Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Publication year range
1.
Retrovirology ; 19(1): 1, 2022 01 15.
Article in English | MEDLINE | ID: mdl-35033105

ABSTRACT

BACKGROUND: Our understanding of the peripheral human immunodeficiency virus type 1 (HIV-1) reservoir is strongly biased towards subtype B HIV-1 strains, with only limited information available from patients infected with non-B HIV-1 subtypes, which are the predominant viruses seen in low- and middle-income countries (LMIC) in Africa and Asia. RESULTS: In this study, blood samples were obtained from well-suppressed ART-experienced HIV-1 patients monitored in Uganda (n = 62) or the U.S. (n = 50), with plasma HIV-1 loads < 50 copies/ml and CD4+ T-cell counts > 300 cells/ml. The peripheral HIV-1 reservoir, i.e., cell-associated HIV-1 RNA and proviral DNA, was characterized using our novel deep sequencing-based EDITS assay. Ugandan patients were slightly younger (median age 43 vs 49 years) and had slightly lower CD4+ counts (508 vs 772 cells/ml) than U.S. individuals. All Ugandan patients were infected with non-B HIV-1 subtypes (31% A1, 64% D, or 5% C), while all U.S. individuals were infected with subtype B viruses. Unexpectedly, we observed a significantly larger peripheral inducible HIV-1 reservoir in U.S. patients compared to Ugandan individuals (48 vs. 11 cell equivalents/million cells, p < 0.0001). This divergence in reservoir size was verified measuring proviral DNA (206 vs. 88 cell equivalents/million cells, p < 0.0001). However, the peripheral HIV-1 reservoir was more diverse in Ugandan than in U.S. individuals (8.6 vs. 4.7 p-distance, p < 0.0001). CONCLUSIONS: The smaller, but more diverse, peripheral HIV-1 reservoir in Ugandan patients might be associated with viral (e.g., non-B subtype with higher cytopathicity) and/or host (e.g., higher incidence of co-infections or co-morbidities leading to less clonal expansion) factors. This highlights the need to understand reservoir dynamics in diverse populations as part of ongoing efforts to find a functional cure for HIV-1 infection in LMICs.


Subject(s)
HIV Infections , HIV-1 , Adult , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes , HIV-1/genetics , Humans , Proviruses/genetics , Uganda/epidemiology , Viral Load
2.
Appl Environ Microbiol ; 86(2)2020 01 07.
Article in English | MEDLINE | ID: mdl-31676481

ABSTRACT

Dietary fiber provides growth substrates for bacterial species that belong to the colonic microbiota of humans. The microbiota degrades and ferments substrates, producing characteristic short-chain fatty acid profiles. Dietary fiber contains plant cell wall-associated polysaccharides (hemicelluloses and pectins) that are chemically diverse in composition and structure. Thus, depending on plant sources, dietary fiber daily presents the microbiota with mixtures of plant polysaccharides of various types and complexity. We studied the extent and preferential order in which mixtures of plant polysaccharides (arabinoxylan, xyloglucan, ß-glucan, and pectin) were utilized by a coculture of five bacterial species (Bacteroides ovatus, Bifidobacterium longum subspecies longum, Megasphaera elsdenii, Ruminococcus gnavus, and Veillonella parvula). These species are members of the human gut microbiota and have the biochemical capacity, collectively, to degrade and ferment the polysaccharides and produce short-chain fatty acids (SCFAs). B. ovatus utilized glycans in the order ß-glucan, pectin, xyloglucan, and arabinoxylan, whereas B. longum subsp. longum utilization was in the order arabinoxylan, arabinan, pectin, and ß-glucan. Propionate, as a proportion of total SCFAs, was augmented when polysaccharide mixtures contained galactan, resulting in greater succinate production by B. ovatus and conversion of succinate to propionate by V. parvula Overall, we derived a synthetic ecological community that carries out SCFA production by the common pathways used by bacterial species for this purpose. Systems like this might be used to predict changes to the emergent properties of the gut ecosystem when diet is altered, with the aim of beneficially affecting human physiology.IMPORTANCE This study addresses the question as to how bacterial species, characteristic of the human gut microbiota, collectively utilize mixtures of plant polysaccharides such as are found in dietary fiber. Five bacterial species with the capacity to degrade polymers and/or produce acidic fermentation products detectable in human feces were used in the experiments. The bacteria showed preferential use of certain polysaccharides over others for growth, and this influenced their fermentation output qualitatively. These kinds of studies are essential in developing concepts of how the gut microbial community shares habitat resources, directly and indirectly, when presented with mixtures of polysaccharides that are found in human diets. The concepts are required in planning dietary interventions that might correct imbalances in the functioning of the human microbiota so as to support measures to reduce metabolic conditions such as obesity.


Subject(s)
Bacteria/metabolism , Gastrointestinal Microbiome , Coculture Techniques/methods , Glucans/metabolism , Pectins/metabolism , Xylans/metabolism , beta-Glucans/metabolism
3.
Anaerobe ; 61: 102112, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31629806

ABSTRACT

Immuno-modulatory effects of infant gut bacteria were tested on poly(I:C) stimulated HT-29 intestinal epithelial cells. Blautia producta, Bacteroides vulgatus, Bacteroides fragilis and Bacteroides thetaiotaomicron decreased transcription of poly(I:C)-induced inflammatory genes. Modulation of basal level and poly(I:C)-induced IL-8 secretion varied between bacterial species, and between heat treated and non-heat treated bacterial cells.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Gene Expression Regulation , Transcription, Genetic , HT29 Cells , Humans , Infant , Inflammation/genetics , Inflammation/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology
4.
Appl Environ Microbiol ; 85(19)2019 10 01.
Article in English | MEDLINE | ID: mdl-31375480

ABSTRACT

The biological succession that occurs during the first year of life in the gut of infants in Western countries is broadly predictable in terms of the increasing complexity of the composition of microbiotas. Less information is available about microbiotas in Asian countries, where environmental, nutritional, and cultural influences may differentially affect the composition and development of the microbial community. We compared the fecal microbiotas of Indonesian (n = 204) and New Zealand (NZ) (n = 74) infants 6 to 7 months and 12 months of age. Comparisons were made by analysis of 16S rRNA gene sequences and derivation of community diversity metrics, relative abundances of bacterial families, enterotypes, and cooccurrence correlation networks. Abundances of Bifidobacterium longum subsp. infantis and B. longum subsp. longum were determined by quantitative PCR. All observations supported the view that the Indonesian and NZ infant microbiotas developed in complexity over time, but the changes were much greater for NZ infants. B. longum subsp. infantis dominated the microbiotas of Indonesian children, whereas B. longum subsp. longum was dominant in NZ children. Network analysis showed that the niche model (in which trophic adaptation results in preferential colonization) of the assemblage of microbiotas was supported in Indonesian infants, whereas the neutral (stochastic) model was supported by the development of the microbiotas of NZ infants. The results of the study show that the development of the fecal microbiota is not the same for infants in all countries, and they point to the necessity of obtaining a better understanding of the factors that control the colonization of the gut in early life.IMPORTANCE This study addresses the microbiology of a natural ecosystem (the infant bowel) for children in a rural setting in Indonesia and in an urban environment in New Zealand. Analysis of DNA sequences generated from the microbial community (microbiota) in the feces of the infants during the first year of life showed marked differences in the composition and complexity of the bacterial collections. The differences were most likely due to differences in the prevalence and duration of breastfeeding of infants in the two countries. These kinds of studies are essential for developing concepts of microbial ecology related to the influence of nutrition and environment on the development of the gut microbiota and for determining the long-term effects of microbiological events in early life on human health and well-being.


Subject(s)
Bifidobacterium/classification , Feces/microbiology , Gastrointestinal Microbiome , Age Factors , Breast Feeding , Cohort Studies , DNA, Bacterial/genetics , Humans , Indonesia , Infant , Milk, Human/microbiology , New Zealand , RNA, Ribosomal, 16S/genetics , Randomized Controlled Trials as Topic , Rural Population , Urban Population
5.
J Clin Periodontol ; 46(12): 1192-1204, 2019 12.
Article in English | MEDLINE | ID: mdl-31380576

ABSTRACT

BACKGROUND AND AIM: This study compared the oral bacteriome between HIV-1-infected and non-HIV-1-infected Brazilian children/teenagers. METHODS: Whole saliva, biofilm from the dorsal surface of the tongue and biofilm from supragingival and subgingival sites were collected from 27 HIV-1-infected and 30 non-HIV-1-infected individuals. Bacterial genomic DNA was extracted and 16S rRNA genes were sequenced using next-generation sequencing technology (Ion Torrent). RESULTS: In the supragingival biofilm, the phylum Firmicutes and genus Streptococcus sp. were more frequent in HIV-1-infected (95% and 78%, respectively) than in non-HIV-1-infected individuals (40% and 24%, respectively). In the subgingival biofilm of HIV-infected participants, the relative abundance of the Veillonella sp. and Prevotella sp. genera were higher than in non-HIV-1-infected participants. On the tongue, the genera with greater relative abundance in HIV-1-infected individuals were Neisseria sp. (21%). In saliva, the difference of the genus Prevotella sp. between non-HIV-1-infected and HIV-1-infected individuals was 15% and 7%, respectively. The Chao index revealed an increase in the richness of both sub- and supragingival biofilms in the HIV-1-infected samples compared with non-HIV-1-infected samples. CONCLUSION: HIV-1-infected children/teenagers have a higher frequency of the phyla Firmicutes and genus Streptococcus, and their oral microbiome shows more complexity than that of non-HIV-1-infected children/teenagers.


Subject(s)
HIV-1 , Adolescent , Biofilms , Brazil , Child , DNA, Bacterial , High-Throughput Nucleotide Sequencing , Humans , RNA, Ribosomal, 16S , Sequence Analysis, DNA
6.
Appl Environ Microbiol ; 84(15)2018 08 01.
Article in English | MEDLINE | ID: mdl-29802187

ABSTRACT

Starches resistant to mammalian digestion are present in foods and pass to the large bowel, where they may be degraded and fermented by the microbiota. Increases in relative abundances of bifidobacteria (blooms) have been reported in rats whose diet was supplemented with Hi-Maize resistant starch. We determined that the bifidobacterial species present in the rat cecum under these circumstances mostly belonged to Bifidobacterium animalis However, cultures of B. animalis isolated from the rats failed to degrade Hi-Maize starch to any extent. In contrast, Bifidobacterium pseudolongum also detected in the rat microbiota had high starch-degrading ability. Transcriptional comparisons showed increased expression of a type 1 pullulanase, alpha-amylase, and glycogen debranching enzyme by B. pseudolongum when cultured in medium containing Hi-Maize starch. Maltose was released into the culture medium, and B. animalis cultures had shorter doubling times in maltose medium than did B. pseudolongum Thus, B. pseudolongum, which was present at a consistently low abundance in the microbiota, but which has extensive enzymatic capacity to degrade resistant starch, showed the attributes of a keystone species associated with the bifidobacterial bloom.IMPORTANCE This study addresses the microbiology and function of a natural ecosystem (the rat gut) using DNA-based observations and in vitro experimentation. The microbial community of the large bowel of animals, including humans, has been studied extensively through the use of high-throughput DNA sequencing methods and advanced bioinformatics analysis. These studies reveal the compositions and genetic capacities of microbiotas but not the intricacies of how microbial communities function. Our work, combining DNA sequence analysis and laboratory experiments with cultured strains of bacteria, revealed that the increased abundance of bifidobacteria in the rat gut, induced by feeding indigestible starch, involved a species that cannot itself degrade the starch (Bifidobacterium animalis) but cohabits with a species that can (Bifidobacterium pseudolongum). B. pseudolongum has the characteristics of a keystone species in the community because it had low abundance but high ability to perform a critical function, the hydrolysis of resistant starch.


Subject(s)
Bifidobacterium/isolation & purification , Cecum/microbiology , Rats/metabolism , Starch/metabolism , Zea mays/metabolism , Animal Feed/analysis , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bifidobacterium/classification , Bifidobacterium/genetics , Bifidobacterium/metabolism , Cecum/metabolism , Gastrointestinal Microbiome , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Rats/microbiology , alpha-Amylases/genetics , alpha-Amylases/metabolism
7.
Appl Environ Microbiol ; 84(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29703739

ABSTRACT

Members of the bacterial genus Bifidobacterium generally dominate the fecal microbiota of infants. The species Bifidobacterium longum is prevalent, but the B. longum subsp. longum and B. longum subsp. infantis strains that are known to colonize the infant bowel are not usually differentiated in microbiota investigations. These subspecies differ in their capacities to metabolize human milk oligosaccharides (HMO) and may have different ecological and symbiotic roles in humans. Quantitative PCR provides a quick analytical method by which to accurately ascertain the abundances of target species in microbiotas and microcosms. However, amplification targets in DNA extracted from samples need to be dependably differential. We evaluated the tuf gene sequence as a molecular target for quantitative PCR measurements of the abundances of B. longum subsp. infantis and B. longum subsp. longum in fecal microbiotas. This approach resulted in the detection of a tuf gene variant (operational taxonomic unit 49 [OTU49]) in Chinese infants that has sequence similarities to both B. longum subsp. infantis and B. longum subsp. longum We compared the genome sequence and growth and transcriptional characteristics of an OTU49 isolate cultured in HMO medium to those of other B. longum subsp. infantis cultures. We concluded from these studies that OTU49 belongs to B. longum subsp. infantis, that dependable quantitative PCR (qPCR) differentiation between the B. longum subspecies cannot be achieved by targeting tuf gene sequences, and that functional genes involved in carbohydrate metabolism might be better targets because they delineate ecological functions.IMPORTANCE High-throughput DNA sequencing methods and advanced bioinformatics analysis have revealed the composition and biochemical capacities of microbial communities (microbiota and microbiome), including those that inhabit the gut of human infants. However, the microbiology and function of natural ecosystems have received little attention in recent decades, so an appreciation of the dynamics of gut microbiota interactions is lacking. With respect to infants, rapid methodologies, such as quantitative PCR, are needed to determine the prevalences and proportions of different bifidobacterial species in observational and microcosm studies in order to obtain a better understanding of the dynamics of bifidobacterial nutrition and syntrophy, knowledge that might be used to manipulate the microbiota and perhaps ensure the better health of infants.


Subject(s)
Bifidobacterium longum/genetics , Bifidobacterium longum/metabolism , Feces/microbiology , Genes, Bacterial/genetics , Asian People , Base Sequence , Bifidobacterium longum/growth & development , Carbohydrate Metabolism/genetics , Chromosome Mapping , DNA, Bacterial/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Humans , Infant , Intestines/microbiology , Microbiota , Milk, Human , Oligosaccharides/metabolism , Transcriptome
8.
Appl Environ Microbiol ; 84(18)2018 09 15.
Article in English | MEDLINE | ID: mdl-30006390

ABSTRACT

The introduction of "solids" (i.e., complementary foods) to the milk-only diet in early infancy affects the development of the gut microbiota. The aim of this study was to determine whether a "baby-led" approach to complementary feeding that encourages the early introduction of an adult-type diet results in alterations of the gut microbiota composition compared to traditional spoon-feeding. The Baby-Led Introduction to SolidS (BLISS) study randomized 206 infants to BLISS (a modified version of baby-led weaning [BLW], the introduction of solids at 6 months of age, followed by self-feeding of family foods) or control (traditional spoon-feeding of purées) groups. Fecal microbiotas and 3-day weighed-diet records were analyzed for a subset of 74 infants at 7 and 12 months of age. The composition of the microbiota was determined by sequencing of 16S rRNA genes amplified by PCR from bulk DNA extracted from feces. Diet records were used to estimate food and dietary fiber intake. Alpha diversity (number of operational taxonomic units [OTUs]) was significantly lower in BLISS infants at 12 months of age (difference [95% confidence interval {CI}] of 31 OTUs [3.4 to 58.5]; P = 0.028), and while there were no significant differences between control and BLISS infants in relative abundances of Bifidobacteriaceae, Enterobacteriaceae, Veillonellaceae, Bacteroidaceae, Erysipelotrichaceae, Lachnospiraceae, or Ruminococcaceae at 7 or 12 months of age, OTUs representing the genus Roseburia were less prevalent in BLISS microbiotas at 12 months. Mediation models demonstrated that the intake of "fruit and vegetables" and "dietary fiber" explained 29% and 25%, respectively, of the relationship between group (BLISS versus control) and alpha diversity.IMPORTANCE The introduction of solid foods (complementary feeding or weaning) to infants leads to more-complex compositions of microbial communities (microbiota or microbiome) in the gut. In baby-led weaning (BLW), infants are given only finger foods that they can pick up and feed themselves-there is no parental spoon-feeding of puréed baby foods-and infants are encouraged to eat family meals. BLW is a new approach to infant feeding that is increasing in popularity in the United States, New Zealand, the United Kingdom, and Canada. We used mediation modeling, commonly used in health research but not in microbiota studies until now, to identify particular dietary components that affected the development of the infant gut microbiota.


Subject(s)
Bacteria/isolation & purification , Feces/microbiology , Gastrointestinal Microbiome , Infant Food/analysis , Bacteria/classification , Bacteria/genetics , Biodiversity , Breast Feeding , Diet , Feeding Behavior , Female , Humans , Infant , Infant Formula , Male , Pilot Projects
9.
Appl Environ Microbiol ; 82(8): 2399-2410, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26873323

ABSTRACT

A feeding trial was performed with broilers receiving a diet of wheat-based feed (WBF), maize-based feed (MBF), or maize-based concentrates supplemented with 15% or 30% crimped kernel maize silage (CKMS-15 or CKMS-30, respectively). The aim of the study was to investigate the bacterial community compositions of the crop, gizzard, ileum, and cecum contents in relation to the feeding strategy and age (8, 15, 22, 25, 29, or 36 days). Among the four dietary treatments, bacterial diversity was analyzed for MBF and CKMS-30 by 454 pyrosequencing of the 16S rRNA gene. Since the diets had no significant influence on bacterial diversity, data were pooled for downstream analysis. With increasing age, a clear succession of bacterial communities and increased bacterial diversity were observed.Lactobacillaceae(belonging mainly to the genus Lactobacillus) represented most of the Firmicutesat all ages and in all segments of the gut except the cecum. The development of a "mature" microbiota in broilers occurred during the period from days 15 to 22. Striking increases in the relative abundances of Lactobacillus salivarius(17 to 36%) and clostridia (11 to 18%), and a concomitant decrease in the relative abundance of Lactobacillus reuteri, were found in the ileum after day 15. The concentration of deconjugated bile salts increased in association with the increased populations of L. salivarius and clostridia. Both L. salivarius and clostridia deconjugate bile acids, and increases in the abundances of these bacteria might be associated with growth reduction and gastrointestinal (GI) disorders occurring in the critical period of broiler life between days 20 and 30.


Subject(s)
Bacteria/classification , Bacteria/genetics , Chickens/microbiology , Diet/methods , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Animals , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
10.
BMC Public Health ; 16(1): 771, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27514714

ABSTRACT

BACKGROUND: The Prevention of Overweight in Infancy (POI) study was a four-arm randomised controlled trial (RCT) in 802 families which assessed whether additional education and support on sleep (Sleep group); food, physical activity and breastfeeding (FAB group); or both (Combination group), reduced excessive weight gain from birth to 2 years of age, compared to usual care (Control group). The study had high uptake at recruitment (58 %) and retention at 2 years (86 %). Although the FAB intervention produced no significant effect on BMI or weight status at 2 years, the odds of obesity were halved in those who received the sleep intervention, despite no apparent effect on sleep duration. We speculate that enhanced self-regulatory behaviours may exist in the Sleep group. Self-regulation was not measured in our initial intervention, but extensive measures have been included in this follow-up study. Thus, the overall aim of the POI follow-up is to determine the extent to which augmented parental support and education on infant sleep, feeding, diet, and physical activity in the first 2 years of life reduces BMI at 3.5 and 5 years of age, and to determine the role of self-regulation in any such relationship. METHODS/DESIGN: We will contact all 802 families and seek renewed consent to participate in the follow-up study. The families have received no POI intervention since the RCT finished at 2 years of age. Follow-up data collection will occur when the children are aged 3.5 and 5 years (i.e. up to 3 years post-intervention). Outcomes of interest include child anthropometry, body composition (DXA scan), diet (validated food frequency questionnaire), physical activity (accelerometry), sleep (questionnaire and accelerometry), and self-regulation (questionnaires and neuropsychological assessment). DISCUSSION: Our follow-up study has been designed primarily to enable us to determine whether the intriguing benefit of the sleep intervention suggested at 2 years of age remains as children approach school age. However, cohort analyses will also investigate how BMI, self-regulation, and sleep consolidation develop during the early years. This information will be valuable to researchers and policy makers progressing the field of early childhood obesity prevention. TRIAL REGISTRATION: ClinicalTrials.gov number NCT00892983 .


Subject(s)
Diet/psychology , Exercise , Overweight/prevention & control , Preventive Health Services/methods , Sleep , Body Composition , Body Weight , Breast Feeding , Child, Preschool , Diet/methods , Feeding Behavior/psychology , Female , Follow-Up Studies , Humans , Infant , Male , Pediatric Obesity/prevention & control , Program Evaluation , Surveys and Questionnaires , Weight Gain
11.
Appl Environ Microbiol ; 80(7): 2240-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24487527

ABSTRACT

Knowledge of the trophisms that underpin bowel microbiota composition is required in order to understand its complex phylogeny and function. Stable-isotope ((13)C)-labeled inulin was added to the diet of rats on a single occasion in order to detect utilization of inulin-derived substrates by particular members of the cecal microbiota. Cecal digesta from Fibruline-inulin-fed rats was collected prior to (0 h) and at 6, 12, 18 and 24 h following provision of the [(13)C]inulin diet. RNA was extracted from these cecal specimens and fractionated in isopycnic buoyant density gradients in order to detect (13)C-labeled nucleic acid originating in bacterial cells that had metabolized the labeled dietary constituent. RNA extracted from specimens collected after provision of the labeled diet was more dense than 0-h RNA. Sequencing of 16S rRNA genes amplified from cDNA obtained from these fractions showed that Bacteroides uniformis, Blautia glucerasea, Clostridium indolis, and Bifidobacterium animalis were the main users of the (13)C-labeled substrate. Culture-based studies of strains of these bacterial species enabled trophisms associated with inulin and its hydrolysis products to be identified. B. uniformis utilized Fibruline-inulin for growth, whereas the other species used fructo-oligosaccharide and monosaccharides. Thus, RNA-stable-isotope probing (RNA-SIP) provided new information about the use of carbon from inulin in microbiota metabolism.


Subject(s)
Bacteria/metabolism , Carbon/metabolism , Intestine, Large/microbiology , Inulin/metabolism , Animals , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal/isolation & purification , Isotope Labeling , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/isolation & purification , Rats , Sequence Analysis, DNA
12.
Appl Environ Microbiol ; 80(19): 6104-13, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25063664

ABSTRACT

Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice. Urine analysis showed that stable isotope-labeled urea, administered by gavage, was metabolized to a greater extent in Lactobacillus-free mice than animals colonized by strain 100-23. This surprising observation was associated with higher levels of urease activity and fecal-type bacteria in the stomach digesta of Lactobacillus-free mice. Despite the modulation of urea hydrolysis in the stomach, recycling of urea nitrogen in the murine host was not affected since the essential amino acid isoleucine, labeled with a stable isotope, was detected in the livers of both Lactobacillus-free and 100-23-colonized animals. Therefore, our experiments reveal a new and unexpected impact of Lactobacillus colonization on urea hydrolysis in the murine gut.


Subject(s)
Limosilactobacillus reuteri/genetics , Stomach/microbiology , Transcriptome , Urea/metabolism , Animals , Female , Gene Expression Profiling , Genomics , Hydrolysis , Limosilactobacillus reuteri/physiology , Liver/microbiology , Male , Mice , Mutation , Oligonucleotide Array Sequence Analysis , Up-Regulation , Urease/genetics , Urease/metabolism
13.
Appl Environ Microbiol ; 80(9): 2851-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24584241

ABSTRACT

Lactobacillus rhamnosus HN001 is a probiotic strain reported to increase resistance to epithelium-adherent and -invasive intestinal pathogens in experimental animals. To increase understanding of the relationship between strain HN001 and the bowel, transcription of selected genes in the mucosa of the murine small bowel was measured. Mice previously naive to lactobacilli (Lactobacillus-free mice) were examined after daily exposure to HN001 in drinking water. Comparisons were made to results from matched Lactobacillus-free mice. Infant and adult mice were investigated to provide a temporal view of gene expression in response to exposure to HN001. Genes sgk1, angptl4, and hspa1b, associated with the apoptosis pathway, were selected for investigation by reverse transcription-quantitative PCR on the basis of a preliminary duodenal DNA microarray screen. Normalized to gapdh gene transcription, these three genes were upregulated after 6 to 10 days exposure of adult mice to HN001. Angptl4 was shown by immunofluorescence to be upregulated in duodenal epithelial cells of mucosal samples. Epithelial cell migration was faster in HN001-exposed mice than in the Lactobacillus-free controls. Transcriptional responses in infant mice differed according to bowel region and age. For example, sgk1 was upregulated in duodenal, jejunal, and ileal mucosa of mice less than 25 days old, whereas angptl4 and hspa1b were upregulated at 10 days in the duodenum but downregulated in the jejunal mucosa until mice were 25 days old. Overall, the results provide links between a probiotic strain, mucosal gene expression, and host phenotype, which may be useful in delineating mechanisms of probiotic action.


Subject(s)
Intestines/microbiology , Lacticaseibacillus rhamnosus/physiology , Mice/genetics , Probiotics/administration & dosage , Transcription, Genetic , Animals , Intestinal Mucosa/metabolism , Mice/metabolism , Mice/microbiology , Mice, Inbred BALB C
14.
Appl Environ Microbiol ; 79(18): 5661-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23851085

ABSTRACT

Lactobacillus ruminis is an inhabitant of human bowels and bovine rumens. None of 10 isolates (three from bovine rumen, seven from human feces) of L. ruminis that were tested could utilize barley ß-glucan for growth. Seven of the strains of L. ruminis were, however, able to utilize tetrasaccharides (3-O-ß-cellotriosyl-d-glucose [LDP4] or 4-O-ß-laminaribiosyl-d-cellobiose [CDP4]) present in ß-glucan hydrolysates for growth. The tetrasaccharides were generated by the use of lichenase or cellulase, respectively. To learn more about the utilization of tetrasaccharides by L. ruminis, whole-transcriptome shotgun sequencing (RNA-seq) was tested as a transcriptional screen to detect altered gene expression when an autochthonous human strain (L5) was grown in medium containing CDP4. RNA-seq results were confirmed and extended by reverse transcription-quantitative PCR assays of selected genes in two upregulated operons when cells were grown as batch cultures in medium containing either CDP4 or LDP4. The cellobiose utilization operon had increased transcription, particularly in early growth phase, whereas the chemotaxis/motility operon was upregulated in late growth phase. Phenotypic changes were seen in relation to upregulation of chemotaxis/flagellar operons: flagella were rarely seen by electron microscopy on glucose-grown cells but cells cultured in tetrasaccharide medium were commonly flagellated. Chemotactic movement toward tetrasaccharides was demonstrated in capillary cultures. L. ruminis utilized 3-O-ß-cellotriosyl-d-glucose released by ß-glucan hydrolysis due to bowel commensal Coprococcus sp., indicating that cross feeding of tetrasaccharide between bacteria could occur. Therefore, the RNA-seq screen and subsequent experiments had utility in revealing foraging attributes of gut commensal Lactobacillus ruminis.


Subject(s)
Lactobacillus/growth & development , Lactobacillus/genetics , Locomotion/genetics , Metabolic Networks and Pathways/genetics , Oligosaccharides/metabolism , Transcriptome , beta-Glucans/metabolism , Cellobiose/metabolism , Hordeum/chemistry , Lactobacillus/metabolism , Operon , Real-Time Polymerase Chain Reaction , Up-Regulation
15.
Appl Environ Microbiol ; 79(9): 3040-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23455335

ABSTRACT

The aim of the study was to compare the compositions of the fecal microbiotas of infants fed goat milk formula to those of infants fed cow milk formula or breast milk as the gold standard. Pyrosequencing of 16S rRNA gene sequences was used in the analysis of the microbiotas in stool samples collected from 90 Australian babies (30 in each group) at 2 months of age. Beta-diversity analysis of total microbiota sequences and Lachnospiraceae sequences revealed that they were more similar in breast milk/goat milk comparisons than in breast milk/cow milk comparisons. The Lachnospiraceae were mostly restricted to a single species (Ruminococcus gnavus) in breast milk-fed and goat milk-fed babies compared to a more diverse collection in cow milk-fed babies. Bifidobacteriaceae were abundant in the microbiotas of infants in all three groups. Bifidobacterium longum, Bifidobacterium breve, and Bifidobacterium bifidum were the most commonly detected bifidobacterial species. A semiquantitative PCR method was devised to differentiate between B. longum subsp. longum and B. longum subsp. infantis and was used to test stool samples. B. longum subsp. infantis was seldom present in stools, even of breast milk-fed babies. The presence of B. bifidum in the stools of breast milk-fed infants at abundances greater than 10% of the total microbiota was associated with the highest total abundances of Bifidobacteriaceae. When Bifidobacteriaceae abundance was low, Lachnospiraceae abundances were greater. New information about the composition of the fecal microbiota when goat milk formula is used in infant nutrition was thus obtained.


Subject(s)
Bacteria/classification , Feces/microbiology , Milk, Human/microbiology , Milk/microbiology , Animals , Australia , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Infections/microbiology , Bifidobacterium/classification , Bifidobacterium/genetics , Bifidobacterium/isolation & purification , Breast Feeding , Cattle , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Double-Blind Method , Female , Goats , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant Formula , Infant, Newborn , Male , Microbiota , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity
16.
J Nutr ; 143(7): 1052-60, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23700349

ABSTRACT

Diets rich in complex carbohydrates that resist digestion in the small bowel can alter large bowel ecology and microbiota biochemistry because the carbohydrates become substrates for bacterial growth and metabolism. Conventional or germ-free weanling rats were fed a control diet or diets containing 1.25, 2.5, or 5% konjac (KJ), a commonly used ingredient in Asian foods, for 28 d. In the absence of bowel microbiota, 5% KJ elicited a significant increase in colonic goblet cell numbers and increased expression of mast cell protease genes and of genes that were overrepresented in the KEGG pathway "Metabolism of xenobiotics by cytochrome P450" relative to the control diet. In contrast, feeding 5% KJ caused few changes in mucosal gene expression in conventional rats. Analysis of the colonic microbiota of conventional rats fed KJ showed modest increases in the proportions of Actinobacteria and Bacteroidetes relative to rats fed the control diet, with a concomitant reduction in Firmicutes, which included a 50% reduction in Lactobacillus abundance. Colonic concentrations of short-chain fatty acids and colonic crypt lengths were increased by feeding KJ. Goblet cell numbers were greater in conventional rats fed KJ relative to the control diet but were lower compared with germ-free animals. Serum metabolite profiles were different in germ-free and conventional rats. Metabolites that differed in concentration included several phospholipids, a bile acid metabolite, and an intermediate product of tryptophan metabolism. Overall, KJ in the diet was potentially damaging to the bowel mucosa and produced a protective response from the host. This response was reduced by the presence of the bowel microbiota, which therefore ameliorated potentially detrimental effects of dietary KJ.


Subject(s)
Amorphophallus/chemistry , Colon/drug effects , Colon/microbiology , Metagenome , Plant Preparations/pharmacology , Actinobacteria/drug effects , Actinobacteria/growth & development , Animals , Bacteroidetes/drug effects , Bacteroidetes/growth & development , Bile Acids and Salts/metabolism , Carboxylic Acids/analysis , Carboxylic Acids/metabolism , Diet , Dose-Response Relationship, Drug , Fatty Acids, Volatile/pharmacology , Germ-Free Life , Male , Microarray Analysis , Rats , Rats, Sprague-Dawley , Transcriptome/drug effects
17.
J Paediatr Child Health ; 49(12): 1032-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23782263

ABSTRACT

AIM: The composition of faecal microbiota of babies is known to be influenced by diet. Faecal calprotectin and α1-antitrypsin concentrations may be associated with mucosal permeability and inflammation. We aimed to assess whether there was any difference after consumption of a probiotic/prebiotic formula on faecal microbiota composition, calprotectin and α1-antitrypsin levels, and diarrhoea in comparison with breast milk-fed Indonesian infants. METHODS: One hundred sixty infants, 2 to 6 weeks old, were recruited to the study. They were either breastfed or formula fed (80 per group). Faecal samples were collected at recruitment and 3 months later. Bacterial groups characteristic of the human faecal microbiota were quantified in faeces by quantitative polymerase chain reaction. Calprotectin and α1-antitrypsin concentrations were measured using commercial kits. Details of diarrhoeal morbidity were documented and rated for severity. RESULTS: The compositions of the faecal microbiota of formula-fed compared with breast milk-fed children were similar except that the probiotic strain Bifidobacterium animalis subsp. lactis DR10 was more abundant after 3 months consumption of the formula. Alpha1-antitrypsin levels were higher in breastfed compared with formula-fed infants. The occurrence of diarrhoea did not differ between the groups of babies. CONCLUSION: Feeding Indonesian babies with a probiotic/prebiotic formula did not produce marked differences in the composition of the faecal microbiota in comparison with breast milk. Detrimental effects of formula feeding on biomarkers of mucosal health were not observed.


Subject(s)
Feces/chemistry , Feces/microbiology , Infant Formula , Leukocyte L1 Antigen Complex/analysis , Microbiota , Milk, Human , alpha 1-Antitrypsin/analysis , Bifidobacterium/isolation & purification , Biomarkers/analysis , Breast Feeding , Cohort Studies , Diarrhea , Female , Humans , Indonesia , Infant , Infant Formula/chemistry , Infant, Newborn , Intestinal Mucosa/chemistry , Intestinal Mucosa/microbiology , Male , Polymerase Chain Reaction , Prebiotics , Probiotics
18.
Food Chem ; 398: 133880, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35986997

ABSTRACT

A jeotgal-like product was processed from Chinook salmon (Oncorrhynchus tshawytscha) roe. Physicochemical, biochemical, and microbiological compositions were studied during 30 days of fermentation. Fermentation decreased water activity (aw) and pH value. Total bacterial and LAB counts (log CFU/g) increased up to 12 days of processing and then no further changes occurred. Saturated fatty acids (SFA) decreased (p < 0.05), monounsaturated fatty acids (MUFA) did not change (p > 0.05), whereas fermentation time improved polyunsaturated fatty acids (PUFA) content significantly (p < 0.05). Astaxanthin, lutein and phospholipids (PC, LPC, PE, LPE and LPS) concentrations were found to increase, while cholesterol and tocopherol contents were decreased at the end of the fermentation (p < 0.05). This study indicates that the nutritional value of salmon roe can be enhanced by fermentation.


Subject(s)
Fatty Acids , Salmon , Animals , Cholesterol , Fatty Acids, Monounsaturated , Fatty Acids, Unsaturated
19.
Gut Microbes ; 15(1): 2178801, 2023.
Article in English | MEDLINE | ID: mdl-36799472

ABSTRACT

Obesity is a complex, multifactorial condition that is an important risk factor for noncommunicable diseases including cardiovascular disease and type 2 diabetes. While prevention and management require a healthy and energy balanced diet and adequate physical activity, the taxonomic composition and functional attributes of the colonic microbiota may have a supplementary role in the development of obesity. The taxonomic composition and metabolic capacity of the fecal microbiota of 286 women, resident in Auckland New Zealand, was determined by metagenomic analysis. Associations with BMI (obese, nonobese), body fat composition, and ethnicity (Pacific, n = 125; NZ European women [NZE], n = 161) were assessed using regression analyses. The fecal microbiotas were characterized by the presence of three distinctive enterotypes, with enterotype 1 represented in both Pacific and NZE women (39 and 61%, respectively), enterotype 2 mainly in Pacific women (84 and 16%) and enterotype 3 mainly in NZE women (13 and 87%). Enterotype 1 was characterized mainly by the relative abundances of butyrate producing species, Eubacterium rectale and Faecalibacterium prausnitzii, enterotype 2 by the relative abundances of lactic acid producing species, Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus ruminis, and enterotype 3 by the relative abundances of Subdoligranulum sp., Akkermansia muciniphila, Ruminococcus bromii, and Methanobrevibacter smithii. Enterotypes were also associated with BMI, visceral fat %, and blood cholesterol. Habitual food group intake was estimated using a 5 day nonconsecutive estimated food record and a 30 day, 220 item semi-quantitative Food Frequency Questionnaire. Higher intake of 'egg' and 'dairy' products was associated with enterotype 3, whereas 'non-starchy vegetables', 'nuts and seeds' and 'plant-based fats' were positively associated with enterotype 1. In contrast, these same food groups were inversely associated with enterotype 2. Fecal water content, as a proxy for stool consistency/colonic transit time, was associated with microbiota taxonomic composition and gene pools reflective of particular bacterial biochemical pathways. The fecal microbiotas of women of Pacific and New Zealand European ethnicities are characterized by distinctive enterotypes, most likely due to differential dietary intake and fecal consistency/colonic transit time. These parameters need to be considered in future analyses of human fecal microbiotas.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Microbiota , Humans , Female , Ethnicity , New Zealand , Feces/microbiology , Obesity , Eating
20.
Cancers (Basel) ; 15(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37174006

ABSTRACT

The Seneca Valley virus (SVV) is an oncolytic virus from the picornavirus family, characterized by a 7.3-kilobase RNA genome encoding for all the structural and functional viral proteins. Directed evolution by serial passaging has been employed for oncolytic virus adaptation to increase the killing efficacy towards certain types of tumors. We propagated the SVV in a small-cell lung cancer model under two culture conditions: conventional cell monolayer and tumorspheres, with the latter resembling more closely the cellular structure of the tumor of origin. We observed an increase of the virus-killing efficacy after ten passages in the tumorspheres. Deep sequencing analyses showed genomic changes in two SVV populations comprising 150 single nucleotides variants and 72 amino acid substitutions. Major differences observed in the tumorsphere-passaged virus population, compared to the cell monolayer, were identified in the conserved structural protein VP2 and in the highly variable P2 region, suggesting that the increase in the ability of the SVV to kill cells over time in the tumorspheres is acquired by capsid conservation and positively selecting mutations to counter the host innate immune responses.

SELECTION OF CITATIONS
SEARCH DETAIL