Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Anal Sci ; 36(9): 1091-1097, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32336730

ABSTRACT

Roselle seeds, a waste biomass of the roselle calyx processing industry, were utilized to recover valuable compounds of oil, vitamin E, and water-soluble saccharides. Firstly, ultrasound-assisted extraction (UAE) and conventional stirring extraction were conducted for saccharide extraction, and the advantage of UAE was confirmed. Secondly, oil, vitamin E, and saccharides extracted from Vietnamese roselle seeds by UAE were analyzed for the first time. Oil of tri-, di-, and mono-glycerides, fatty acids of linoleic-, oleic-, palmitic-, and stearic-acids, vitamin E of γ- and α-tocopherol, and saccharides of sucrose, raffinose, stachyose, etc. were identified, and the amounts of these components were compared with those in other country's roselle seeds. Thirdly, cascade extraction of oil, vitamin E, and saccharides by UAE was investigated with solvents of hexane, hexane:ethyl acetate binary solvent, and water. The results indicated that the order of using solvents was very important for high and selective extraction: the best order to recover oil (almost 100%), vitamin E (95.7%), and saccharides (86.2%) was hexane, and then water.


Subject(s)
Carbohydrates/isolation & purification , Chemical Fractionation/methods , Hibiscus/chemistry , Plant Oils/isolation & purification , Seeds/chemistry , Ultrasonic Waves , Vitamin E/isolation & purification , Carbohydrates/chemistry , Hexanes/chemistry , Plant Oils/chemistry , Solvents/chemistry , Vitamin E/chemistry
2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1102-1103: 66-73, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30380465

ABSTRACT

Jatropha curcas is a multipurpose plant, of which the seed kernel oil (up to 60% content) has been exploited for BDF production. In this report, we explored the various kinds of minor compounds of saccharides, phytochemicals, fatty acids (FAs), and amino acids in the seed kernel using gas chromatography/mass spectrometry (GC/MS) as their trimethylsilyl (TMS) derivatives. The homogenized seed kernels were extracted with methanol, and the extract was distributed into ethyl acetate/water phase. The components of each layer were derivatized with N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) and their TMS derivatives were screened by GC/MS analysis. In ethyl acetate layer, the four FAs of palmitic acid, oleic acid, linoleic acid, and stearic acid were identified with total content of 12 wt% in kernel. In addition, the two tocochromanols of γ-tocopherol and γ-tocotrienol, and three phytosterols of campesterol, stigmasterol, and ß-sitosterol were also identified. Meanwhile, as the main saccharide components, di-saccharide of sucrose with content of 3 wt% in kernel, tri-saccharide of raffinose, and sugar alcohol of sorbitol and myo-inositol, were identified in aqueous layer. Furthermore, metabolites of amino acid, and a series of metabolite were also identified. These results suggested that the Jatropha curcas seed kernel can be applied to cascade use for metallic soap, liquid fuel, food and medical supplement, and cosmetics in addition to biodiesel production.


Subject(s)
Fatty Acids/analysis , Jatropha/chemistry , Phytochemicals/analysis , Seeds/chemistry , Sugars/analysis , Gas Chromatography-Mass Spectrometry/methods , Methanol , Plant Extracts/chemistry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL