly all patients, implicating pathways that influence α-synuclein in PD pathogenesis. We report a genome-wide significant association (P = 3.97 × 10(-8)) between a polymorphism, rs1564282, in the cyclin-G-associated kinase (GAK) gene and increased PD risk, with a meta-analysis odds ratio of 1.48. This association result is based on the meta-analysis of three publicly available PD case-control genome-wide association study and genotyping from a new, independent Italian cohort. Microarray expression analysis of post-mortem frontal cortex from PD and control brains demonstrates a significant association between rs1564282 and higher α-synuclein expression, a known cause of early onset PD. Functional knockdown of GAK in cell culture causes a significant increase in toxicity when α-synuclein is over-expressed. Furthermore, knockdown of GAK in rat primary neurons expressing the A53T mutation of α-synuclein, a well-established model for PD, decreases cell viability. These observations provide evidence that GAK is associated with PD risk and suggest that GAK and α-synuclein interact in a pathway involved in PD pathogenesis. The GAK protein, a serine/threonine kinase, belongs to a family of proteins commonly targeted for drug development. This, combined with GAK's observed relationship to the levels of α-synuclein expression and toxicity, suggests that the protein is an attractive therapeutic target for the treatment of PD.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Parkinson Disease/genetics , Protein Serine-Threonine Kinases/genetics , alpha-Synuclein/genetics , Adenylate Kinase/metabolism , Animals , Cathepsin D/genetics , Cathepsin D/metabolism , Cell Survival , Cells, Cultured , Genome-Wide Association Study , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mutation, Missense , Neurons/cytology , Neurons/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases/metabolism , RNA Interference , Rats , Rats, Sprague-Dawley , Recombinant Proteins/metabolism , Transcription, Genetic , alpha-Synuclein/metabolism
14.
Ann Neurol ; 71(3): 370-84, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22451204

ABSTRACT

OBJECTIVE: Genome-wide association (GWAS) methods have identified genes contributing to Parkinson's disease (PD); we sought to identify additional genes associated with PD susceptibility. METHODS: A 2-stage design was used. First, individual level genotypic data from 5 recent PD GWAS (Discovery Sample: 4,238 PD cases and 4,239 controls) were combined. Following imputation, a logistic regression model was employed in each dataset to test for association with PD susceptibility and results from each dataset were meta-analyzed. Second, 768 single-nucleotide polymorphisms (SNPs) were genotyped in an independent Replication Sample (3,738 cases and 2,111 controls). RESULTS: Genome-wide significance was reached for SNPs in SNCA (rs356165; G: odds ratio [OR]=1.37; p=9.3×10(-21)), MAPT (rs242559; C: OR=0.78; p=1.5×10(-10)), GAK/DGKQ (rs11248051; T: OR=1.35; p=8.2×10(-9)/rs11248060; T: OR=1.35; p=2.0×10(-9)), and the human leukocyte antigen (HLA) region (rs3129882; A: OR=0.83; p=1.2×10(-8)), which were previously reported. The Replication Sample confirmed the associations with SNCA, MAPT, and the HLA region and also with GBA (E326K; OR=1.71; p=5×10(-8) Combined Sample) (N370; OR=3.08; p=7×10(-5) Replication sample). A novel PD susceptibility locus, RIT2, on chromosome 18 (rs12456492; p=5×10(-5) Discovery Sample; p=1.52×10(-7) Replication sample; p=2×10(-10) Combined Sample) was replicated. Conditional analyses within each of the replicated regions identified distinct SNP associations within GBA and SNCA, suggesting that there may be multiple risk alleles within these genes. INTERPRETATION: We identified a novel PD susceptibility locus, RIT2, replicated several previously identified loci, and identified more than 1 risk allele within SNCA and GBA.


Subject(s)
Genetic Loci/genetics , Genome-Wide Association Study/methods , Glycoproteins/genetics , Nerve Tissue Proteins/genetics , Parkinson Disease/genetics , Polymorphism, Single Nucleotide/genetics , Humans , Monomeric GTP-Binding Proteins , Parkinson Disease/diagnosis , Parkinson Disease/epidemiology
15.
Am J Respir Crit Care Med ; 186(7): 622-32, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22837378

ABSTRACT

RATIONALE: Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known. OBJECTIVES: Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases. METHODS: Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV(1) and its ratio to FVC (FEV(1)/FVC) both less than their respective lower limits of normal as determined by published reference equations. MEASUREMENTS AND MAIN RESULTS: The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV(1)/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis. CONCLUSIONS: These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction.


Subject(s)
Genome-Wide Association Study , Nerve Tissue Proteins/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Receptors, Nicotinic/genetics , Receptors, Serotonin, 5-HT4/genetics , Aged , Female , Forced Expiratory Volume/genetics , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Smoking/genetics , Vital Capacity/genetics
16.
Hum Genet ; 131(12): 1833-40, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22825315

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by motor, cognitive and behavioral disturbances, caused by the expansion of a CAG trinucleotide repeat in the HD gene. The CAG allele size is the major determinant of age at onset (AO) of motor symptoms, although the remaining variance in AO is highly heritable. The rs7665116 SNP in PPARGC1A, encoding the mitochondrial regulator PGC-1α, has been reported to be a significant modifier of AO in three European HD cohorts, perhaps due to affected cases from Italy. We attempted to replicate these findings in a large collection of (1,727) HD patient DNA samples of European origin. In the entire cohort, rs7665116 showed a significant effect in the dominant model (p value = 0.008) and the additive model (p value = 0.009). However, when examined by origin, cases of Southern European origin had an increased rs7665116 minor allele frequency (MAF), consistent with this being an ancestry-tagging SNP. The Southern European cases, despite similar mean CAG allele size, had a significantly older mean AO (p < 0.001), suggesting population-dependent phenotype stratification. When the generalized estimating equations models were adjusted for ancestry, the effect of the rs7665116 genotype on AO decreased dramatically. Our results do not support rs7665116 as a modifier of AO of motor symptoms, as we found evidence for a dramatic effect of phenotypic (AO) and genotypic (MAF) stratification among European cohorts that was not considered in previously reported association studies. A significantly older AO in Southern Europe may reflect population differences in genetic or environmental factors that warrant further investigation.


Subject(s)
Heat-Shock Proteins/genetics , Huntington Disease/genetics , Polymorphism, Single Nucleotide , Transcription Factors/genetics , Adult , Age of Onset , Cohort Studies , Europe/epidemiology , Female , Genetics, Population , Humans , Huntingtin Protein , Huntington Disease/epidemiology , Male , Middle Aged , Nerve Tissue Proteins/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Trinucleotide Repeat Expansion
17.
Mov Disord ; 26(11): 2039-44, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21661047

ABSTRACT

Mutations in the leucine-rich repeat kinase 2 gene, located at 12q12, are the most common known genetic causes of Parkinson's disease. Studies of leucine-rich repeat kinase 2 mutation carriers have shown incomplete and age-dependent penetrance, and previous studies have suggested that inherited susceptibility factors may modify the penetrance of leucine-rich repeat kinase 2 mutations. Genomewide linkage to age of onset of leucine-rich repeat kinase 2-related Parkinson's disease was evaluated in a sample of 113 leucine-rich repeat kinase 2 mutation carriers from 64 families using single-nucleotide polymorphism data from the Illumina HumanCNV370 genotyping array. Association between onset age and single-nucleotide polymorphisms under suggestive linkage peaks was also evaluated. The top logarithmic odds score for onset age (logarithmic odds score = 2.43) was in the chromosome 1q32.1 region. Moderate linkage to onset was also identified at 16q12.1 (logarithmic odds score = 1.58). Examination of single-nucleotide polymorphism association to Parkinson's disease onset under the linkage peaks revealed no statistically significant single-nucleotide polymorphism associations. The 2 novel genomic regions identified may harbor modifiers of leucine-rich repeat kinase 2-related Parkinson's disease onset age or penetrance, and further study of these regions may provide important insight into leucine-rich repeat kinase 2-related Parkinson's disease.


Subject(s)
Genetic Predisposition to Disease , Parkinson Disease/genetics , Polymorphism, Single Nucleotide/genetics , Protein Serine-Threonine Kinases/genetics , Aged , DNA Mutational Analysis , Family Health , Female , Genetic Linkage , Genotype , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Male , Middle Aged , Principal Component Analysis
18.
BMC Neurol ; 10: 23, 2010 Apr 12.
Article in English | MEDLINE | ID: mdl-20385012

ABSTRACT

BACKGROUND: Women have a reduced risk of developing Parkinson's disease (PD) compared with age-matched men. Neuro-protective effects of estrogen potentially explain this difference. Tamoxifen, commonly used in breast cancer treatment, may interfere with the protective effects of estrogen and increase risk of PD. We compared the rate of PD in Danish breast cancer patients treated with tamoxifen to the rate among those not treated with tamoxifen. METHODS: A cohort of 15,419 breast cancer patients identified from the Danish Breast Cancer Collaborative Group database was linked to the National Registry of Patients to identify PD diagnoses. Overall risk and rate of PD following identification into the study was compared between patients treated with tamoxifen as adjuvant hormonal therapy and patients not receiving tamoxifen. Time-dependent effects of tamoxifen treatment on PD rate were examined to estimate the likely induction period for tamoxifen. RESULTS: In total, 35 cases of PD were identified among the 15,419 breast cancer patients. No overall effect of tamoxifen on rate of PD was observed (HR = 1.3, 95% CI: 0.64-2.5), but a PD hazard ratio of 5.1 (95% CI: 1.0-25) was seen four to six years following initiation of tamoxifen treatment. CONCLUSIONS: These results provide evidence that the neuro-protective properties of estrogen against PD occurrence may be disrupted by tamoxifen therapy. Tamoxifen treatments may be associated with an increased rate of PD; however these effects act after four years, are of limited duration, and the adverse effect is overwhelmed by the protection against breast recurrence conferred by tamoxifen therapy.


Subject(s)
Antineoplastic Agents, Hormonal/adverse effects , Parkinson Disease/etiology , Tamoxifen/adverse effects , Age Distribution , Aged , Breast Neoplasms/drug therapy , Cohort Studies , Female , Humans , Middle Aged , Risk Factors
19.
Hum Genet ; 124(6): 593-605, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18985386

ABSTRACT

Five genes have been identified that contribute to Mendelian forms of Parkinson disease (PD); however, mutations have been found in fewer than 5% of patients, suggesting that additional genes contribute to disease risk. Unlike previous studies that focused primarily on sporadic PD, we have performed the first genomewide association study (GWAS) in familial PD. Genotyping was performed with the Illumina HumanCNV370Duo array in 857 familial PD cases and 867 controls. A logistic model was employed to test for association under additive and recessive modes of inheritance after adjusting for gender and age. No result met genomewide significance based on a conservative Bonferroni correction. The strongest association result was with SNPs in the GAK/DGKQ region on chromosome 4 (additive model: p = 3.4 x 10(-6); OR = 1.69). Consistent evidence of association was also observed to the chromosomal regions containing SNCA (additive model: p = 5.5 x 10(-5); OR = 1.35) and MAPT (recessive model: p = 2.0 x 10(-5); OR = 0.56). Both of these genes have been implicated previously in PD susceptibility; however, neither was identified in previous GWAS studies of PD. Meta-analysis was performed using data from a previous case-control GWAS, and yielded improved p values for several regions, including GAK/DGKQ (additive model: p = 2.5 x 10(-7)) and the MAPT region (recessive model: p = 9.8 x 10(-6); additive model: p = 4.8 x 10(-5)). These data suggest the identification of new susceptibility alleles for PD in the GAK/DGKQ region, and also provide further support for the role of SNCA and MAPT in PD susceptibility.


Subject(s)
Parkinson Disease/genetics , Adult , Aged , Case-Control Studies , Diacylglycerol Kinase/genetics , Female , Genes, Recessive , Genetic Predisposition to Disease , Humans , Intracellular Signaling Peptides and Proteins/genetics , Logistic Models , Male , Middle Aged , Models, Genetic , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases/genetics , alpha-Synuclein/genetics , tau Proteins/genetics
20.
BMC Med Genet ; 10: 98, 2009 Sep 22.
Article in English | MEDLINE | ID: mdl-19772629

ABSTRACT

BACKGROUND: Age at onset in Parkinson disease (PD) is a highly heritable quantitative trait for which a significant genetic influence is supported by multiple segregation analyses. Because genes associated with onset age may represent invaluable therapeutic targets to delay the disease, we sought to identify such genetic modifiers using a genomewide association study in familial PD. There have been previous genomewide association studies (GWAS) to identify genes influencing PD susceptibility, but this is the first to identify genes contributing to the variation in onset age. METHODS: Initial analyses were performed using genotypes generated with the Illumina HumanCNV370Duo array in a sample of 857 unrelated, familial PD cases. Subsequently, a meta-analysis of imputed SNPs was performed combining the familial PD data with that from a previous GWAS of 440 idiopathic PD cases. The SNPs from the meta-analysis with the lowest p-values and consistency in the direction of effect for onset age were then genotyped in a replication sample of 747 idiopathic PD cases from the Parkinson Institute Biobank of Milan, Italy. RESULTS: Meta-analysis across the three studies detected consistent association (p < 1 x 10(-5)) with five SNPs, none of which reached genomewide significance. On chromosome 11, the SNP with the lowest p-value (rs10767971; p = 5.4 x 10(-7)) lies between the genes QSER1 and PRRG4. Near the PARK3 linkage region on chromosome 2p13, association was observed with a SNP (rs7577851; p = 8.7 x 10(-6)) which lies in an intron of the AAK1 gene. This gene is closely related to GAK, identified as a possible PD susceptibility gene in the GWAS of the familial PD cases. CONCLUSION: Taken together, these results suggest an influence of genes involved in endocytosis and lysosomal sorting in PD pathogenesis.


Subject(s)
Genome-Wide Association Study , Parkinson Disease/genetics , Adult , Age of Onset , Aged , Aged, 80 and over , Female , Humans , Linear Models , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL