Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 23(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35457273

ABSTRACT

The availability and intensity of sunlight are among the major factors of growth, development and metabolism in plants. However, excessive illumination disrupts the electronic balance of photosystems and leads to the accumulation of reactive oxygen species in chloroplasts, further mediating several regulatory mechanisms at the subcellular, genetic, and molecular levels. We carried out a comprehensive bioinformatic analysis that aimed to identify genetic systems and candidate transcription factors involved in the response to high light stress in Arabidopsis thaliana L. using resources GEO NCBI, string-db, ShinyGO, STREME, and Tomtom, as well as programs metaRE, CisCross, and Cytoscape. Through the meta-analysis of five transcriptomic experiments, we selected a set of 1151 differentially expressed genes, including 453 genes that compose the gene network. Ten significantly enriched regulatory motifs for TFs families ZF-HD, HB, C2H2, NAC, BZR, and ARID were found in the promoter regions of differentially expressed genes. In addition, we predicted families of transcription factors associated with the duration of exposure (RAV, HSF), intensity of high light treatment (MYB, REM), and the direction of gene expression change (HSF, S1Fa-like). We predicted genetic components systems involved in a high light response and their expression changes, potential transcriptional regulators, and associated processes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
2.
Int J Mol Sci ; 23(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35216343

ABSTRACT

In plants, salicylic acid (SA) is a hormone that mediates a plant's defense against pathogens. SA also takes an active role in a plant's response to various abiotic stresses, including chilling, drought, salinity, and heavy metals. In addition, in recent years, numerous studies have confirmed the important role of SA in plant morphogenesis. In this review, we summarize data on changes in root morphology following SA treatments under both normal and stress conditions. Finally, we provide evidence for the role of SA in maintaining the balance between stress responses and morphogenesis in plant development, and also for the presence of SA crosstalk with other plant hormones during this process.


Subject(s)
Plant Development/physiology , Plant Roots/metabolism , Plants/metabolism , Salicylic Acid/metabolism , Gene Expression Regulation, Plant/physiology , Plant Growth Regulators/metabolism
3.
Plant J ; 92(5): 834-845, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28921702

ABSTRACT

To date CYCB1;1 marker and cortex cell lengths have been conventionally used to determine the proliferation activity of the Arabidopsis root meristem. By creating a 3D map of mitosis distribution we showed that these markers overlooked that stele and endodermis save their potency to divide longer than the cortex and epidermis. Cessation of cell divisions is not a random process, so that mitotic activity within the endodermis and stele shows a diarch pattern. Mitotic activity of all root tissues peaked at the same distance from the quiescent center (QC); however, different tissues stopped dividing at different distances, with cells of the protophloem exiting the cell cycle first and the procambial cells being the last. The robust profile of mitotic activity in the root tip defines the longitudinal zonation in the meristem with the proliferation domain, where all cells are able to divide; and the transition domain, where the cell files cease to divide. 3D analysis of cytokinin deficient and cytokinin signaling mutants showed that their proliferation domain is similar to that of the wild type, but the transition domain is much longer. Our data suggest a strong inhibitory effect of cytokinin on anticlinal cell divisions in the stele.


Subject(s)
Arabidopsis/ultrastructure , Cell Proliferation , Meristem/ultrastructure , Mitosis , Plant Roots/ultrastructure , Arabidopsis/growth & development , Imaging, Three-Dimensional , Meristem/growth & development , Plant Roots/growth & development
4.
Plants (Basel) ; 13(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39065433

ABSTRACT

In plant hormone signaling, transcription factor regulatory networks (TFRNs), which link the master transcription factors to the biological processes under their control, remain insufficiently characterized despite their crucial function. Here, we identify a TFRN involved in the response to the key plant hormone auxin and define its impact on auxin-driven biological processes. To reconstruct the TFRN, we developed a three-step procedure, which is based on the integrated analysis of differentially expressed gene lists and a representative collection of transcription factor binding profiles. Its implementation is available as a part of the CisCross web server. With the new method, we distinguished two transcription factor subnetworks. The first operates before auxin treatment and is switched off upon hormone application, the second is switched on by the hormone. Moreover, we characterized the functioning of the auxin-regulated TFRN in control of chlorophyll and lignin biosynthesis, abscisic acid signaling, and ribosome biogenesis.

5.
Front Plant Sci ; 13: 942710, 2022.
Article in English | MEDLINE | ID: mdl-36061801

ABSTRACT

Having DNA-binding profiles for a sufficient number of genome-encoded transcription factors (TFs) opens up the perspectives for systematic evaluation of the upstream regulators for the gene lists. Plant Cistrome database, a large collection of TF binding profiles detected using the DAP-seq method, made it possible for Arabidopsis. Here we re-processed raw DAP-seq data with MACS2, the most popular peak caller that leads among other ones according to quality metrics. In the benchmarking study, we confirmed that the improved collection of TF binding profiles supported a more precise gene list enrichment procedure, and resulted in a more relevant ranking of potential upstream regulators. Moreover, we consistently recovered the TF binding profiles that were missing in the previous collection of DAP-seq peak sets. We developed the CisCross web service (https://plamorph.sysbio.ru/ciscross/) that gives more flexibility in the analysis of potential upstream TF regulators for Arabidopsis thaliana genes.

6.
Methods Mol Biol ; 2094: 119-125, 2020.
Article in English | MEDLINE | ID: mdl-31797297

ABSTRACT

The protocol allows to define and characterize mitosis distribution patterns in the plant root meristem. The method does not require genetic markers, which makes it applicable to plants of different non-transgenic genotypes, including ecotypes, mutants, and non-model plant species. Computer analysis of the mitosis distribution in three dimensions with iRoCS Toolbox identifies statistically significant changes in proliferation activity within specific root tissues and cell lineages.


Subject(s)
Arabidopsis/cytology , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Meristem/cytology , Microscopy, Confocal/methods , Mitosis , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Cell Cycle/physiology , Cell Lineage , Cell Proliferation/physiology , Epidermis/growth & development , Meristem/genetics , Meristem/growth & development , Meristem/metabolism , Mitosis/physiology , Plant Roots/cytology , Plant Roots/growth & development , Plant Roots/metabolism , Software
7.
Front Plant Sci ; 11: 560169, 2020.
Article in English | MEDLINE | ID: mdl-33193486

ABSTRACT

Root stem cell niche functioning requires the formation and maintenance of the specific "auxin-rich domain" governed by directional auxin transport and local auxin production. Auxin maximum co-localizes with the WOX5 expression domain in the quiescent center that separates mitotically active proximal and distal root meristems. Here we unravel the interconnected processes happening under WOX5 overexpression by combining in vivo experiments and mathematical modeling. We showed that WOX5-induced TAA1-mediated auxin biosynthesis is the cause, whereas auxin accumulation, PIN transporters relocation, and auxin redistribution between proximal and distal root meristems are its subsequent effects that influence the formation of the well-described phenotype with an enlarged root cap. These findings helped us to clarify the role of WOX5, which serves as a local QC-specific regulator that activates biosynthesis of non-cell-autonomous signal auxin to regulate the distal meristem functioning. The mathematical model with WOX5-mediated auxin biosynthesis and auxin-regulated cell growth, division, and detachment reproduces the columella cells dynamics in both wild type and under WOX5 dysregulation.

SELECTION OF CITATIONS
SEARCH DETAIL