Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Bioorg Med Chem ; 32: 115942, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33461147

ABSTRACT

The neonatal Fc receptor (FcRn) represents a transport system with the potential to facilitate absorption of biologics across the gastrointestinal barrier. How biologics interact with FcRn to enable their gastrointestinal absorption, and how these interactions might be optimized in a biological therapeutic are not well understood. Thus, we studied the absorption of Fc molecules from the intestine using three IgG4-derived Fc variants with different, pH-dependent FcRn binding and release profiles. Using several different intestinal models, we consistently observed that FcRn binding affinity correlated with transcytosis. Our findings support targeting FcRn to enable intestinal absorption of biologics and highlight additional strategic considerations for future work.


Subject(s)
Histocompatibility Antigens Class I/chemistry , Immunoglobulin Fc Fragments/chemistry , Receptors, Fc/chemistry , Binding Sites , Cells, Cultured , Gastrointestinal Absorption , HEK293 Cells , Histocompatibility Antigens Class I/genetics , Humans , Hydrogen-Ion Concentration , Intestinal Absorption , Receptors, Fc/genetics
2.
Molecules ; 26(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33804938

ABSTRACT

Phytophthora is a genus of microorganisms that cause devastating dieback and root-rot diseases in thousands of plant hosts worldwide. The economic impact of Phytophthora diseases on crops and native ecosystems is estimated to be billions of dollars per annum. These invasive pathogens are extremely difficult to control using existing chemical means, and the effectiveness of the few treatments available is being jeopardized by increasing rates of resistance. There is an urgent need to identify new chemical treatments that are effective against Phytophthora diseases. Natural products have long been regarded as "Nature's medicine chest", providing invaluable leads for developing front-line drugs and agrochemical agents. Here, we have screened a natural product-inspired library of 328 chemicals against two key Phytophthora species: Phytophthora cinnamomi and Phytophthora agathidicida. The library was initially screened for inhibition of zoospore germination. From these screens, we identified twenty-one hits that inhibited germination of one or both species. These hits were further tested in mycelial growth inhibition studies to determine their half-maximal inhibitory concentrations (IC50s). Four compounds had IC50 values of approximately 10 µM or less, and our best hit had IC50s of approximately 3 µM against both Phytophthora species tested. Overall, these hits may serve as promising leads for the development of new anti-Phytophthora agrochemicals.


Subject(s)
Antifungal Agents , Biological Products , Phytophthora/growth & development , Plant Diseases/microbiology , Small Molecule Libraries , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Mycelium/growth & development
3.
Nat Chem Biol ; 12(10): 795-801, 2016 10.
Article in English | MEDLINE | ID: mdl-27501397

ABSTRACT

Clinical resistance to the second-generation antiandrogen enzalutamide in castration-resistant prostate cancer (CRPC), despite persistent androgen receptor (AR) activity in tumors, highlights an unmet medical need for next-generation antagonists. We have identified and characterized tetra-aryl cyclobutanes (CBs) as a new class of competitive AR antagonists that exhibit a unique mechanism of action. These CBs are structurally distinct from current antiandrogens (hydroxyflutamide, bicalutamide, and enzalutamide) and inhibit AR-mediated gene expression, cell proliferation, and tumor growth in several models of CRPC. Conformational profiling revealed that CBs stabilize an AR conformation resembling an unliganded receptor. Using a variety of techniques, it was determined that the AR-CB complex was not recruited to AR-regulated promoters and, like apo AR, remains sequestered in the cytoplasm, bound to heat shock proteins. Thus, we have identified third-generation AR antagonists whose unique mechanism of action suggests that they may have therapeutic potential in CRPC.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/chemistry , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Prostatic Neoplasms, Castration-Resistant/pathology , Structure-Activity Relationship
4.
Environ Microbiol ; 19(10): 3909-3919, 2017 10.
Article in English | MEDLINE | ID: mdl-28464391

ABSTRACT

Coral reefs are in decline worldwide. Much of this decline is attributable to mass coral bleaching events and disease outbreaks, both of which are linked to anthropogenic climate change. Despite increased research effort, much remains unknown about these phenomena, especially the causative agents of many coral diseases. In particular, coral-associated viruses have received little attention, and their potential roles in coral diseases are largely unknown. Previous microscopy studies have produced evidence of viral infections in Symbiodinium, the endosymbiotic algae critical for coral survival, and more recently molecular evidence of Symbiodinium-infecting viruses has emerged from metagenomic studies of corals. Here, we took an exploratory whole-transcriptome approach to virus gene discovery in three different Symbiodinium cultures. An array of virus-like genes was found in each of the transcriptomes, with the majority apparently belonging to the nucleocytoplasmic large DNA viruses. Upregulation of virus-like gene expression following stress experiments indicated that Symbiodinium cells may host latent or persistent viral infections that are induced via stress. This was supported by analysis of host gene expression, which showed changes consistent with viral infection after exposure to stress. If these results can be replicated in Symbiodinium cells in hospite, they could help to explain the breakdown of the coral-Symbiodinium symbiosis, and possibly some of the numerous coral diseases that have yet to be assigned a causative agent.


Subject(s)
DNA Viruses/genetics , Dinoflagellida/genetics , Dinoflagellida/virology , Transcriptome/genetics , Animals , Anthozoa/physiology , Climate Change , Coral Reefs , Symbiosis/genetics
5.
Parasitol Res ; 115(11): 4275-4279, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27461113

ABSTRACT

Neorickettsia are endosymbiotic bacteria that infect digeneans (Trematoda). These bacteria are of interest worldwide because of their ability to move from the parasite to its host, where they can cause serious diseases of humans and animals. While several disease-forming species of Neorickettsia have been well studied, and numerous Neorickettsia types have been identified in regions such as North America and parts of Asia, records from other locations are sparse. To date, there have been no reports of Neorickettsia from New Zealand. We screened ten species of digeneans infecting seven native gastropod species (both marine and freshwater) found near Dunedin, New Zealand, for the presence of neorickettsial infections. A >1300 bp long section of 16S rRNA belonging to a Neorickettsia bacterium was isolated from opecoelid digeneans of two individuals of the mudflat topshell snail Diloma subrostrata. These sequences represent the first evidence of neorickettsial infection in native New Zealand animals and are also the first Neorickettsia found in digeneans of the family Opecoelidae.


Subject(s)
Neorickettsia/isolation & purification , Snails/parasitology , Trematoda/microbiology , Animals , Asia , Neorickettsia/genetics , New Zealand , North America , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics
6.
J Biol Chem ; 289(42): 29386-96, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25164808

ABSTRACT

Folylpoly-γ-glutamate synthetase (FPGS) catalyze the addition of multiple glutamates to tetrahydrofolate derivatives. Two mRNAs for the fpgs gene direct isoforms of FPGS to the cytosol and to mitochondria in mouse and human tissues. We sought to clarify the functions of these two compartmentalized isoforms. Stable cell lines were created that express cDNAs for the mitochondrial and cytosolic isoforms of human FPGS under control of a doxycycline-inducible promoter in the AUXB1 cell line. AUXB1 are devoid of endogenous FPGS activity due to a premature translational stop at codon 432 in the fpgs gene. Loss of folates was not measurable from these doxycycline-induced cells or from parental CHO cells over the course of three CHO cell generations. Likewise, there was no detectable transfer of folate polyglutamates either from the cytosol to mitochondria, or from mitochondria to the cytosol. The cell line expressing cytosolic FPGS required exogenous glycine but not thymidine or purine, whereas cells expressing the mitochondrial isoform required exogenous thymidine and purine but not glycine for optimal growth and survival. We concluded that mitochondrial FPGS is required because folate polyglutamates are not substrates for transport across the mitochondrial membrane in either direction and that polyglutamation not only traps folates in the cytosol, but also in the mitochondrial matrix.


Subject(s)
Cytosol/enzymology , Folic Acid/chemistry , Mitochondria/enzymology , Peptide Synthases/metabolism , Amino Acid Sequence , Animals , Biological Transport , CHO Cells , Cricetinae , Cricetulus , DNA, Complementary/metabolism , Humans , Mitochondrial Membranes/metabolism , Molecular Sequence Data , Mutation , Protein Isoforms/metabolism , Sequence Homology, Amino Acid
7.
J Phycol ; 50(6): 984-97, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26988781

ABSTRACT

Coral reefs are increasingly threatened by disease outbreaks, which affect the coral animal and/or its algal symbionts (Symbiodinium spp.) and can cause mass mortalities. Currently around half of the recognized coral diseases have unknown causative agents. While many of the diseases are thought to be bacterial in origin, there is growing evidence that viruses may play a role. In particular, it appears that viruses may infect the algal symbionts, causing breakdown of the coral-algal mutualism. In this study, we screened a wide range of Symbiodinium cultures in vitro for the presence of latent viral infections. Using flow cytometry and electron microscopy, we found that many types of Symbiodinium apparently harbor such infections, and that the type of putative virus varied within and among host types. Furthermore, the putative viral infections could be induced via abiotic stress and cause host cell lysis and population decline. If similar processes occur in Symbiodinium cells in hospite, they may provide an explanation for some of the diseases affecting corals and other organisms forming symbioses with these algae.

8.
J Biol Chem ; 286(36): 31480-9, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-21768094

ABSTRACT

A mitochondrial carrier family (MCF) of transport proteins facilitates the transfer of charged small molecules across the inner mitochondrial membrane. The human genome has ∼50 genes corresponding to members of this family. All MCF proteins contain three repeats of a characteristic and conserved PX(D/E)XX(K/R) motif thought to be central to the mechanism of these transporters. The mammalian mitochondrial folate transporter (MFT) is one of a few MCF members, known as the P(I/L)W subfamily, that have evolved a tryptophan residue in place of the (D/E) in the second conserved motif; the function of this substitution (Trp-142) is unclear. Molecular dynamics simulations of the MFT in its explicit membrane environment identified this tryptophan, as well as several other residues lining the transport cavity, to be involved in a series of sequential interactions that coordinated the movement of the tetrahydrofolate substrate within the transport cavity. We probed the function of these residues by mutagenesis. The mutation of every residue identified by molecular dynamics to interact with tetrahydrofolate during simulated transit into the aqueous channel severely impaired folate transport. Mutation of the subfamily-defining tryptophan residue in the MFT to match the MCF consensus at this position (W142D) was incompatible with cell survival. These studies indicate that MFT Trp-142, as well as other residues lining the transporter interior, coordinate tetrahydrofolate descent and positioning of the substrate in the transporter basin. Overall, we identified residues in the walls and at the base of the transport cavity that are involved in substrate recognition by the MFT.


Subject(s)
Membrane Transport Proteins/metabolism , Mitochondrial Proteins/metabolism , Tetrahydrofolates/metabolism , Amino Acid Motifs , Amino Acid Sequence , Humans , Mutagenesis, Site-Directed , Protein Binding , Substrate Specificity , Tryptophan
9.
Nat Commun ; 10(1): 2450, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31164648

ABSTRACT

Tumor-associated myeloid cells regulate tumor growth and metastasis, and their accumulation is a negative prognostic factor for breast cancer. Here we find calcium/calmodulin-dependent kinase kinase (CaMKK2) to be highly expressed within intratumoral myeloid cells in mouse models of breast cancer, and demonstrate that its inhibition within myeloid cells suppresses tumor growth by increasing intratumoral accumulation of effector CD8+ T cells and immune-stimulatory myeloid subsets. Tumor-associated macrophages (TAMs) isolated from Camkk2-/- mice expressed higher levels of chemokines involved in the recruitment of effector T cells compared to WT. Similarly, in vitro generated Camkk2-/- macrophages recruit more T cells, and have a reduced capability to suppress T cell proliferation, compared to WT. Treatment with CaMKK2 inhibitors blocks tumor growth in a CD8+ T cell-dependent manner, and facilitates a favorable reprogramming of the immune cell microenvironment. These data, credential CaMKK2 as a myeloid-selective checkpoint, the inhibition of which may have utility in the immunotherapy of breast cancer.


Subject(s)
Breast Neoplasms/immunology , Calcium-Calmodulin-Dependent Protein Kinase Kinase/immunology , Carcinoma/immunology , Mammary Neoplasms, Animal/immunology , Myeloid Cells/immunology , Tumor Escape/immunology , Tumor Microenvironment/immunology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , CD8-Positive T-Lymphocytes/immunology , Calcium-Calmodulin-Dependent Protein Kinase Kinase/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Carcinoma/genetics , Carcinoma/metabolism , Cell Proliferation , Chemokines/immunology , Female , Humans , Immunohistochemistry , In Vitro Techniques , Macrophages/immunology , Macrophages/metabolism , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Myeloid Cells/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Tumor Escape/genetics
10.
Front Microbiol ; 8: 1340, 2017.
Article in English | MEDLINE | ID: mdl-28769905

ABSTRACT

Oomycetes in the genus Phytophthora are among the most damaging plant pathogens worldwide. Two important species are Phytophthora cinnamomi, which causes root rot in thousands of native and agricultural plants, and Phytophthora agathidicida, which causes kauri dieback disease in New Zealand. As is the case for other Phytophthora species, management options for these two pathogens are limited. Here, we have screened over 100 compounds for their anti-oomycete activity, as a potential first step toward identifying new control strategies. Our screening identified eight compounds that showed activity against both Phytophthora species. These included five antibiotics, two copper compounds and a quaternary ammonium cation. These compounds were tested for their inhibitory action against three stages of the Phytophthora life cycle: mycelial growth, zoospore germination, and zoospore motility. The inhibitory effects of the compounds were broadly similar between the two Phytophthora species, but their effectiveness varied widely among life cycle stages. Mycelial growth was most successfully inhibited by the antibiotics chlortetracycline and paromomycin, and the quaternary ammonium salt benzethonium chloride. Copper chloride and copper sulfate were most effective at inhibiting zoospore germination and motility, whereas the five antibiotics showed relatively poor zoospore inhibition. Benzethonium chloride was identified as a promising antimicrobial, as it is effective across all three life cycle stages. While further testing is required to determine their efficacy and potential phytotoxicity in planta, we have provided new data on those agents that are, and those that are not, effective against P. agathidicida and P. cinnamomi. Additionally, we present here the first published protocol for producing zoospores from P. agathidicida, which will aid in the further study of this emerging pathogen.

11.
J Clin Invest ; 127(6): 2326-2338, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28463227

ABSTRACT

The clinical utility of inhibiting cytochrome P450 17A1 (CYP17), a cytochrome p450 enzyme that is required for the production of androgens, has been exemplified by the approval of abiraterone for the treatment of castration-resistant prostate cancer (CRPC). Recently, however, it has been reported that CYP17 inhibitors can interact directly with the androgen receptor (AR). A phase I study recently reported that seviteronel, a CYP17 lyase-selective inhibitor, ædemonstrated a sustained reduction in prostate-specific antigen in a patient with CRPC, and another study showed seviteronel's direct effects on AR function. This suggested that seviteronel may have therapeutically relevant activities in addition to its ability to inhibit androgen production. Here, we have demonstrated that CYP17 inhibitors, with the exception of orteronel, can function as competitive AR antagonists. Conformational profiling revealed that the CYP17 inhibitor-bound AR adopted a conformation that resembled the unliganded AR (apo-AR), precluding nuclear localization and DNA binding. Further, we observed that seviteronel and abiraterone inhibited the growth of tumor xenografts expressing the clinically relevant mutation AR-F876L and that this activity could be attributed entirely to competitive AR antagonism. The results of this study suggest that the ability of CYP17 inhibitors to directly antagonize the AR may contribute to their clinical efficacy in CRPC.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents, Hormonal/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Active Transport, Cell Nucleus , Animals , Benzamides , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Drug Synergism , HEK293 Cells , Humans , Inhibitory Concentration 50 , Male , Metribolone/pharmacology , Mice, Inbred NOD , Mice, SCID , Nitriles , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/pharmacology , Protein Binding , Receptors, Androgen/metabolism , Steroid 17-alpha-Hydroxylase/metabolism , Testosterone/pharmacology , Transcriptional Activation/drug effects , Xenograft Model Antitumor Assays
12.
Mol Cancer Res ; 15(6): 660-669, 2017 06.
Article in English | MEDLINE | ID: mdl-28209757

ABSTRACT

Resistance to second-generation androgen receptor (AR) antagonists and CYP17 inhibitors in patients with castration-resistant prostate cancer (CRPC) develops rapidly through reactivation of the androgen signaling axis and has been attributed to AR overexpression, production of constitutively active AR splice variants, or the selection for AR mutants with altered ligand-binding specificity. It has been established that androgens induce cell-cycle progression, in part, through upregulation of cyclin D1 (CCND1) expression and subsequent activation of cyclin-dependent kinases 4 and 6 (CDK4/6). Thus, the efficacy of the newly described CDK4/6 inhibitors (G1T28 and G1T38), docetaxel and enzalutamide, was evaluated as single agents in clinically relevant in vitro and in vivo models of hormone-sensitive and treatment-resistant prostate cancer. CDK4/6 inhibition (CDK4/6i) was as effective as docetaxel in animal models of treatment-resistant CRPC but exhibited significantly less toxicity. The in vivo effects were durable and importantly were observed in prostate cancer cells expressing wild-type AR, AR mutants, and those that have lost AR expression. CDK4/6i was also effective in prostate tumor models expressing the AR-V7 variant or the AR F876L mutation, both of which are associated with treatment resistance. Furthermore, CDK4/6i was effective in prostate cancer models where AR expression was lost. It is concluded that CDK4/6 inhibitors are a viable alternative to taxanes as therapeutic interventions in endocrine therapy-refractory CRPC.Implications: The preclinical efficacy of CDK4/6 monotherapy observed here suggests the need for near-term clinical studies of these agents in advanced prostate cancer. Mol Cancer Res; 15(6); 660-9. ©2017 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Prostatic Neoplasms, Castration-Resistant/drug therapy , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Humans , Male , Mice, Nude , Molecular Targeted Therapy/methods , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Taxoids/pharmacology , Xenograft Model Antitumor Assays
13.
Biol Bull ; 218(1): 95-104, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20203257

ABSTRACT

Many echinoderms contain subcuticular bacteria (SCB), symbionts which reside in the lumen between the host's epidermal cells and outer cuticle. This relationship is common, existing in about 60% of echinoderms studied so far, yet the function of SCB remains largely unknown. In this study, phylogenetic analysis was carried out on 16S rRNA sequences obtained from echinoderm-associated bacteria, resulting in the identification of four species of putative SCB. All four bacteria were identified from the holothurian Stichopus mollis, and two of the four were also found in the asteroid Patiriella sp. Two of these bacteria belong to the Alphaproteobacteria, and two to the Gammaproteobacteria. In addition to phylogenetic analysis, fluorescence in situ hybridization (FISH) assays were carried out on Patiriella sp., S. mollis, and the asteroid Astrostole scabra. Results showed that Patiriella sp. and S. mollis contain SCB, in agreement with the phylogenetic analysis, while SCB were not detected in A. scabra. Of the bacteria detected using FISH, more than 80% were recognized as belonging to the Alphaproteobacteria in both host species. However, in S. mollis about 20% of the detected SCB successfully hybridized with the Gammaproteobacteria-specific probe, whereas bacteria belonging to this class were never observed in Patiriella sp. This is only the second study to characterize SCB by molecular means, and is the first to identify SCB in situ using FISH.


Subject(s)
Alphaproteobacteria/classification , Alphaproteobacteria/genetics , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Stichopus/microbiology , Alphaproteobacteria/isolation & purification , Animals , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gammaproteobacteria/isolation & purification , In Situ Hybridization, Fluorescence , Molecular Sequence Data , New Zealand , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
14.
Biochemistry ; 46(6): 1557-67, 2007 Feb 13.
Article in English | MEDLINE | ID: mdl-17279620

ABSTRACT

The mitochondrial folate transporter (MFT) was previously identified in human and hamster cells. Sequence homology of this protein with the inner mitochondrial membrane transporters suggested a domain structure in which the N- and C-termini of the protein are located on the mitochondrial intermembrane-facing surface, with six membrane-spanning regions interspersed by two intermembrane loops and three matrix-facing loops. We now report the functional significance of insertion of the c-myc epitope into the intermembrane loops and of a series of site-directed mutations at hamster MFT residues highly conserved in orthologues. Insertional mutagenesis in the first predicted intermembrane loop eliminated MFT function, but the introduction of a c-myc peptide into the second loop was without effect. Most of the hamster MFT residues studied by site-directed mutagenesis were remarkably resilient to these mutations, except for R249A and G192E, both of which eliminated folate transport activity. Homology modeling, using the crystal structure of the bovine ADP/ATP carrier (AAC) as a scaffold, suggested a similar three-dimensional structure for the MFT and the AAC. An ion-pair interaction in the AAC thought to be central to the mechanism of membrane penetration by ADP is predicted by this homology model to be replaced by a pi-cation interaction in MFT orthologues and probably also in other members of the family bearing the P(I/L)W motif. This model suggests that the MFT R249A and G192E mutations both modify the base of a basket-shaped structure that appears to constitute a trap door for the flux of folates into the mitochondrial matrix.


Subject(s)
Folic Acid/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Cricetulus , Mitochondrial ADP, ATP Translocases/chemistry , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Models, Molecular , Mutagenesis, Site-Directed , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL