Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 24(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37834461

ABSTRACT

Saliva houses over 2000 proteins and peptides with poorly clarified functions, including proline-rich proteins, statherin, P-B peptides, histatins, cystatins, and amylases. Their genes are poorly conserved across related species, reflecting an evolutionary adaptation. We searched the nucleotide substitutions fixed in these salivary proteins' gene loci in modern humans compared with ancient hominins. We mapped 3472 sequence variants/nucleotide substitutions in coding, noncoding, and 5'-3' untranslated regions. Despite most of the detected variations being within noncoding regions, the frequency of coding variations was far higher than the general rate found throughout the genome. Among the various missense substitutions, specific substitutions detected in PRB1 and PRB2 genes were responsible for the introduction/abrogation of consensus sequences recognized by convertase enzymes that cleave the protein precursors. Overall, these changes that occurred during the recent human evolution might have generated novel functional features and/or different expression ratios among the various components of the salivary proteome. This may have influenced the homeostasis of the oral cavity environment, possibly conditioning the eating habits of modern humans. However, fixed nucleotide changes in modern humans represented only 7.3% of all the substitutions reported in this study, and no signs of evolutionary pressure or adaptative introgression from archaic hominins were found on the tested genes.


Subject(s)
Hominidae , Salivary Proteins and Peptides , Humans , Animals , Salivary Proteins and Peptides/genetics , Histatins , Proteome , Nucleotides
2.
Int J Mol Sci ; 23(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36012749

ABSTRACT

In the last 20 years, bone regenerative research has experienced exponential growth thanks to the discovery of new nanomaterials and improved manufacturing technologies that have emerged in the biomedical field. This revolution demands standardization of methods employed for biomaterials characterization in order to achieve comparable, interoperable, and reproducible results. The exploited methods for characterization span from biophysics and biochemical techniques, including microscopy and spectroscopy, functional assays for biological properties, and molecular profiling. This review aims to provide scholars with a rapid handbook collecting multidisciplinary methods for bone substitute R&D and validation, getting sources from an up-to-date and comprehensive examination of the scientific landscape.


Subject(s)
Regenerative Medicine , Tissue Engineering , Biocompatible Materials/chemistry , Bone Regeneration , Bone and Bones , Materials Science , Regenerative Medicine/methods , Tissue Engineering/methods
3.
Int J Mol Sci ; 23(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35328476

ABSTRACT

Fracture non-union is a challenging orthopaedic issue and a socio-economic global burden. Several biological therapies have been introduced to improve traditional surgical approaches. Among these, the latest research has been focusing on adipose tissue as a powerful source of mesenchymal stromal cells, namely, adipose-derived stem cells (ADSCs). ADSC are commonly isolated from the stromal vascular fraction (SVF) of liposuctioned hypodermal adipose tissue, and their applications have been widely investigated in many fields, including non-union fractures among musculoskeletal disorders. This review aims at providing a comprehensive update of the literature on clinical application of ADSCs for the treatment of non-unions in humans. The study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Only three articles met our inclusion criteria, with a total of 12 cases analyzed for demographics and harvesting, potential manufacturing and implantation of ADSCs. The review of the literature suggests that adipose derived cell therapy can represent a promising alternative in bone regenerative medicine for the enhancement of non-unions and bone defects. The low number of manuscripts reporting ADSC-based therapies for long bone fracture healing suggests some critical issues that are discussed in this review. Nevertheless, further investigations on human ADSC therapies are needed to improve the knowledge on their translational potential and to possibly achieve a consensus on their use for such applications.


Subject(s)
Adipose Tissue , Mesenchymal Stem Cells , Adipocytes , Cell- and Tissue-Based Therapy , Humans , Regenerative Medicine
4.
Hum Genet ; 139(8): 1077-1090, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32266521

ABSTRACT

Our previous genome-wide association study (GWAS) for sagittal nonsyndromic craniosynostosis (sNCS) provided important insights into the genetics of midline CS. In this study, we performed a GWAS for a second midline NCS, metopic NCS (mNCS), using 215 non-Hispanic white case-parent triads. We identified six variants with genome-wide significance (P ≤ 5 × 10-8): rs781716 (P = 4.71 × 10-9; odds ratio [OR] = 2.44) intronic to SPRY3; rs6127972 (P = 4.41 × 10-8; OR = 2.17) intronic to BMP7; rs62590971 (P = 6.22 × 10-9; OR = 0.34), located ~ 155 kb upstream from TGIF2LX; and rs2522623, rs2573826, and rs2754857, all intronic to PCDH11X (P = 1.76 × 10-8, OR = 0.45; P = 3.31 × 10-8, OR = 0.45; P = 1.09 × 10-8, OR = 0.44, respectively). We performed a replication study of these variants using an independent non-Hispanic white sample of 194 unrelated mNCS cases and 333 unaffected controls; only the association for rs6127972 (P = 0.004, OR = 1.45; meta-analysis P = 1.27 × 10-8, OR = 1.74) was replicated. Our meta-analysis examining single nucleotide polymorphisms common to both our mNCS and sNCS studies showed the strongest association for rs6127972 (P = 1.16 × 10-6). Our imputation analysis identified a linkage disequilibrium block encompassing rs6127972, which contained an enhancer overlapping a CTCF transcription factor binding site (chr20:55,798,821-55,798,917) that was significantly hypomethylated in mesenchymal stem cells derived from fused metopic compared to open sutures from the same probands. This study provides additional insights into genetic factors in midline CS.


Subject(s)
Bone Morphogenetic Protein 7/genetics , Craniosynostoses/genetics , Genetic Variation , Polymorphism, Single Nucleotide/genetics , Alleles , DNA Methylation , Genes, Reporter , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Introns/genetics , Linkage Disequilibrium , Promoter Regions, Genetic/genetics , Risk Factors
6.
Genet Med ; 22(9): 1498-1506, 2020 09.
Article in English | MEDLINE | ID: mdl-32499606

ABSTRACT

PURPOSE: Enrichment of heterozygous missense and truncating SMAD6 variants was previously reported in nonsyndromic sagittal and metopic synostosis, and interaction of SMAD6 variants with a common polymorphism nearBMP2 (rs1884302) was proposed to contribute to inconsistent penetrance. We determined the occurrence of SMAD6 variants in all types of craniosynostosis, evaluated the impact of different missense variants on SMAD6 function, and tested independently whether rs1884302 genotype significantly modifies the phenotype. METHODS: We performed resequencing of SMAD6 in 795 unsolved patients with any type of craniosynostosis and genotyped rs1884302 in SMAD6-positive individuals and relatives. We examined the inhibitory activity and stability of SMAD6 missense variants. RESULTS: We found 18 (2.3%) different rare damaging SMAD6 variants, with the highest prevalence in metopic synostosis (5.8%) and an 18.3-fold enrichment of loss-of-function variants comparedwith gnomAD data (P < 10-7). Combined with eight additional variants, ≥20/26 were transmitted from an unaffected parent but rs1884302 genotype did not predict phenotype. CONCLUSION: Pathogenic SMAD6 variants substantially increase the risk of both nonsyndromic and syndromic presentations of craniosynostosis, especially metopic synostosis. Functional analysis is important to evaluate missense variants. Genotyping of rs1884302 is not clinically useful. Mechanisms to explain the remarkable diversity of phenotypes associated with SMAD6 variants remain obscure.


Subject(s)
Craniosynostoses , Craniosynostoses/genetics , Genotype , Humans , Mutation, Missense/genetics , Penetrance , Phenotype , Smad6 Protein/genetics
7.
Int J Mol Sci ; 21(12)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575385

ABSTRACT

All skeletal bones house osteogenic stem cell niches, in which mesenchymal stromal cells (MSC) provide progenitors for tissue growth and regeneration. They have been widely studied in long bones formed through endochondral ossification. Limited information is available on the composition of the osteogenic niche in flat bones (i.e., skull vault bones) that develop through direct membranous ossification. Craniosynostosis (CS) is a congenital craniofacial defect due to the excessive and premature ossification of skull vault sutures. This study aimed at analysing the expression of GLI1, AXIN2 and THY1 in the context of the human skull vault, using nonsyndromic forms of CS (NCS) as a model to test their functional implication in the aberrant osteogenic process. The expression of selected markers was studied in NCS patients' calvarial bone specimens, to assess the in vivo location of cells, and in MSC isolated thereof. The marker expression profile was analysed during in vitro osteogenic differentiation to validate the functional implication. Our results show that GLI1 and AXIN2 are expressed in periosteal and endosteal locations within the osteogenic niche of human calvarial bones. Their expression is higher in MSC isolated from calvarial bones than in those isolated from long bones and tends to decrease upon osteogenic commitment and differentiation. In particular, AXIN2 expression was lower in cells isolated from prematurely fused sutures than in those derived from patent sutures of NCS patients. This suggests that AXIN2 could reasonably represent a marker for the stem cell population that undergoes depletion during the premature ossification process occurring in CS.


Subject(s)
Axin Protein/metabolism , Biomarkers/metabolism , Craniosynostoses/metabolism , Skull/cytology , Zinc Finger Protein GLI1/metabolism , Axin Protein/genetics , Cell Differentiation , Cells, Cultured , Craniosynostoses/genetics , Down-Regulation , Female , Humans , Infant , Infant, Newborn , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteogenesis , Primary Cell Culture , Skull/metabolism , Stem Cell Niche , Zinc Finger Protein GLI1/genetics
8.
Int J Mol Sci ; 21(17)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878114

ABSTRACT

Recent evidence has shown that graphene quantum dots (GQDs) are capable of crossing the blood-brain barrier, the barrier that reduces cancer therapy efficacy. Here, we tested three alternative GQDs' surface chemistries on two neural lineages (glioblastoma cells and mouse cortical neurons). We showed that surface chemistry modulates GQDs' biocompatibility. When used in combination with the chemotherapeutic drug doxorubicin, GDQs exerted a synergistic effect on tumor cells, but not on neurons. This appears to be mediated by the modification of membrane permeability induced by the surface of GQDs. Our findings highlight that GQDs can be adopted as a suitable delivery and therapeutic strategy for the treatment of glioblastoma, by both directly destabilizing the cell membrane and indirectly increasing the efficacy of chemotherapeutic drugs.


Subject(s)
Doxorubicin/chemistry , Doxorubicin/pharmacology , Embryo, Mammalian/drug effects , Glioblastoma/drug therapy , Graphite/chemistry , Neurons/drug effects , Quantum Dots , Animals , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Apoptosis , Cell Proliferation , Embryo, Mammalian/cytology , Glioblastoma/pathology , Humans , Mice , Mice, Inbred C57BL , Neurons/cytology , Tumor Cells, Cultured
9.
Genet Med ; 20(9): 1061-1068, 2018 09.
Article in English | MEDLINE | ID: mdl-29215649

ABSTRACT

PURPOSE: The craniosynostoses are characterized by premature fusion of one or more cranial sutures. The relative contribution of previously reported genes to craniosynostosis in large cohorts is unclear. Here we report on the use of a massively parallel sequencing panel in individuals with craniosynostosis without a prior molecular diagnosis. METHODS: A 20-gene panel was designed based on the genes' association with craniosynostosis, and clinically validated through retrospective testing of an Australian and New Zealand cohort of 233 individuals with craniosynostosis in whom previous testing had not identified a causative variant within FGFR1-3 hot-spot regions or the TWIST1 gene. An additional 76 individuals were tested prospectively. RESULTS: Pathogenic or likely pathogenic variants in non-FGFR genes were identified in 43 individuals, with diagnostic yields of 14% and 15% in retrospective and prospective cohorts, respectively. Variants were identified most frequently in TCF12 (N = 22) and EFNB1 (N = 8), typically in individuals with nonsyndromic coronal craniosynostosis or TWIST1-negative clinically suspected Saethre-Chotzen syndrome. Clinically significant variants were also identified in ALX4, EFNA4, ERF, and FGF10. CONCLUSION: These findings support the clinical utility of a massively parallel sequencing panel for craniosynostosis. TCF12 and EFNB1 should be included in genetic testing for nonsyndromic coronal craniosynostosis or clinically suspected Saethre-Chotzen syndrome.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Craniosynostoses/genetics , Ephrin-B1/genetics , Australia , Cohort Studies , Cranial Sutures/pathology , DNA-Binding Proteins/genetics , Female , Fibroblast Growth Factor 10/genetics , Genetic Testing , High-Throughput Nucleotide Sequencing/methods , Humans , Male , New Zealand , Nuclear Proteins/genetics , Prospective Studies , Receptor, Fibroblast Growth Factor, Type 1/genetics , Repressor Proteins/genetics , Retrospective Studies , Transcription Factors/genetics , Twist-Related Protein 1/genetics
10.
Int J Mol Sci ; 19(5)2018 May 22.
Article in English | MEDLINE | ID: mdl-29786645

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder, for which, to date, no effective treatment to ameliorate the clinical manifestations is available. The long-standing view of ALS as affecting only motor neurons has been challenged by the finding that the skeletal muscle plays an active role in the disease pathogenesis and can be a valuable target for therapeutic strategies. In recent years, non-coding RNAs, including microRNAs, have emerged as important molecules that play key roles in several cellular mechanisms involved in the pathogenic mechanisms underlying various human conditions. In this review, we summarize how the expression of some microRNAs is dysregulated in the skeletal muscle of ALS mouse models and patients. Shedding light on the mechanisms underlying microRNAs dysregulation in the skeletal muscle could clarify some of the processes involved in the pathogenesis of ALS and especially identify new promising therapeutic targets in patients.


Subject(s)
Amyotrophic Lateral Sclerosis/etiology , MicroRNAs/genetics , Muscle, Skeletal/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , Humans , MicroRNAs/metabolism , Muscle, Skeletal/pathology
11.
Int J Mol Sci ; 19(11)2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30373116

ABSTRACT

Graphene and graphene oxide can promote the adhesion, growth and differentiation of mesenchymal stem cells. Further, graphene surface coatings accelerate the differentiation of human mesenchymal stem cells acting as osteogenic inducers. Quantification of the osteogenic induction is conventionally performed with Alizarin Red S (ARS), an anthraquinone derivative used to identify calcium deposits in tissue sections and cell cultures. The ARS staining is quite versatile because the dye forms an Alizarin Red S⁻calcium complex that can be extracted from the stained monolayer of cells and readily assayed by absorbance measurements. Direct visualization of stained deposits is also feasible; however, an in-situ visualization and quantification of deposits is possible only on transparent supports and not on thick opaque materials like ceramics and graphene composites that are well-known inducers of osteogenesis. In this manuscript, the shape of the 2D-fluorescence spectra of the ARS-calcium complex is used to develop a method to detect and monitor the in-situ differentiation process occurring during the osteogenic induction mediated by opaque graphene oxide surfaces.


Subject(s)
Biocompatible Materials/chemistry , Graphite/chemistry , Mesenchymal Stem Cells/cytology , Osteogenesis , Spectrometry, Fluorescence/methods , Anthraquinones/analysis , Calcium/analysis , Cell Differentiation , Cells, Cultured , Coloring Agents/analysis , Humans , Oxides/chemistry , Skull/cytology , Tissue Engineering
12.
Am J Med Genet A ; 173(5): 1406-1429, 2017 May.
Article in English | MEDLINE | ID: mdl-28160402

ABSTRACT

Craniosynostosis, the premature ossification of one or more skull sutures, is a clinically and genetically heterogeneous congenital anomaly affecting approximately one in 2,500 live births. In most cases, it occurs as an isolated congenital anomaly, that is, nonsyndromic craniosynostosis (NCS), the genetic, and environmental causes of which remain largely unknown. Recent data suggest that, at least some of the midline NCS cases may be explained by two loci inheritance. In approximately 25-30% of patients, craniosynostosis presents as a feature of a genetic syndrome due to chromosomal defects or mutations in genes within interconnected signaling pathways. The aim of this review is to provide a detailed and comprehensive update on the genetic and environmental factors associated with NCS, integrating the scientific findings achieved during the last decade. Focus on the neurodevelopmental, imaging, and treatment aspects of NCS is also provided.


Subject(s)
Congenital Abnormalities/genetics , Craniosynostoses/genetics , Ossification, Heterotopic/genetics , Congenital Abnormalities/physiopathology , Cranial Sutures/physiopathology , Craniosynostoses/physiopathology , Humans , Ossification, Heterotopic/physiopathology , Phenotype
13.
Brain Behav Evol ; 89(3): 162-184, 2017.
Article in English | MEDLINE | ID: mdl-28463847

ABSTRACT

Schizophrenia (SZ) is a pervasive neurodevelopmental disorder that entails social and cognitive deficits, including marked language problems. Its complex multifactorial etiopathogenesis, including genetic and environmental factors, is still widely uncertain. SZ incidence has always been high and quite stable in human populations, across time and regardless of cultural implications, for unclear reasons. It has been hypothesized that SZ pathophysiology may involve the biological components that changed during the recent human evolutionary history, and led to our distinctive mode of cognition, which includes language skills. In this paper we explore this hypothesis, focusing on the self-domestication of the human species. This has been claimed to account for many human-specific distinctive traits, including aspects of our behavior and cognition, and to favor the emergence of complex languages through cultural evolution. The "domestication syndrome" in mammals comprises the constellation of traits exhibited by domesticated strains, seemingly resulting from the hypofunction of the neural crest. It is our intention to show that people with SZ exhibit more marked domesticated traits at the morphological, physiological, and behavioral levels. We also show that genes involved in domestication and neural crest development and function comprise nearly 20% of SZ candidates, most of which exhibit altered expression profiles in the brain of SZ patients, specifically in areas involved in language processing. Based on these observations, we conclude that SZ may represent an abnormal ontogenetic itinerary for the human faculty of language, resulting, at least in part, from changes in genes important for the domestication syndrome and primarily involving the neural crest.


Subject(s)
Schizophrenia/genetics , Schizophrenia/physiopathology , Biological Evolution , Brain/pathology , Cognition/physiology , Cognition Disorders/physiopathology , Databases, Genetic , Gene Expression Regulation, Developmental/genetics , Humans , Language , Linguistics/methods , Neural Crest/physiology , Schizophrenic Psychology
14.
Electrophoresis ; 37(7-8): 1015-26, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26719138

ABSTRACT

The lipoaspirate fluid (LAF) is emerging as a potentially valuable source in regenerative medicine. In particular, our group recently demonstrated that it is able to exert osteoinductive properties in vitro. This original observation stimulated the investigation of the proteomic component of LAF, by means of LC-ESI-LTQ-Orbitrap-MS top-down/bottom-up integrated approach, which represents the object of the present study. Top-down analyses required the optimization of sample pretreatment procedures to enable the correct investigation of the intact proteome. Bottom-up analyses have been directly applied to untreated samples after monodimensional SDS-PAGE separation. The analysis of the acid-soluble fraction of LAF by top-down approach allowed demonstrating the presence of albumin and hemoglobin fragments (i.e. VV- and LVV-hemorphin-7), thymosins ß4 and ß10 peptides, ubiquitin and acyl-CoA binding protein; adipogenesis regulatory factor, perilipin-1 fragments, and S100A6, along with their PTMs. Part of the bottom-up proteomic profile was reproducibly found in both tested samples. The bottom-up approach allowed demonstrating the presence of proteins, listed among the components of adipose tissue and/or comprised within the ASCs intracellular content and secreted proteome. Our data provide a first glance on the LAF molecular profile, which is consistent with its tissue environment. LAF appeared to contain bioactive proteins, peptides and paracrine factors, suggesting its potential translational exploitation.


Subject(s)
Adipose Tissue/chemistry , Body Fluids/chemistry , Lipectomy , Proteome/analysis , Regenerative Medicine , Adipose Tissue/cytology , Body Fluids/cytology , Chromatography, Liquid/methods , Female , Humans , Mass Spectrometry/methods , Proteome/chemistry , Proteome/classification , Proteomics/methods
15.
Cytotherapy ; 17(8): 1076-89, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26002819

ABSTRACT

BACKGROUND AIMS: Subcutaneous fat represents a valuable reservoir of adipose-derived stem cells (ASCs) in the stromal vascular fraction (SVF), widely exploited in regenerative medicine applications, being easily harvested through lipoaspiration. The lack of standardized procedures for autologous fat grafting guided research efforts aimed at identifying possible differences related to the harvesting site, which may affect cell isolation yield, cell growth properties and clinical outcomes. Subcutaneous fat features a complex architecture: the superficial fascia separates superficial adipose tissue (SAT) from deep layer tissue (DAT). We aimed to unravel the differences between SAT and DAT, considering morphological structure, SVF composition, and ASC properties. METHODS: SAT and DAT were collected from female donors and comparatively analyzed to evaluate cellular yield and viability, morphology, immunophenotype and molecular profile. ASCs were isolated in primary culture and used for in vitro differentiation assays. SAT and DAT from cadaver donors were also analyzed through histology and immunohistochemistry to assess morphology and cell localization within the hypoderm. RESULTS: Liposuctioned SAT contained a higher stromal tissue compound, along with a higher proportion of CD105-positive cells, compared with DAT from the same harvesting site. Also, cells isolated from SAT displayed increased multipotency and stemness features. All differences were mainly evidenced in specimens harvested from the abdominal region. According to our results, SAT features overall increased stem properties. CONCLUSIONS: Given that subcutaneous adipose tissue is currently exploited as the gold standard source for high-yield isolation of adult stem cells, these results may provide precious hints toward the definition of standardized protocols for microharvesting.


Subject(s)
Adipocytes/cytology , Adult Stem Cells/cytology , Cell Separation/methods , Regenerative Medicine/methods , Subcutaneous Fat/cytology , Adult , Cell Count , Cell Differentiation/physiology , Cell Proliferation , Cells, Cultured , Female , Humans , Lipectomy , Middle Aged , Primary Cell Culture , Stromal Cells/cytology
16.
ScientificWorldJournal ; 2014: 406159, 2014.
Article in English | MEDLINE | ID: mdl-24672316

ABSTRACT

Bone fusion represents a challenge in the orthopedics practice, being especially indicated for spine disorders. Spinal fusion can be defined as the bony union between two vertebral bodies obtained through the surgical introduction of an osteoconductive, osteoinductive, and osteogenic compound. Autogenous bone graft provides all these three qualities and is considered the gold standard. However, a high morbidity is associated with the harvest procedure. Intensive research efforts have been spent during the last decades to develop new approaches and technologies for successful spine fusion. In recent years, cell and gene therapies have attracted great interest from the scientific community. The improved knowledge of both mesenchymal stem cell biology and osteogenic molecules allowed their use in regenerative medicine, representing attractive approaches to achieve bone regeneration also in spinal surgery applications. In this review we aim to describe the developing gene- and cell-based bone regenerative approaches as promising future trends in spine fusion.


Subject(s)
Cell- and Tissue-Based Therapy , Genetic Therapy , Spinal Fusion , Humans
17.
Sci Rep ; 14(1): 8546, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609399

ABSTRACT

In cases of osseous defects, knowledge of the anatomy, and its age and sex-related variations, is essential for reconstruction of normal morphology. Here, we aimed at creating a 3D atlas of the human mandible in an adult sample using dense landmarking and geometric morphometrics. We segmented 50 male and 50 female mandibular surfaces from CBCT images (age range: 18.9-73.7 years). Nine fixed landmarks and 510 sliding semilandmarks were digitized on the mandibular surface, and then slid by minimizing bending energy against the average shape. Principal component analysis extracted the main patterns of shape variation. Sexes were compared with permutation tests and allometry was assessed by regressing on the log of the centroid size. Almost 49 percent of shape variation was described by the first three principal components. Shape variation was related to width, height and length proportions, variation of the angle between ramus and corpus, height of the coronoid process and inclination of the symphysis. Significant sex differences were detected, both in size and shape. Males were larger than females, had a higher ramus, more pronounced gonial angle, larger inter-gonial width, and more distinct antegonial notch. Accuracy of sexing based on the first two principal components in form space was 91 percent. The degree of edentulism was weakly related to mandibular shape. Age effects were not significant. The resulting atlas provides a dense description of mandibular form that can be used clinically as a guide for planning surgical reconstruction.


Subject(s)
Mandible , Sex Characteristics , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Epiphyses , Joints , Mandible/anatomy & histology , Mandible/diagnostic imaging , Polymers
18.
Sci Rep ; 14(1): 13059, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844490

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has highlighted the urgent need for innovative antiviral strategies to fight viral infections. Although a substantial part of the overall effort has been directed at the Spike protein to create an effective global vaccination strategy, other proteins have also been examined and identified as possible therapeutic targets. Among them, although initially underestimated, there is the SARS-CoV-2 E-protein, which turned out to be a key factor in viral pathogenesis due to its role in virus budding, assembly and spreading. The C-terminus of E-protein contains a PDZ-binding motif (PBM) that plays a key role in SARS-CoV-2 virulence as it is recognized and bound by the PDZ2 domain of the human tight junction protein ZO-1. The binding between the PDZ2 domain of ZO-1 and the C-terminal portion of SARS-CoV-2 E-protein has been extensively characterized. Our results prompted us to develop a possible adjuvant therapeutic strategy aimed at slowing down or inhibiting virus-mediated pathogenesis. Such innovation consists in the design and synthesis of externally PDZ2-ZO1 functionalized PLGA-based nanoparticles to be used as intracellular decoy. Contrary to conventional strategies, this innovative approach aims to capitalize on the E protein-PDZ2 interaction to prevent virus assembly and replication. In fact, the conjugation of the PDZ2 domain to polymeric nanoparticles increases the affinity toward the E protein effectively creating a "molecular sponge" able to sequester E proteins within the intracellular environment of infected cells. Our in vitro studies on selected cellular models, show that these nanodevices significantly reduce SARS-CoV-2-mediated virulence, emphasizing the importance of exploiting viral-host interactions for therapeutic benefit.


Subject(s)
Nanoparticles , PDZ Domains , SARS-CoV-2 , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Nanoparticles/chemistry , COVID-19/virology , COVID-19/metabolism , Zonula Occludens-1 Protein/metabolism , Coronavirus Envelope Proteins/metabolism , Coronavirus Envelope Proteins/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , COVID-19 Drug Treatment , Animals , Protein Binding
19.
Front Cell Dev Biol ; 12: 1411582, 2024.
Article in English | MEDLINE | ID: mdl-39144254

ABSTRACT

The intricate interplay between the developing placenta and fetal-maternal interactions is critical for pregnancy outcomes. Despite advancements, gaps persist in understanding biomechanics, transport processes, and blood circulation parameters, all of which are crucial for safe pregnancies. Moreover, the complexity of fetal-maternal interactions led to conflicting data and methodological variations. This review presents a comprehensive overview of current knowledge on fetal-maternal interface structures, with a particular focus on the first trimester. More in detail, the embryological development, structural characteristics, and physiological functions of placental chorionic plate and villi, fetal membranes and umbilical cord are discussed. Furthermore, a description of the main structures and features of maternal and fetal fluid dynamic exchanges is provided. However, ethical constraints and technological limitations pose still challenges to studying early placental development directly, which calls for sophisticated in vitro, microfluidic organotypic models for advancing our understanding. For this, knowledge about key in vivo parameters are necessary for their design. In this scenario, the integration of data from later gestational stages and mathematical/computational simulations have proven to be useful tools. Notwithstanding, further research into cellular and molecular mechanisms at the fetal-maternal interface is essential for enhancing prenatal care and improving maternal and fetal health outcomes.

20.
Sci Rep ; 14(1): 8533, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609424

ABSTRACT

Craniosynostosis (CS) is a major birth defect resulting from premature fusion of cranial sutures. Nonsyndromic CS occurs more frequently than syndromic CS, with sagittal nonsyndromic craniosynostosis (sNCS) presenting as the most common CS phenotype. Previous genome-wide association and targeted sequencing analyses of sNCS have identified multiple associated loci, with the strongest association on chromosome 20. Herein, we report the first whole-genome sequencing study of sNCS using 63 proband-parent trios. Sequencing data for these trios were analyzed using the transmission disequilibrium test (TDT) and rare variant TDT (rvTDT) to identify high-risk rare gene variants. Sequencing data were also examined for copy number variants (CNVs) and de novo variants. TDT analysis identified a highly significant locus at 20p12.3, localized to the intergenic region between BMP2 and the noncoding RNA gene LINC01428. Three variants (rs6054763, rs6054764, rs932517) were identified as potential causal variants due to their probability of being transcription factor binding sites, deleterious combined annotation dependent depletion scores, and high minor allele enrichment in probands. Morphometric analysis of cranial vault shape in an unaffected cohort validated the effect of these three single nucleotide variants (SNVs) on dolichocephaly. No genome-wide significant rare variants, de novo loci, or CNVs were identified. Future efforts to identify risk variants for sNCS should include sequencing of larger and more diverse population samples and increased omics analyses, such as RNA-seq and ATAC-seq.


Subject(s)
Craniosynostoses , Genome-Wide Association Study , Humans , Alleles , Bone Morphogenetic Protein 2/genetics , Craniosynostoses/genetics , DNA, Intergenic/genetics , Whole Genome Sequencing , RNA, Long Noncoding
SELECTION OF CITATIONS
SEARCH DETAIL