Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Toxicol Appl Pharmacol ; 484: 116858, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38341105

ABSTRACT

Chronic arsenic exposures are associated with multiple hematologic disturbances, including anemia. The goal of this study was to evaluate associations between arsenic exposures and hematological parameters among men and women who are chronically exposed to elevated levels of arsenic from drinking water. Hematologic analyses were performed on blood collected from 755 participants (45% male and 54% female) in the Health Effects of Arsenic Longitudinal Study (HEALS) cohort, Bangladesh. Herein, we used linear regression models to estimate associations between red blood cell (RBC) parameters (i.e., RBC counts, hematocrit (HCT), hemoglobin (Hgb), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC)) and measurements of arsenic exposure (urinary arsenic and urinary arsenic metabolites). Arsenic exposures showed trending associations with decreased RBC counts in both men and women, a positive association with MCV in males, and an inverse association with MCHC among males, but not among non-smoking females. Among men, those who smoked had stronger associations between arsenic exposures and MCHC than non-smoking males. Collectively, our results show that arsenic exposures affect multiple RBC parameters and highlight potentially important sex differences in arsenic-induced hematotoxicity.


Subject(s)
Arsenic , Adult , Female , Humans , Male , Arsenic/toxicity , Longitudinal Studies , Bangladesh/epidemiology , Erythrocytes , Erythrocyte Indices
2.
Toxicol Appl Pharmacol ; 411: 115362, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33279514

ABSTRACT

Arsenic exposure is well established to impair the function of zinc finger proteins, including PARP-1. Previous studies from our lab show that early developing T cells in the thymus are very sensitive to arsenite (As+3)-induced genotoxicity mediated through PARP-1 inhibition. Additionally, it has been shown that uranium (in the form of uranyl acetate, UA) also suppresses PARP-1 activity in HEK cells. However, very little is known about whether the As+3 metabolite, monomethylarsonous acid (MMA+3), also inhibits PARP-1 activity and if this is modified by combined exposures with other metals, such as uranium. In the present study, we found that MMA+3 significantly suppressed PARP-1 function, whereas UA at high concentrations significantly increased PARP-1 activity. To evaluate whether the effects on PARP-1 activity were mediated through oxidative stress, we measured the induction of hemoxygenase-1 (Hmox-1) expression by qPCR. MMA+3, but not UA, significantly induced oxidative stress; however, the inhibition of PARP-1 produced by MMA+3 was not reversed by the addition of the antioxidant, Tempol. Further evaluation revealed minimal interactive effects of MMA+3 and UA on PARP-1 function. Collectively, our results show that contrary to As+3, the suppressive effects of MMA+3 on PARP-1 were not substantially driven by oxidative stress. in mouse thymus cells. Results for this study provide important insights into the effects of MMA+3 and uranium exposures on PARP-1 function, which is essential for future studies focused on understanding the effects of complex environmentally relevant metal mixtures.


Subject(s)
Organometallic Compounds/toxicity , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/toxicity , Thymus Gland/drug effects , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Oxidative Stress/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Thymus Gland/enzymology
3.
Environ Sci Technol ; 55(14): 9949-9957, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34235927

ABSTRACT

Particulate matter (PM) presents an environmental health risk for communities residing close to uranium (U) mine sites. However, the role of the particulate form of U on its cellular toxicity is still poorly understood. Here, we investigated the cellular uptake and toxicity of C-rich U-bearing particles as a model organic particulate containing uranyl citrate over a range of environmentally relevant concentrations of U (0-445 ĀµM). The cytotoxicity of C-rich U-bearing particles in human epithelial cells (A549) was U-dose-dependent. No cytotoxic effects were detected with soluble U doses. Carbon-rich U-bearing particles with a wide size distribution (<10 Āµm) presented 2.7 times higher U uptake into cells than the particles with a narrow size distribution (<1 Āµm) at 100 ĀµM U concentration. TEM-EDS analysis identified the intracellular translocation of clusters of C-rich U-bearing particles. The accumulation of C-rich U-bearing particles induced DNA damage and cytotoxicity as indicated by the increased phosphorylation of the histone H2AX and cell death, respectively. These findings reveal the toxicity of the particulate form of U under environmentally relevant heterogeneous size distributions. Our study opens new avenues for future investigations on the health impacts resulting from environmental exposures to the particulate form of U near mine sites.


Subject(s)
Uranium , Carbon , Coal , Dust/analysis , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , Uranium/analysis , Uranium/toxicity
4.
Toxicol Appl Pharmacol ; 403: 115155, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32710956

ABSTRACT

Human exposures to environmental metals, including uranium (U) and arsenic (As) are a global public health concern. Chronic exposures to U and As are linked to many adverse health effects including, immune suppression and autoimmunity. The gastrointestinal (GI) tract is home to many immune cells vital in the maintenance of systemic immune health. However, very little is known about the immunotoxicity of U and As at this site. The present study examined the burden of U and As exposure in the GI tract as well as the resultant immunotoxicity to intraepithelial lymphocytes (IELs) and innate immune cells of the small intestine following chronic drinking water exposures of male and female mice to U (in the form of uranyl acetate, UA) and As (in the form of sodium arsenite, As3+). Exposure to U or As3+ resulted in high levels of U or As in the GI tract of male and female mice, respectively. A reduction of small intestinal CD4+ IELs (TCRαƟ+, CD8αα+) was found following As3+ exposure, whereas U produced widespread suppression of CD4- IEL subsets (TCRαƟ+ and TCRƎĀ³ĆŽĀ“+). Evaluation of innate immune cell subsets in the small intestinal lamina propria revealed a decrease in mature macrophages, along with a corresponding increase in immature/proinflammatory macrophages following As3+ exposures. These data show that exposures to two prevalent environmental contaminants, U and As produce significant immunotoxicity in the GI tract. Collectively, these findings provide a critical framework for understanding the underlying immune health issues reported in human populations chronically exposed to environmental metals.


Subject(s)
Arsenic/toxicity , Immunity, Innate/drug effects , Intestine, Small/cytology , Uranium/toxicity , Administration, Oral , Animals , Drinking Water , Female , Intestine, Small/drug effects , Male , Mice , Mice, Inbred C57BL , Sex Factors
5.
Toxicol Appl Pharmacol ; 372: 33-39, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30978399

ABSTRACT

Historical uranium (U) mining in the Southwestern United States resulted in significant environmental contamination throughout this region and presents a significant risk of chronic metal exposure and toxicity for communities living in close proximity to mine waste sites. Uranium exposure is associated with numerous deleterious health effects including immune dysfunction; however, its effects on the immune system have yet to be fully characterized. We recently published that drinking water exposure to U, in the form of uranyl acetate (UA), results in low overall tissue retention of U (<0.01%), with very little accumulation in immune organs (blood, bone marrow, spleen, and thymus) of male and female mice. In the present study we characterized the immunotoxicity of U, in the form of UA, following a 60-day drinking water exposure to 5 and 50Ć¢Ā€ĀÆppm in male and female C57BL/6J mice. The following immunotoxicity endpoints were evaluated: hematology, immune tissue weights and total cell recoveries, immunophenotying of the spleen and thymus, and immune cell function (lymphocyte mitogenesis and T-dependent antibody response). Uranium exposure had subtle impacts on the immune endpoints evaluated, likely due to low U accumulation at these sites. The only significant alterations were a slight decrease in the percentages of splenic natural killer T-cells and macrophages in exposed male mice. Despite minimal immunological effects, this study highlights the importance of investigating toxicological endpoints in both sexes and developing accurate animal models that model epidemiological exposures in the future.


Subject(s)
Immunity, Humoral/drug effects , Immunity, Innate/drug effects , Organometallic Compounds/toxicity , Water Pollutants, Chemical/toxicity , Administration, Oral , Animals , Cells, Cultured , Female , Macrophages/drug effects , Macrophages/immunology , Male , Mice, Inbred C57BL , Natural Killer T-Cells/drug effects , Natural Killer T-Cells/immunology , Organometallic Compounds/administration & dosage , Sex Factors , Spleen/drug effects , Spleen/immunology , Spleen/metabolism , Time Factors , Water Pollutants, Chemical/administration & dosage
6.
Toxicol Appl Pharmacol ; 384: 114783, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31669812

ABSTRACT

In a cohort of approximately 200 Bangladeshi men, equally divided into smokers and non-smokers and equally divided by exposure to high and low levels of drinking water arsenic, we examined ex vivo a series of immune markers and immune function tests in peripheral blood mononuclear cells (PBMC). These immune parameters included PBMC cell surface markers (CSM) for B, T, monocytes, and NK cells, activated T and B cell markers, cytokine production in vitro, and analysis of CD4 subsets (Th1, Th2, Treg, and Th17 cells). We found that the effects of cigarette smoke were quite different than those associated with arsenic or polycyclic aromatic hydrocarbon (PAH)-DNA adducts. Cigarette smoking was associated with a significant increase in the number of PAH-DNA adducts as well as an increase in urinary levels of 1-hydropxypyrene (1-OHP). After correcting for arsenic exposure and PAH-DNA adducts, we found that cigarette smoking was associated with an increase in the percentage of CD19+ B cells, as well as the percentage of activated B cells (CD19+, HLA-DRbright cells) found in PBMC. These findings demonstrate activation of the immune system during chronic exposure to cigarette smoke, which is a known risk factor for autoimmune diseases.


Subject(s)
Autoimmune Diseases/epidemiology , B-Lymphocytes/immunology , Cigarette Smoking/adverse effects , DNA Adducts/drug effects , HLA-DR Antigens/immunology , Adolescent , Adult , Aged , Autoimmune Diseases/immunology , B-Lymphocytes/drug effects , Bangladesh , Cigarette Smoking/blood , Cigarette Smoking/immunology , Cohort Studies , DNA Adducts/immunology , Humans , Male , Middle Aged , Polycyclic Aromatic Hydrocarbons/toxicity , Risk Factors , Smoke/adverse effects , Nicotiana/adverse effects , Young Adult
7.
Toxicol Appl Pharmacol ; 331: 62-68, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28526635

ABSTRACT

Drinking water arsenic (WAs) exposure has been linked to a number of detrimental health outcomes including anemia, primarily among pregnant women. Little is known about the effects of arsenic (As) on hematological disorders among men. We have examined the role of As exposure on hematological indicators of anemia in a group of men exposed to a wide range of As in their drinking water. We conducted a cross-sectional investigation among 119 healthy men in the Health Effects of As Longitudinal Study (HEALS) cohort, in rural Bangladesh. The participants are part of an ongoing study focused on evaluating the influence of As and smoking on immune function. Samples were collected at recruitment and analyzed for water As, urinary As (UAs) and UAs metabolites to assess As exposure. Blood samples were also collected at recruitment and assayed immediately for hematological parameters. We found that increased WAs levels were associated with decreased red blood cell counts [Ɵ=-0.13, p<0.0001] as well as hematocrit packed cell volumes [Ɵ=-0.68, p=0.008] following adjustment for age, smoking, body mass index and polycyclic aromatic hydrocarbon-DNA adducts. Other measures of As exposure (UAs and its metabolites) demonstrated similar associations. Slightly stronger effects were observed among smokers. We also observed an effect of As on hemoglobin among smokers in relation to UAs [Ɵ=-0.54, p<0.05]. Our analysis revealed effects of As exposure on hematological indicators of anemia in a group of healthy male smokers and non-smokers.


Subject(s)
Anemia/chemically induced , Anemia/epidemiology , Arsenic/toxicity , Drinking Water/adverse effects , Environmental Exposure/adverse effects , Smoking/epidemiology , Adult , Aged , Anemia/blood , Arsenic/administration & dosage , Bangladesh/epidemiology , Cohort Studies , Cross-Sectional Studies , Dose-Response Relationship, Drug , Humans , Male , Middle Aged , Prospective Studies , Smoking/blood , Water Pollutants, Chemical/adverse effects , Water Pollutants, Chemical/blood
8.
Inhal Toxicol ; 28(2): 61-70, 2016.
Article in English | MEDLINE | ID: mdl-26895307

ABSTRACT

Previous studies have shown that complex mixtures containing particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) produce systemic immunotoxicity in animal models following inhalation exposures. While we and others have shown that emissions associated with hardwood smoke (HWS), cigarette smoke and diesel exhaust can suppress the immune systems of animals in vitro and in vivo, there have been few immune function studies on human peripheral blood mononuclear cells (HPBMC) following exposure of humans to HWS. Our work shows that T cells are an important targets of PM and PAH immunotoxicity. These studies were conducted on HPBMC from 14 human volunteers receiving four 2 h nightly exposures to clean air or HWS at a concentration of 500 ug/m(3). We measured anti-CD3/anti-CD28 stimulated T-cell proliferation and HPBMC cytokine production in cell supernatants, including interleukin 1Ɵ (IL-1Ɵ), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8), TH1 cytokines ƎĀ³IFN and IL-2, TH2 cytokine IL-4, Th17 cytokine interleukin 17A (IL-17A) and interleukin 10 (IL-10). We analyzed results using analysis of variance (ANOVA), t-tests and Pearson correlation. Results showed that there was significant variation in the amount of T-cell proliferation observed following polyclonal activation with anti-CD3/anti-CD28 antibodies in both the air and HWS-exposed groups. There was not a significant effect of HWS on T-cell proliferation. However, we did find a strong relationship between the presence of proinflammatory cytokines (IL-1Ɵ, TNF-α, IL-6, but not IL-8) and the amount of T-cell proliferation seen in individual donors, demonstrating that brief exposures of humans to HWS can produce changes in systemic immunity that is associated with proinflammatory cytokines.


Subject(s)
Inhalation Exposure , Smoke/adverse effects , Wood , Adult , Antibodies , Biomarkers , CD28 Antigens/immunology , CD3 Complex/immunology , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Regulation/drug effects , Humans , Male , Middle Aged , T-Lymphocytes/drug effects
9.
Environ Health Perspect ; 132(5): 57006, 2024 May.
Article in English | MEDLINE | ID: mdl-38771937

ABSTRACT

BACKGROUND: Uranium exposure remains an important environmental legacy and physiological health concern, with hundreds of abandoned uranium mines located in the Southwestern United States largely impacting underserved indigenous communities. The negative effects of heavy metals on barrier permeability and inhibition of intestinal epithelial healing have been described; however, transcriptomic changes within the intestinal epithelial cells and impacts on lineage differentiation are largely unknown. OBJECTIVES: Herein, we sought to determine the molecular and cellular changes that occur in the colon in response to uranium bearing dust (UBD) exposure. METHODS: Human colonoids from three biologically distinct donors were acutely exposed to UBD then digested for single cell RNA sequencing to define the molecular changes that occur to specific identities of colonic epithelial cells. Validation in colonoids was assessed using morphological and imaging techniques. RESULTS: Human colonoids acutely exposed to UBD exhibited disrupted proliferation and hyperplastic differentiation of the secretory lineage cell, enteroendocrine cells (EEC). Single-cell RNA sequencing also showed more EEC subtypes present in UBD-exposed colonoids. DISCUSSION: These findings highlight the significance of crypt-based proliferative cells and secretory cell differentiation using human colonoids to model major colonic responses to uranium-bearing particulate dust exposure. https://doi.org/10.1289/EHP13855.


Subject(s)
Colon , Dust , Single-Cell Analysis , Uranium , Humans , Uranium/toxicity , Colon/drug effects , Epithelial Cells/drug effects
10.
J Toxicol Environ Health A ; 76(1): 16-24, 2013.
Article in English | MEDLINE | ID: mdl-23151208

ABSTRACT

Dibenzo[def,p]chrysene (DBC) is a potent environmental carcinogen in rodents, fish, and human cells examined in culture. There are numerous similarities between the patterns of cytochrome P-450 (P450) activation of DBC and its covalent binding to DNA and proteins with another polycyclic aromatic hydrocarbon (PAH), 7,12-dimethylbenz[a]anthracene (DMBA). Our lab has previously shown that DMBA produces immunosuppression in rodents and human cell systems. Therefore, the purpose of these studies was to examine the immunotoxicity of DBC in a rodent model that was found to be sensitive to the immunosuppressive effects of DMBA. Data showed that DBC had similar potency to DMBA in producing suppression of a T-dependent antibody response (TDAR) and altered spleen cell subsets in a similar manner as DMBA when DMBA was given by gavage for 5 d in corn oil to mice at doses of 1-100 mg/kg total cumulative doses. T-cell-independent antigen (TNP-Ficoll) responses were quantitatively less sensitive to DBC suppression. It was also found that as with DMBA, DBC produced a persistent immunosuppression, which lasted for at least 4 wk following dosing with a novel pill method for self-administration of DBC. In conclusion, DBC appears to possess many of the same characteristics of DMBA in terms of its immunotoxicity.


Subject(s)
Antibody Formation/drug effects , Benzopyrenes/toxicity , Carcinogens, Environmental/toxicity , Spleen/drug effects , Spleen/immunology , Administration, Oral , Animals , Antibody Formation/immunology , Benzopyrenes/administration & dosage , Biomarkers , Carcinogens, Environmental/administration & dosage , Dose-Response Relationship, Drug , Ficoll/analogs & derivatives , Ficoll/immunology , Male , Membrane Proteins , Mice , Mice, Inbred C57BL , Spleen/cytology , Trinitrobenzenes/immunology
11.
bioRxiv ; 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37609291

ABSTRACT

Chronic exposure to environmental toxins and heavy metals has been associated with intestinal inflammation, increased susceptibility to pathogen-induced diseases, and higher incidences of colorectal cancer, all of which have been steadily increasing in prevalence for the past 40 years. The negative effects of heavy metals on barrier permeability and inhibition of intestinal epithelial healing have been described; however, transcriptomic changes within the intestinal epithelial cells and impacts on lineage differentiation are largely unknown. Uranium exposure remains an important environmental legacy and physiological health concern, with hundreds of abandoned uranium mines located in the Southwestern United States largely impacting underserved indigenous communities. Herein, using human colonoids, we defined the molecular and cellular changes that occur in response to uranium bearing dust (UBD) exposure. We used single cell RNA sequencing to define the molecular changes that occur to specific identities of colonic epithelial cells. We demonstrate that this environmental toxicant disrupts proliferation and induces hyperplastic differentiation of secretory lineage cells, particularly enteroendocrine cells (EEC). EECs respond to UBD exposure with increased differentiation into de novo EEC sub-types not found in control colonoids. This UBD-induced EEC differentiation does not occur via canonical transcription factors NEUROG3 or NEUROD1. These findings highlight the significance of crypts-based proliferative cells and secretory cell differentiation as major colonic responses to heavy metal-induced injury.

12.
PLoS One ; 17(4): e0266168, 2022.
Article in English | MEDLINE | ID: mdl-35404942

ABSTRACT

There is limited evidence on the effects of environmental exposure to arsenic (As) on the immune system in adults. In a population-based study, we have found that urinary As (UAs), and its metabolites [inorganic As (InAs), monomethylated arsenicals (MMA+3/+5), and dimethylated arsenicals (DMA+3/+5)] modulate or influence the number of T-helper 17 (Th17) cells and IL-17A cytokine production. In non-smoking women, we observed that UAs and DMA+3/+5 were associated with changes in Th17 cell numbers in a nonlinear fashion. In smoking males, we found that UAs was associated with a significant decrease of Th17 cell numbers. Similar association was observed among non-smoking males. Likewise, UAs, DMA+3/+5 and MMA+3/+5 were associated with diminished production of IL-17A among non-smoking males. When stratified by Vitamin D levels defined as sufficient (≥20 ng/ml) and insufficient (<20 ng/ml), we found a substancial decrease in Th17 cell numbers among those with insufficient levels. Individuals with sufficient VitD levels demonstrated significant inhibition of IL-17A production in non-smoking males. Collectively, we find that exposure to As via drinking water is associated with alterations in Th17 numbers and IL-17A production, and that these associations may be modified by Vitamin D status. Our findings have significance for health outcomes associated with As exposure.


Subject(s)
Arsenic , Arsenicals , Adult , Arsenic/analysis , Environmental Exposure/adverse effects , Female , Humans , Interleukin-17 , Leukocytes, Mononuclear/metabolism , Male , Th17 Cells/metabolism , Vitamin D/pharmacology , Vitamins
13.
Toxicol Lett ; 350: 111-120, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34274428

ABSTRACT

Strong epidemiological evidence demonstrates an association between chronic arsenic exposure and anemia. We recently found that As+3 impairs erythropoiesis by disrupting the function of GATA-1; however the downstream pathways impacted by the loss of GATA-1 function have not been evaluated. Additionally, our previous findings indicate that the predominant arsenical in the bone marrow of mice exposed to As+3 in their drinking water for 30 days was MMA+3, but the impacts of this arsenical on erythorpoisis also remain largely unknown. The goal of this study was to address these critical knowledge gaps by evaluating the comparative effects of arsenite (As+3) and the As+3 metabolite, monomethyarsonous acid (MMA+3) on two critical regulatory pathways that control the differentiation and survival of early erythroid progenitor cells. We found that 500 nM As+3 and 100 and 500 nM MMA+3 suppress erythropoiesis by impairing the differentiation of early stage erythroid progenitors. The suppression of early erythroid progenitor cell development was attributed to combined effects on differentiation and survival pathways mediated by disruption of GATA-1 and STAT5. Our results show that As+3 primarily disrupted GATA-1 function; whereas, MMA+3 suppressed both GATA-1 and STAT5 activity. Collectively, these findings provide novel mechanistic insights into arsenic-induced dyserythropoiesis and suggest that MMA+3 may be more toxic than As+3 to early developing erythroid cells.


Subject(s)
Anemia/chemically induced , Arsenic/toxicity , Arsenites/toxicity , Cell Differentiation/drug effects , Cell Survival/drug effects , Erythroid Precursor Cells/drug effects , Erythropoiesis/drug effects , Organometallic Compounds/toxicity , Animals , Humans , Mice , Models, Animal
14.
Toxicol Appl Pharmacol ; 245(3): 344-51, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20353797

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and arsenic are both environmental agents that are known to have significant immunotoxicity. Previous studies have shown that PAH exposure of spleen cells in vitro produces significant immune suppression of humoral immunity, especially when P450 activation products are examined. Exposure to arsenic, particularly sodium arsenite, has also been found to be suppressive to antibody responses in vitro and in vivo. The purpose of the present studies was to examine the immunotoxicity of PAHs and arsenite following coexposures with the theory being that the agents may exert synergistic actions, which might be based on their different mechanisms of action. Spleen cells were isolated from male C57BL/6J wild-type mice and treated with PAHs and/or arsenic (arsenite or arsenate). Immunotoxicity assays were used to assess the T-dependent antibody response (TDAR) to sheep red blood cells (SRBCs), measured by a direct plaque-forming cell (PFC) assay. Cell viability was measured by trypan blue staining. Spleen cell viability was not altered following 4 days of PAH and/or arsenic treatment. However, the TDAR demonstrated suppression by both PAHs and arsenic in a concentration-dependent manner. p53 was also induced by NaAsO(2) (As(3)(+)) and PAHs alone or in combination. The PAHs and their metabolites investigated included benzo[a]pyrene (BaP), BaP-7,8-diol, BaP-7,8-diol-9,10-epoxide (BPDE), 7,12-dimethylbenz[a]anthracene (DMBA), DMBA-3,4-diol, dibenzo[a,l]pyrene (DB[a,l]P). PAH metabolites were found to be more potent than parent compounds in producing immunosuppression and inducing p53 expression. Interestingly, DB[a,l]P, a potent carcinogenic PAH not previously characterized for immunotoxicity, was also found to be strongly immunosuppressive. Arsenite (NaAsO(2), As(3)(+)) was found to produce immunosuppression at concentrations as low as 0.5 microM and was immunosuppressive at a 10-fold lower concentration than sodium arsenate (Na(2)HAsO(4), As(5)(+)). Coexposure of spleen cell cultures to PAHs and As(3)(+), both at individual low-effect concentrations, was found to produce profound suppression of the TDAR demonstrating synergy between these two chemical classes of agents.


Subject(s)
Arsenates/toxicity , Arsenites/toxicity , Environmental Pollutants/toxicity , Immunity, Humoral/drug effects , Immunosuppressive Agents/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Sodium Compounds/toxicity , Spleen/drug effects , T-Lymphocytes/drug effects , Animals , Antibody Formation/drug effects , Blotting, Western , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Synergism , Erythrocytes/immunology , Male , Mice , Mice, Inbred C57BL , Sheep , Spleen/immunology , Spleen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Time Factors , Tumor Suppressor Protein p53/metabolism
15.
Sci Rep ; 10(1): 19055, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149232

ABSTRACT

Anemia is a hematological disorder that adversely affects the health of millions of people worldwide. Although many variables influence the development and exacerbation of anemia, one major contributing factor is the impairment of erythropoiesis. Normal erythropoiesis is highly regulated by the zinc finger transcription factor GATA-1. Disruption of the zinc finger motifs in GATA-1, such as produced by germline mutations, compromises the function of this critical transcription factor and causes dyserythropoietic anemia. Herein, we utilize a combination of in vitro and in vivo studies to provide evidence that arsenic, a widespread environmental toxicant, inhibits erythropoiesis likely through replacing zinc within the zinc fingers of the critical transcription factor GATA-1. We found that arsenic interacts with the N- and C-terminal zinc finger motifs of GATA-1, causing zinc loss and inhibition of DNA and protein binding activities, leading to dyserythropoiesis and an imbalance of hematopoietic differentiation. For the first time, we show that exposures to a prevalent environmental contaminant compromises the function of a key regulatory factor in erythropoiesis, producing effects functionally similar to inherited GATA-1 mutations. These findings highlight a novel molecular mechanism by which arsenic exposure may cause anemia and provide critical insights into potential prevention and intervention for arsenic-related anemias.


Subject(s)
Arsenic/pharmacology , Erythrocytes/drug effects , Erythrocytes/metabolism , Erythropoiesis/drug effects , Erythropoiesis/genetics , GATA1 Transcription Factor/genetics , Animals , Arsenic/adverse effects , Biomarkers , Erythrocytes/cytology , GATA1 Transcription Factor/metabolism , Immunophenotyping , Leukopoiesis/drug effects , Mice , Protein Binding , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Zinc Fingers
16.
PLoS One ; 15(6): e0234965, 2020.
Article in English | MEDLINE | ID: mdl-32574193

ABSTRACT

There are limited data examining the consequences of environmental exposure to arsenic on the immune system in adults, particularly among smokers. Smoking has been shown to exacerbate or contribute to impaired immune function in men chronically exposed to arsenic. In contrast, vitamin D (VitD) is known to have a positive influence on innate and adaptive immune responses. The effect of circulating VitD on arsenic-associated immune dysfunction is not known. Here we examine the relationship of arsenic exposure and T cell proliferation (TCP), a measure of immune responsiveness, and circulating VitD among adult men and women in Bangladesh. Arsenic exposure was assessed using total urinary arsenic as well as urinary arsenic metabolites all adjusted for urinary creatinine. TCP was measured ex vivo in cryopreserved peripheral blood mononuclear cells from 614 adult participants enrolled in the Bangladesh Health Effects of Arsenic Longitudinal Study; serum VitD was also evaluated. The influence of cigarette smoking on arsenic-induced TCP modulation was assessed only in males as there was an inadequate number of female smokers. These studies show that arsenic suppressed TCP in males. The association was significantly strong in male smokers and to a lesser extent in male non-smokers. Interestingly, we found a strong protective effect of high/sufficient serum VitD levels on TCP among non-smoking males. Furthermore, among male smokers with low serum VitD (Ć¢ĀŠĀ”20 ng/ml), we found a strong suppression of TCP by arsenic. On the other hand, high VitD (>20 ng/ml) was found to attenuate effects of arsenic on TCP among male-smokers. Overall, we found a strong protective effect of VitD, when serum levels were >20 ng/ml, on arsenic-induced inhibition of TCP in men, irrespective of smoking status. To our knowledge this is the first large study of immune function in healthy adult males and females with a history of chronic arsenic exposure.


Subject(s)
Arsenic/toxicity , Environmental Exposure/adverse effects , Smoking/immunology , T-Lymphocytes/drug effects , Vitamin D/blood , Adult , Aged , Arsenic/urine , Bangladesh/epidemiology , Cell Proliferation/drug effects , Female , Humans , Longitudinal Studies , Male , Middle Aged , Smoking/blood , Smoking/epidemiology , T-Lymphocytes/immunology , Vitamin D/immunology
17.
Toxicol Appl Pharmacol ; 235(3): 321-8, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19166869

ABSTRACT

Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo[a]pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-gamma1 and several signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 muM), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-gamma1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-gamma1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the patterns of phosphorylation at EGFR, PLC-gamma1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways.


Subject(s)
Benzopyrenes/toxicity , Epithelial Cells/drug effects , ErbB Receptors/metabolism , Mammary Glands, Human/drug effects , Signal Transduction/drug effects , Cell Line, Transformed , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Mammary Glands, Human/cytology , Mammary Glands, Human/metabolism , Phosphorylation/drug effects , Phosphorylation/physiology , Signal Transduction/physiology , Transcriptional Activation/drug effects , Transcriptional Activation/physiology
18.
Toxicol Appl Pharmacol ; 241(3): 253-9, 2009 12 15.
Article in English | MEDLINE | ID: mdl-19800901

ABSTRACT

In these studies the immunotoxicity of arsenic trioxide (ATO, As(2)O(3)) was evaluated in mice following 14 days of inhalation exposures (nose only, 3 h per day) at concentrations of 50 microg/m(3) and 1 mg/m(3). A biodistribution analysis performed immediately after inhalation exposures revealed highest levels of arsenic in the kidneys, bladder, liver, and lung. Spleen cell levels were comparable to those found in the blood, with the highest concentration of arsenic detected in the spleen being 150 microg/g tissue following the 1 mg/m(3) exposures. No spleen cell cytotoxicity was observed at either of the two exposure levels. There were no changes in spleen cell surface marker expression for B cells, T cells, macrophages, and natural killer (NK) cells. There were also no changes detected in the B cell (LPS-stimulated) and T cell (Con A-stimulated) proliferative responses of spleen cells, and no changes were found in the NK-mediated lysis of Yac-1 target cells. The primary T-dependent antibody response was, however, found to be highly susceptible to ATO suppression. Both the 50 microg/m(3) and 1 mg/m(3) exposures produced greater than 70% suppression of the humoral immune response to sheep red blood cells. Thus, the primary finding of this study is that the T-dependent humoral immune response is extremely sensitive to suppression by ATO and assessment of humoral immune responses should be considered in evaluating the health effects of arsenic containing agents.


Subject(s)
Arsenicals/pharmacokinetics , Immunity, Cellular/drug effects , Oxides/pharmacokinetics , Oxides/toxicity , Aerosols , Animals , Antibody Formation/drug effects , Arsenic/metabolism , Arsenic Trioxide , Arsenicals/administration & dosage , Hemolytic Plaque Technique , Immunosuppressive Agents/toxicity , Indicators and Reagents , Inhalation Exposure , Killer Cells, Natural/drug effects , Lung/metabolism , Lymphocyte Count , Lymphocyte Subsets/drug effects , Male , Mice , Mice, Inbred C57BL , Mitogens/pharmacology , Mitosis/drug effects , Oxides/administration & dosage , Receptors, Cell Surface/drug effects , Receptors, Cell Surface/metabolism , Spleen/cytology , Spleen/immunology , Tissue Distribution
19.
Toxicol Appl Pharmacol ; 238(1): 1-10, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19410595

ABSTRACT

Particulate matter less than 10 microm (PM10) has been shown to be associated with aggravation of asthma and respiratory and cardiopulmonary morbidity. There is also great interest in the potential health effects of PM2.5. Particulate matter (PM) varies in composition both spatially and temporally depending on the source, location and seasonal condition. El Paso County which lies in the Paso del Norte airshed is a unique location to study ambient air pollution due to three major points: the geological land formation, the relatively large population and the various sources of PM. In this study, dichotomous filters were collected from various sites in El Paso County every 7 days for a period of 1 year. The sampling sites were both distant and near border crossings, which are near heavily populated areas with high traffic volume. Fine (PM2.5) and Coarse (PM10-2.5) PM filter samples were extracted using dichloromethane and were assessed for biologic activity and polycyclic aromatic (PAH) content. Three sets of marker genes human BEAS2B bronchial epithelial cells were utilized to assess the effects of airborne PAHs on biologic activities associated with specific biological pathways associated with airway diseases. These pathways included in inflammatory cytokine production (IL-6, IL-8), oxidative stress (HMOX-1, NQO-1, ALDH3A1, AKR1C1), and aryl hydrocarbon receptor (AhR)-dependent signaling (CYP1A1). Results demonstrated interesting temporal and spatial patterns of gene induction for all pathways, particularly those associated with oxidative stress, and significant differences in the PAHs detected in the PM10-2.5 and PM2.5 fractions. Temporally, the greatest effects on gene induction were observed in winter months, which appeared to correlate with inversions that are common in the air basin. Spatially, the greatest gene expression increases were seen in extracts collected from the central most areas of El Paso which are also closest to highways and border crossings.


Subject(s)
Air Pollutants/adverse effects , Environmental Exposure/adverse effects , Particulate Matter/adverse effects , Polycyclic Aromatic Hydrocarbons/adverse effects , Bronchi/cytology , Bronchi/drug effects , Cell Line , Cytochrome P-450 CYP1A1/drug effects , Cytochrome P-450 CYP1A1/metabolism , Cytokines/drug effects , Cytokines/metabolism , Environmental Monitoring/methods , Epithelial Cells/drug effects , Gene Expression Regulation/drug effects , Humans , Lung/cytology , Lung/drug effects , Mexico , Oxidative Stress/drug effects , Particle Size , Seasons , Texas
20.
PLoS One ; 14(5): e0216662, 2019.
Article in English | MEDLINE | ID: mdl-31095595

ABSTRACT

Arsenic and polycyclic aromatic hydrocarbons (PAH) are environmental pollutants to which people around the world are exposed through water, food and air. In mouse and in vitro studies of human cells, both of these chemicals have been shown to modulate the immune system. In some experimental studies, a synergistic disruption of immune function was observed by a combined exposure to arsenic and PAH. However, a joint effect of arsenic and PAH on immune function has not been studied in humans. We have conducted an epidemiological investigation to examine effects of chronic arsenic and PAH exposures on immune function. We assessed T-cell proliferation (TCP) and cytokine production of anti-CD3/anti-CD28 stimulated lymphocytes in human peripheral blood mononuclear cells (HPBMC) among 197 healthy men enrolled to the Health Effects of Arsenic Longitudinal (HEALS) cohort in Bangladesh. By design, approximately half were active smokers and the rest were never smokers. Our analyses demonstrated that IL-1b, IL-2, IL-4 and IL-6 were significantly stimulated as a function of urinary arsenic levels in models adjusted for age, body mass index (BMI), smoking status and PAH-DNA adducts. After correcting for false detection rate (FDR), only IL-1b remained statistically significant. We found a U-shaped dose response relationship between urinary arsenic and IL-1b. On the other hand, PAH-DNA adducts were associated with an inhibition of TCP and appeared as an inverted U-shape curve. Dose response curves were non-monotonic for PAH-DNA adduct exposures and suggested that cytokine secretion of IFNg, IL-1b, IL-2, IL-10 and IL17A followed a complex pattern. In the majority of donors, there was a trend towards a decrease in cytokine associated with PAH-DNA adducts. We did not observe any interaction between urinary arsenic and PAH-DNA adducts on immune parameters. Our results indicate that long-term exposures to arsenic and PAH have independent, non-monotonic associations with TCP and cytokine production.


Subject(s)
Arsenic/toxicity , Environmental Exposure/adverse effects , Immunity/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Adult , Aged , Animals , Bangladesh , DNA Adducts/metabolism , Humans , Male , Mice , Middle Aged , Polycyclic Aromatic Hydrocarbons/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL