Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Development ; 148(1)2021 01 11.
Article in English | MEDLINE | ID: mdl-33318148

ABSTRACT

Androgens/androgen receptor (AR)-mediated signaling pathways are essential for prostate development, morphogenesis and regeneration. Specifically, stromal AR signaling has been shown to be essential for prostatic initiation. However, the molecular mechanisms underlying AR-initiated mesenchymal-epithelial interactions in prostate development remain unclear. Here, using a newly generated mouse model, we have directly addressed the fate and role of genetically marked AR-expressing cells during embryonic prostate development. Androgen signaling-initiated signaling pathways were identified in mesenchymal niche populations at single-cell transcriptomic resolution. The dynamic cell-signaling networks regulated by stromal AR were additionally characterized in relation to prostatic epithelial bud formation. Pseudotime analyses further revealed the differentiation trajectory and fate of AR-expressing cells in both prostatic mesenchymal and epithelial cell populations. Specifically, the cellular properties of Zeb1-expressing progenitors were assessed. Selective deletion of AR signaling in a subpopulation of mesenchymal rather than epithelial cells dysregulated the expression of the master regulators and significantly impaired prostatic bud formation. These data provide novel, high-resolution evidence demonstrating the important role of mesenchymal androgen signaling in the cellular niche controlling prostate early development by initiating dynamic mesenchyme-epithelia cell interactions.


Subject(s)
Androgens/pharmacology , Cell Communication , Cell Lineage , Prostate/cytology , Single-Cell Analysis , Animals , Cell Communication/drug effects , Cell Communication/genetics , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Lineage/genetics , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Deletion , Gene Expression Regulation, Developmental/drug effects , Genes, Developmental , Male , Mesoderm/cytology , Mice , Prostate/drug effects , RNA-Seq , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Stromal Cells/cytology , Stromal Cells/drug effects , Stromal Cells/metabolism
2.
Development ; 148(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34427305

ABSTRACT

Stromal androgen-receptor (AR) action is essential for prostate development, morphogenesis and regeneration. However, mechanisms underlying how stromal AR maintains the cell niche in support of pubertal prostatic epithelial growth are unknown. Here, using advanced mouse genetic tools, we demonstrate that selective deletion of stromal AR expression in prepubescent Shh-responsive Gli1-expressing cells significantly impedes pubertal prostate epithelial growth and development. Single-cell transcriptomic analyses showed that AR loss in these prepubescent Gli1-expressing cells dysregulates androgen signaling-initiated stromal-epithelial paracrine interactions, leading to growth retardation of pubertal prostate epithelia and significant development defects. Specifically, AR loss elevates Shh-signaling activation in both prostatic stromal and adjacent epithelial cells, directly inhibiting prostatic epithelial growth. Single-cell trajectory analyses further identified aberrant differentiation fates of prostatic epithelial cells directly altered by stromal AR deletion. In vivo recombination of AR-deficient stromal Gli1-lineage cells with wild-type prostatic epithelial cells failed to develop normal prostatic epithelia. These data demonstrate previously unidentified mechanisms underlying how stromal AR-signaling facilitates Shh-mediated cell niches in pubertal prostatic epithelial growth and development.


Subject(s)
Androgens/metabolism , Hedgehog Proteins/metabolism , Prostate/growth & development , Stem Cell Niche , Animals , Cell Differentiation , Cell Lineage , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/metabolism , Hedgehog Proteins/genetics , Male , Mice , Prostate/cytology , Prostate/metabolism , RNA-Seq , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Signal Transduction , Single-Cell Analysis , Transcriptome , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
3.
Neuroradiology ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377927

ABSTRACT

PURPOSE: This study compared the classification performance of normalized apparent diffusion coefficient (nADC) with percentage T2-FLAIR mismatch-volume (%T2FM-volume) for differentiating between IDH-mutant astrocytoma (IDHm-A) and other glioma molecular subtypes. METHODS: A total of 105 non-enhancing gliomas were studied. T2-FLAIR digital subtraction maps were used to identify T2FM and T2-FLAIR non-mismatch (T2FNM) subregions within tumor volumes of interest (VOIs). Median nADC from the whole tumor, T2FM, and T2NFM subregions and %T2FM-volume were obtained. IDHm-A classification analyses using receiver-operating characteristic curves and multiple logistic regression were performed in addition to exploratory survival analyses. RESULTS: T2FM subregions had significantly higher nADC than T2FNM subregions within IDHm-A with ≥ 25% T2FM-volume (P < 0.0001). IDHm-A with ≥ 25% T2FM-volume demonstrated significantly higher whole tumor nADC compared to IDHm-A with < 25% T2FM-volume (P < 0.0001), and both IDHm-A subgroups demonstrated significantly higher nADC compared to IDH-mutant oligodendroglioma and IDH-wild-type gliomas (P < 0.05). For classification of IDHm-A vs. other gliomas, the area under curve (AUC) of nADC was significantly greater compared to the AUC of %T2FM-volume (P = 0.01, nADC AUC = 0.848, %T2FM-volume AUC = 0.714) along with greater sensitivity. In exploratory survival analyses within IDHm-A, %T2FM-volume was not associated with overall survival (P = 0.2), but there were non-significant trends for nADC (P = 0.07) and tumor volume (P = 0.051). CONCLUSION: T2-FLAIR subtraction maps are useful for characterizing IDHm-A imaging characteristics. nADC outperforms %T2FM-volume for classifying IDHm-A amongst non-enhancing gliomas with preserved high specificity and increased sensitivity, which may be related to inherent diffusivity differences regardless of T2FM. In line with previous findings on visual T2FM-sign, quantitative %T2FM-volume may not be prognostic.

4.
PLoS Genet ; 16(1): e1008588, 2020 01.
Article in English | MEDLINE | ID: mdl-31929563

ABSTRACT

Prostate embryonic development, pubertal and adult growth, maintenance, and regeneration are regulated through androgen signaling-mediated mesenchymal-epithelial interactions. Specifically, the essential role of mesenchymal androgen signaling in the development of prostate epithelium has been observed for over 30 years. However, the identity of the mesenchymal cells responsible for this paracrine regulation and related mechanisms are still unknown. Here, we provide the first demonstration of an indispensable role of the androgen receptor (AR) in sonic hedgehog (SHH) responsive Gli1-expressing cells, in regulating prostate development, growth, and regeneration. Selective deletion of AR expression in Gli1-expressing cells during embryogenesis disrupts prostatic budding and impairs prostate development and formation. Tissue recombination assays showed that urogenital mesenchyme (UGM) containing AR-deficient mesenchymal Gli1-expressing cells combined with wildtype urogenital epithelium (UGE) failed to develop normal prostate tissue in the presence of androgens, revealing the decisive role of AR in mesenchymal SHH responsive cells in prostate development. Prepubescent deletion of AR expression in Gli1-expressing cells resulted in severe impairment of androgen-induced prostate growth and regeneration. RNA-sequencing analysis showed significant alterations in signaling pathways related to prostate development, stem cells, and organ morphogenesis in AR-deficient Gli1-expressing cells. Among these altered pathways, the transforming growth factor ß1 (TGFß1) pathway was up-regulated in AR-deficient Gli1-expressing cells. We further demonstrated the activation of TGFß1 signaling in AR-deleted prostatic Gli1-expressing cells, which inhibits prostate epithelium growth through paracrine regulation. These data demonstrate a novel role of the AR in the Gli1-expressing cellular niche for regulating prostatic cell fate, morphogenesis, and renewal, and elucidate the mechanism by which mesenchymal androgen-signaling through SHH-responsive cells elicits the growth and regeneration of prostate epithelium.


Subject(s)
Hedgehog Proteins/metabolism , Morphogenesis , Prostate/metabolism , Receptors, Androgen/metabolism , Regeneration , Signal Transduction , Animals , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/metabolism , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Prostate/cytology , Prostate/growth & development , Prostate/physiology , Transforming Growth Factor beta/metabolism , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
5.
PLoS Genet ; 15(10): e1008451, 2019 10.
Article in English | MEDLINE | ID: mdl-31658259

ABSTRACT

E-cadherin complexes with the actin cytoskeleton via cytoplasmic catenins and maintains the functional characteristics and integrity of the epithelia in normal epithelial tissues. Lost expression of E-cadherin disrupts this complex resulting in loss of cell polarity, epithelial denudation and increased epithelial permeability in a variety of tissues. Decreased expression of E-cadherin has also been observed in invasive and metastatic human tumors. In this study, we investigated the effect of E-cadherin loss in prostatic epithelium using newly developed genetically engineered mouse models. Deletion of E-cadherin in prostatic luminal epithelial cells with modified probasin promoter driven Cre (PB-Cre4) induced the development of mouse prostatic intraepithelial neoplasia (PIN). An increase in levels of cytoplasmic and nuclear ß-catenin appeared in E-cadherin deleted atypical cells within PIN lesions. Using various experimental approaches, we further demonstrated that the knockdown of E-cadherin expression elevated free cytoplasmic and nuclear ß-catenin and enhanced androgen-induced transcription and cell growth. Intriguingly, pathological changes representing prostatic epithelial cell denudation and increased apoptosis accompanied the above PIN lesions. The essential role of E-cadherin in maintaining prostatic epithelial integrity and organization was further demonstrated using organoid culture approaches. To directly assess the role of loss of E-cadherin in prostate tumor progression, we generated a new mouse model with bigenic Cdh1 and Pten deletion in prostate epithelium. Early onset, aggressive tumor phenotypes presented in the compound mice. Strikingly, goblet cell metaplasia was observed, intermixed within prostatic tumor lesions of the compound mice. This study provides multiple lines of novel evidence demonstrating a comprehensive role of E-cadherin in maintaining epithelial integrity during the course of prostate oncogenic transformation, tumor initiation and progression.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Cell Transformation, Neoplastic/pathology , Prostatic Intraepithelial Neoplasia/pathology , Prostatic Neoplasms/pathology , Animals , Antigens, CD/genetics , Cadherins/genetics , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Disease Progression , Epithelial Cells , Epithelium , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Primary Cell Culture , Prostate/cytology , Prostate/pathology , Prostatic Intraepithelial Neoplasia/genetics , Prostatic Neoplasms/genetics , RNA, Small Interfering , beta Catenin/genetics , beta Catenin/metabolism
6.
J Biol Chem ; 295(2): 631-644, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31819003

ABSTRACT

Co-occurrence of aberrant hepatocyte growth factor (HGF)/MET proto-oncogene receptor tyrosine kinase (MET) and Wnt/ß-catenin signaling pathways has been observed in advanced and metastatic prostate cancers. This co-occurrence positively correlates with prostate cancer progression and castration-resistant prostate cancer development. However, the biological consequences of these abnormalities in these disease processes remain largely unknown. Here, we investigated the aberrant activation of HGF/MET and Wnt/ß-catenin cascades in prostate tumorigenesis by using a newly generated mouse model in which both murine Met transgene and stabilized ß-catenin are conditionally co-expressed in prostatic epithelial cells. These compound mice displayed accelerated prostate tumor formation and invasion compared with their littermates that expressed only stabilized ß-catenin. RNA-Seq and quantitative RT-PCR analyses revealed increased expression of genes associated with tumor cell proliferation, progression, and metastasis. Moreover, Wnt signaling pathways were robustly enriched in prostate tumor samples from the compound mice. ChIP-qPCR experiments revealed increased ß-catenin recruitment within the regulatory regions of the Myc gene in tumor cells of the compound mice. Interestingly, the occupancy of MET on the Myc promoter also appeared in the compound mouse tumor samples, implicating a novel role of MET in ß-catenin-mediated transcription. Results from implanting prostate graft tissues derived from the compound mice and controls into HGF-transgenic mice further uncovered that HGF induces prostatic oncogenic transformation and cell growth. These results indicate a role of HGF/MET in ß-catenin-mediated prostate cancer cell growth and progression and implicate a molecular mechanism whereby nuclear MET promotes aberrant Wnt/ß-catenin signaling-mediated prostate tumorigenesis.


Subject(s)
Hepatocyte Growth Factor/metabolism , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction , beta Catenin/metabolism , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Humans , Male , Mice, Inbred C57BL , Mice, SCID , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/pathology , Proto-Oncogene Mas
7.
J Infect Dis ; 221(2): 267-275, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31504652

ABSTRACT

Staphylococcus aureus is a common pathogen causing infections in humans with various degrees of severity, with pneumonia being one of the most severe infections. In as much as staphylococcal pneumonia is a disease driven in large part by α-hemolysin (Hla) and Panton-Valentine leukocidin (PVL), we evaluated whether active immunization with attenuated forms of Hla (HlaH35L/H48L) alone, PVL components (LukS-PVT28F/K97A/S209A and LukF-PVK102A) alone, or combination of all 3 toxoids could prevent lethal challenge in a rabbit model of necrotizing pneumonia caused by the USA300 community-associated methicillin-resistant S. aureus (MRSA). Rabbits vaccinated with Hla toxoid alone or PVL components alone were only partially protected against lethal pneumonia, whereas those vaccinated with all 3 toxoids had 100% protection against lethality. Vaccine-mediated protection correlated with induction of polyclonal antibody response that neutralized not only α-hemolysin and PVL, but also other related toxins, produced by USA300 and other epidemic MRSA clones.


Subject(s)
Bacterial Toxins/immunology , Exotoxins/immunology , Hemolysin Proteins/immunology , Leukocidins/immunology , Pneumonia, Necrotizing/prevention & control , Pneumonia, Staphylococcal/prevention & control , Animals , Bacterial Toxins/administration & dosage , Disease Models, Animal , Exotoxins/administration & dosage , Hemolysin Proteins/administration & dosage , Humans , Leukocidins/administration & dosage , Methicillin-Resistant Staphylococcus aureus , Pneumonia, Necrotizing/immunology , Pneumonia, Staphylococcal/immunology , Rabbits , Vaccination
8.
Differentiation ; 107: 1-10, 2019.
Article in English | MEDLINE | ID: mdl-30927641

ABSTRACT

Androgen signaling is essential for prostate development, morphogenesis, and regeneration. Emerging evidence also indicates a regulatory role of Notch signaling in prostate development, differentiation, and growth. However, the collaborative regulatory mechanisms of androgen and Notch signaling during prostate development, growth, and regeneration are largely unknown. Hairy and Enhancer of Split 1 (Hes1) is a transcriptional regulator of Notch signaling pathways, and its expression is responsive to Notch signaling. Hes1-expressing cells have been shown to possess the regenerative capability to repopulate a variety of adult tissues. In this study, we developed new mouse models to directly assess the role of the androgen receptor in prostatic Hes1-expressing cells. Selective deletion of AR expression in embryonic Hes1-expressing cells impeded early prostate development both in vivo and in tissue xenograft experiments. Prepubescent deletion of AR expression in Hes1-expressing cells resulted in prostate glands containing abnormalities in cell morphology and gland architecture. A population of castration-resistant Hes1-expressing cells was revealed in the adult prostate, with the ability to repopulate prostate epithelium following androgen supplementation. Deletion of AR in Hes1-expressing cells diminishes their regenerative ability. These lines of evidence demonstrate a critical role for the AR in Notch-responsive cells during the course of prostate development, morphogenesis, and regeneration, and implicate a mechanism underlying interaction between the androgen and Notch signaling pathways in the mouse prostate.


Subject(s)
Prostate/physiology , Receptors, Notch/metabolism , Regeneration , Transcription Factor HES-1 , Androgens/metabolism , Animals , Male , Mice , Models, Animal , Prostate/embryology , Receptors, Androgen/metabolism , Signal Transduction , Transcription Factor HES-1/biosynthesis , Transcription Factor HES-1/genetics
9.
J Biol Chem ; 293(52): 20123-20136, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30401749

ABSTRACT

Emerging evidence has shown that the hepatocyte growth factor (HGF) and its receptor, MET proto-oncogene, receptor tyrosine kinase (MET), promote cell proliferation, motility, morphogenesis, and angiogenesis. Whereas up-regulation of MET expression has been observed in aggressive and metastatic prostate cancer, a clear understanding of MET function in prostate tumorigenesis remains elusive. Here, we developed a conditional Met transgenic mouse strain, H11Met/+:PB-Cre4, to mimic human prostate cancer cells with increased MET expression in the prostatic luminal epithelium. We found that these mice develop prostatic intraepithelial neoplasia after HGF administration. To further assess the biological role of MET in prostate cancer progression, we bred H11Met/+/PtenLoxP/LoxP:PBCre4 compound mice, in which transgenic Met expression and deletion of the tumor suppressor gene Pten occurred simultaneously only in prostatic epithelial cells. These compound mice exhibited accelerated prostate tumor formation and invasion as well as increased metastasis compared with PtenLoxP/LoxP:PB-Cre4 mice. Moreover, prostatic sarcomatoid carcinomas and lesions resembling the epithelial-to-mesenchymal transition developed in tumor lesions of the compound mice. RNA-Seq and qRT-PCR analyses revealed a robust enrichment of known tumor progression and metastasis-promoting genes in samples isolated from H11Met/+/PtenLoxP/LoxP:PB-Cre4 compound mice compared with those from PtenLoxP/LoxP:PB-Cre4 littermate controls. HGF-induced cell proliferation and migration also increased in mouse embryonic fibroblasts (MEFs) from animals with both Met transgene expression and Pten deletion compared with Pten-null MEFs. The results from these newly developed mouse models indicate a role for MET in hastening tumorigenesis and metastasis when combined with the loss of tumor suppressors.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Hepatocyte Growth Factor/metabolism , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Hepatocyte Growth Factor/genetics , Male , Mice , Mice, Transgenic , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Mas , Proto-Oncogene Proteins c-met/genetics
10.
Article in English | MEDLINE | ID: mdl-31160288

ABSTRACT

Pseudomonas aeruginosa is a challenge for clinicians due to increasing drug resistance and dwindling treatment options. We report on the activity of MEDI3902, an antibody targeting type 3 secretion protein PcrV and Psl exopolysaccharide, in rabbit bloodstream and lung infection models. MEDI3902 prophylaxis or treatment was protective in both acute models and exhibited enhanced activity when combined with a subtherapeutic dose of meropenem. These findings further support MEDI3902 for the prevention or treatment of serious P. aeruginosa infections.


Subject(s)
Antibodies, Bispecific/therapeutic use , Pneumonia/drug therapy , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/pathogenicity , Animals , Bacteremia/drug therapy , Bacteremia/microbiology , Bacteremia/therapy , Immunotherapy , Meropenem/therapeutic use , Pneumonia/microbiology , Pneumonia/therapy , Pseudomonas Infections/microbiology , Pseudomonas Infections/therapy , Pseudomonas aeruginosa/drug effects , Rabbits , Treatment Outcome
11.
Article in English | MEDLINE | ID: mdl-29483116

ABSTRACT

Pseudomonas aeruginosa is among the most formidable antibiotic-resistant pathogens and is a leading cause of hospital-associated infections. With dwindling options for antibiotic-resistant infections, a new paradigm for treatment and disease resolution is required. MEDI3902, a bispecific antibody targeting the P. aeruginosa type III secretion (T3S) protein PcrV and Psl exopolysaccharide, was previously shown to mediate potent protective activity in murine infection models. With the current challenges associated with the clinical development of narrow-spectrum agents, robust preclinical efficacy data in multiple animal species are desirable. Here, we sought to develop a rabbit P. aeruginosa acute pneumonia model to further evaluate the activity of MEDI3902 intervention. In the rabbit model of acute pneumonia, prophylaxis with MEDI3902 exhibited potent dose-dependent protection, whereas those receiving control IgG developed fatal hemorrhagic necrotizing pneumonia between 12 and 54 h after infection. Blood biomarkers (e.g., partial pressure of oxygen [pO2], partial pressure of carbon dioxide [pCO2], base excess, lactate, and creatinine) were grossly deranged for the vast majority of control IgG-treated animals but remained within normal limits for MEDI3902-treated animals. In addition, MEDI3902-treated animals exhibited a profound reduction in P. aeruginosa organ burden and a marked reduction in the expression of proinflammatory mediators from lung tissue, which correlated with reduced lung histopathology. These results confirm that targeting PcrV and Psl via MEDI3902 is a promising candidate for immunotherapy against P. aeruginosa pneumonia.


Subject(s)
Acute Lung Injury/drug therapy , Acute Lung Injury/microbiology , Antibodies, Monoclonal/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Acute Lung Injury/immunology , Animals , Antibodies, Bispecific , Antibodies, Monoclonal/metabolism , Disease Models, Animal , Male , Pneumonia/drug therapy , Pneumonia/immunology , Pneumonia/microbiology , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/immunology , Rabbits
12.
Article in English | MEDLINE | ID: mdl-28137816

ABSTRACT

The protective efficacy of tedizolid phosphate, a novel oxazolidinone that potently inhibits bacterial protein synthesis, was compared to those of linezolid, vancomycin, and saline in a rabbit model of Staphylococcus aureus necrotizing pneumonia. Tedizolid phosphate was administered to rabbits at 6 mg/kg of body weight intravenously twice daily, which yielded values of the 24-h area under the concentration-time curve approximating those found in humans. The overall survival rate was 83% for rabbits treated with 6 mg/kg tedizolid phosphate twice daily and 83% for those treated with 50 mg/kg linezolid thrice daily (P = 0.66 by the log-rank test versus the results obtained with tedizolid phosphate). These survival rates were significantly greater than the survival rates of 17% for rabbits treated with 30 mg/kg vancomycin twice daily (P = 0.003) and 17% for rabbits treated with saline (P = 0.002). The bacterial count in the lungs of rabbits treated with tedizolid phosphate was significantly decreased compared to that in the lungs of rabbits treated with saline, although it was not significantly different from that in the lungs of rabbits treated with vancomycin or linezolid. The in vivo bacterial production of alpha-toxin and Panton-Valentine leukocidin, two key S. aureus-secreted toxins that play critical roles in the pathogenesis of necrotizing pneumonia, in the lungs of rabbits treated with tedizolid phosphate and linezolid was significantly inhibited compared to that in the lungs of rabbits treated with vancomycin or saline. Taken together, these results indicate that tedizolid phosphate is superior to vancomycin for the treatment of S. aureus necrotizing pneumonia because it inhibits the bacterial production of lung-damaging toxins at the site of infection.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Methicillin-Resistant Staphylococcus aureus/drug effects , Organophosphates/therapeutic use , Oxazoles/therapeutic use , Pneumonia, Necrotizing/drug therapy , Pneumonia, Staphylococcal/drug therapy , Staphylococcus aureus/drug effects , Animals , Linezolid/therapeutic use , Methicillin-Resistant Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , Pneumonia, Necrotizing/microbiology , Pneumonia, Staphylococcal/microbiology , Rabbits , Staphylococcus aureus/metabolism , Vancomycin/therapeutic use
13.
Article in English | MEDLINE | ID: mdl-28115346

ABSTRACT

The role broad-spectrum antibiotics play in the spread of antimicrobial resistance, coupled with their effect on the healthy microbiome, has led to advances in pathogen-specific approaches for the prevention or treatment of serious bacterial infections. One approach in clinical testing is passive immunization with a monoclonal antibody (MAb) targeting alpha toxin for the prevention or treatment of Staphylococcus aureus pneumonia. Passive immunization with the human anti-alpha toxin MAb, MEDI4893*, has been shown to improve disease outcome in murine S. aureus pneumonia models. The species specificity of some S. aureus toxins necessitates testing anti-S. aureus therapeutics in alternate species. We developed a necrotizing pneumonia model in ferrets and utilized an existing rabbit pneumonia model to characterize MEDI4893* protective activity in species other than mice. MEDI4893* prophylaxis reduced disease severity in ferret and rabbit pneumonia models against both community-associated methicillin-resistant S. aureus (MRSA) and hospital-associated MRSA strains. In addition, adjunctive treatment of MEDI4893* with either vancomycin or linezolid provided enhanced protection in rabbits relative to the antibiotics alone. These results confirm that MEDI4893 is a promising candidate for immunotherapy against S. aureus pneumonia.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Pneumonia, Necrotizing/drug therapy , Staphylococcus aureus/physiology , Animals , Anti-Bacterial Agents/pharmacology , Antibodies, Monoclonal/immunology , Ferrets , Hemolysin Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/physiology , Pneumonia, Necrotizing/microbiology , Pneumonia, Staphylococcal , Rabbits , Staphylococcus aureus/drug effects
14.
Antimicrob Agents Chemother ; 60(10): 6333-40, 2016 10.
Article in English | MEDLINE | ID: mdl-27527081

ABSTRACT

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA), especially the USA300 pulsotype, is a frequent cause of skin and soft tissue infections and severe pneumonia. Despite appropriate antibiotic treatment, complications are common and pneumonia is associated with high mortality. S. aureus strains express multiple cytotoxins, including alpha-hemolysin (Hla) and up to five bicomponent leukocidins that specifically target phagocytic cells for lysis. CA-MRSA USA300 strains carry the genes for all six cytotoxins. Species specificity of the leukocidins greatly contributes to the ambiguity regarding their role in S. aureus pathogenesis. We performed a comparative analysis of the leukocidin susceptibility of human, rabbit, and mouse polymorphonuclear leukocytes (PMNs) to assess the translational value of mouse and rabbit S. aureus models. We found that mouse PMNs were largely resistant to LukSF-PV, HlgAB, and HlgCB and susceptible only to LukED, whereas rabbit and human PMNs were highly sensitive to all these cytotoxins. In the rabbit pneumonia model with a USA300 CA-MRSA strain, passive immunization with a previously identified human monoclonal antibody (MAb), Hla-F#5, which cross-neutralizes Hla, LukSF-PV, HlgAB, HlgCB, and LukED, provided full protection, whereas an Hla-specific MAb was only partially protective. In the mouse USA300 CA-MRSA pneumonia model, both types of antibodies demonstrated full protection, suggesting that Hla, but not leukocidin(s), is the principal virulence determinant in mice. As the rabbit recapitulates the high susceptibility to leukocidins characteristic of humans, this species represents a valuable model for assessing novel, cytotoxin-targeting anti-S. aureus therapeutic approaches.


Subject(s)
Antibodies, Neutralizing/pharmacology , Bacterial Toxins/immunology , Hemolysin Proteins/immunology , Leukocidins/immunology , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Pneumonia, Necrotizing/prevention & control , Pneumonia, Staphylococcal/prevention & control , Animals , Antibodies, Monoclonal/pharmacology , Community-Acquired Infections/microbiology , Disease Models, Animal , Female , Humans , Leukocidins/pharmacology , Male , Mice, Inbred BALB C , Neutrophils/drug effects , Neutrophils/microbiology , Pneumonia, Necrotizing/immunology , Pneumonia, Necrotizing/microbiology , Pneumonia, Necrotizing/mortality , Pneumonia, Staphylococcal/immunology , Rabbits
15.
Antimicrob Agents Chemother ; 60(10): 5640-8, 2016 10.
Article in English | MEDLINE | ID: mdl-27401576

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) causes large-scale epidemics of acute bacterial skin and skin structure infections (ABSSSI) within communities across the United States. Animal models that reproduce ABSSSI as they occur in humans are urgently needed to test new therapeutic strategies. Alpha-toxin plays a critical role in a variety of staphylococcal infection models in mice, but its role in the pathogenesis of ABSSSI remains to be elucidated in rabbits, which are similar to humans in their susceptibility to S. aureus superantigens and certain bicomponent pore-forming leukocidins. We report here a new rabbit model of ABSSSI and show that those infected with a mutant deficient in expression of alpha-toxin (Δhla) developed a small dermonecrotic lesion, whereas those infected with isogenic USA300 MRSA wild-type or complemented Δhla strains developed ABSSSI that mimic the severe infections that occur in humans, including the large central dermonecrotic core surrounded by erythema, induration, and marked subcutaneous hemorrhage. More importantly, immunoprophylaxis with MEDI4893*, an anti-alpha-toxin human monoclonal antibody, significantly reduced the severity of disease caused by a USA300 wild-type strain to that caused by the Δhla mutant, indicating that this toxin could be completely neutralized during infection. Thus, this study illustrates a potential high standard for the development of new immunotherapeutic agents in which a toxin-neutralizing antibody provides protection to the same degree achieved with a toxin gene knockout. When MEDI4893* was administered as adjunctive therapy with a subtherapeutic dose of linezolid, the combination was significantly more efficacious than either agent alone in reducing the severity of ABSSSI.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Bacterial Toxins/immunology , Hemolysin Proteins/immunology , Skin Diseases, Bacterial/microbiology , Staphylococcal Skin Infections/drug therapy , Animals , Antibodies, Monoclonal, Humanized , Bacterial Toxins/genetics , Broadly Neutralizing Antibodies , Disease Models, Animal , Hemolysin Proteins/genetics , Humans , Linezolid/blood , Linezolid/pharmacology , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/immunology , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Pre-Exposure Prophylaxis/methods , Rabbits , Skin Diseases, Bacterial/immunology , Staphylococcal Skin Infections/immunology , Staphylococcal Skin Infections/microbiology
16.
Neuro Oncol ; 26(10): 1823-1836, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-38808755

ABSTRACT

Typical longitudinal radiographic assessment of brain tumors relies on side-by-side qualitative visualization of serial magnetic resonance images (MRIs) aided by quantitative measurements of tumor size. However, when assessing slowly growing tumors and/or complex tumors, side-by-side visualization and quantification may be difficult or unreliable. Whole-brain, patient-specific "digital flipbooks" of longitudinal scans are a potential method to augment radiographic side-by-side reads in clinical settings by enhancing the visual perception of changes in tumor size, mass effect, and infiltration across multiple slices over time. In this approach, co-registered, consecutive MRI scans are displayed in a slide deck, where one slide displays multiple brain slices of a single timepoint in an array (eg, 3 × 5 "mosaic" view of slices). The flipbooks are viewed similarly to an animated flipbook of cartoons/photos so that subtle radiographic changes are visualized via perceived motion when scrolling through the slides. Importantly, flipbooks can be created easily with free, open-source software. This article describes the step-by-step methodology for creating flipbooks and discusses clinical scenarios for which flipbooks are particularly useful. Example flipbooks are provided in Supplementary Material.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Magnetic Resonance Imaging/methods , Software , Image Processing, Computer-Assisted/methods
17.
AJNR Am J Neuroradiol ; 45(2): 188-197, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38238098

ABSTRACT

BACKGROUND AND PURPOSE: The T2-FLAIR mismatch sign on MR imaging is a highly specific imaging biomarker of isocitrate dehydrogenase (IDH)-mutant astrocytomas, which lack 1p/19q codeletion. However, most studies using the T2-FLAIR mismatch sign have used visual assessment. This study quantified the degree of T2-FLAIR mismatch using digital subtraction of fluid-nulled T2-weighted FLAIR images from non-fluid-nulled T2-weighted images in human nonenhancing diffuse gliomas and then used this information to assess improvements in diagnostic performance and investigate subregion characteristics within these lesions. MATERIALS AND METHODS: Two cohorts of treatment-naïve, nonenhancing gliomas with known IDH and 1p/19q status were studied (n = 71 from The Cancer Imaging Archive (TCIA) and n = 34 in the institutional cohort). 3D volumes of interest corresponding to the tumor were segmented, and digital subtraction maps of T2-weighted MR imaging minus T2-weighted FLAIR MR imaging were used to partition each volume of interest into a T2-FLAIR mismatched subregion (T2-FLAIR mismatch, corresponding to voxels with positive values on the subtraction maps) and nonmismatched subregion (T2-FLAIR nonmismatch corresponding to voxels with negative values on the subtraction maps). Tumor subregion volumes, percentage of T2-FLAIR mismatch volume, and T2-FLAIR nonmismatch subregion thickness were calculated, and 2 radiologists assessed the T2-FLAIR mismatch sign with and without the aid of T2-FLAIR subtraction maps. RESULTS: Thresholds of ≥42% T2-FLAIR mismatch volume classified IDH-mutant astrocytoma with a specificity/sensitivity of 100%/19.6% (TCIA) and 100%/31.6% (institutional); ≥25% T2-FLAIR mismatch volume showed 92.0%/32.6% and 100%/63.2% specificity/sensitivity, and ≥15% T2-FLAIR mismatch volume showed 88.0%/39.1% and 93.3%/79.0% specificity/sensitivity. In IDH-mutant astrocytomas with ≥15% T2-FLAIR mismatch volume, T2-FLAIR nonmismatch subregion thickness was negatively correlated with the percentage T2-FLAIR mismatch volume (P < .0001) across both cohorts. The percentage T2-FLAIR mismatch volume was higher in grades 3-4 compared with grade 2 IDH-mutant astrocytomas (P < .05), and ≥15% T2-FLAIR mismatch volume IDH-mutant astrocytomas were significantly larger than <15% T2-FLAIR mismatch volume IDH-mutant astrocytoma (P < .05) across both cohorts. When evaluated by 2 radiologists, the additional use of T2-FLAIR subtraction maps did not show a significant difference in interreader agreement, sensitivity, or specificity compared with a separate evaluation of T2-FLAIR and T2-weighted MR imaging alone. CONCLUSIONS: T2-FLAIR digital subtraction maps may be a useful, automated tool to obtain objective segmentations of tumor subregions based on quantitative thresholds for classifying IDH-mutant astrocytomas using the percentage T2 FLAIR mismatch volume with 100% specificity and exploring T2-FLAIR mismatch/T2-FLAIR nonmismatch subregion characteristics. Conversely, the addition of T2-FLAIR subtraction maps did not enhance the sensitivity or specificity of the visual T2-FLAIR mismatch sign assessment by experienced radiologists.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Retrospective Studies , Glioma/diagnostic imaging , Glioma/pathology , Magnetic Resonance Imaging/methods , Isocitrate Dehydrogenase/genetics , Mutation
18.
Article in English | MEDLINE | ID: mdl-38381311

ABSTRACT

Cellulose/ZnO (CZ) nanocomposites are promising antimicrobial materials known for their antibiotic-free nature, biocompatibility, and environmental friendliness. In this study, cellulose fibers extracted from lotus petioles were utilized as a substrate and decorated with various shapes of ZnO nanoparticles (NPs), including small bean, hexagonal ingot-like, long cylindrical, and hexagonal cylinder-shaped NPs. Increasing zinc salt molar concentration resulted in highly crystalline ZnO NPs forming and enhanced interactions between ZnO NPs and -OH groups of cellulose. The thermal stability and UV-visible absorption properties of the CZ samples were influenced by ZnO concentration. Notably, at a ZnO molar ratio of 0.1, the CZ 0.1 sample demonstrated the lowest weight loss, while the optical band gap gradually decreased from 3.0 to 2.45 eV from the CZ 0.01 to CZ 1.0 samples. The CZ nanocomposites exhibited remarkable antibacterial activity against both Staphylococcus aureus (S. aureus, Gram-positive) and Escherichia coli (E. coli, Gram-negative) bacteria under visible light conditions, with a minimum inhibitory concentration (MIC) of 0.005 mg/mL for both bacterial strains. The bactericidal effects increased with higher concentrations of ZnO NPs, even achieving 100% inhibition. Incorporating ZnO NPs onto cellulose fibers derived from lotus plants presents a promising avenue for developing environmentally friendly materials with broad applications in antibacterial and environmental fields.

19.
Circ Res ; 109(4): 407-17, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21700928

ABSTRACT

RATIONALE: Studies to dissect the role of calcineurin in pathological cardiac remodeling have relied heavily on murine models, in which genetic gain- and loss-of-function manipulations are initiated at or before birth. However, the great majority of clinical cardiac pathology occurs in adults. Yet nothing is known about the effects of calcineurin when its activation commences in adulthood. Furthermore, despite the fact that ventricular hypertrophy is a well-established risk factor for heart failure, the relative pace and progression of these 2 major phenotypic features of heart disease are unknown. Finally, even though therapeutic interventions in adults are designed to slow, arrest, or reverse disease pathogenesis, little is known about the capacity for spontaneous reversibility of calcineurin-dependent pathological remodeling. OBJECTIVE: We set out to address these 3 questions by studying mice engineered to harbor in cardiomyocytes a constitutively active calcineurin transgene driven by a tetracycline-responsive promoter element. METHODS AND RESULTS: Expression of the mutant calcineurin transgene was initiated for variable lengths of time to determine the natural history of disease pathogenesis, and to determine when, if ever, these events are reversible. Activation of the calcineurin transgene in adult mice triggered rapid and robust cardiac growth with features characteristic of pathological hypertrophy. Concentric hypertrophy preceded the development of systolic dysfunction, fetal gene activation, fibrosis, and clinical heart failure. Furthermore, cardiac hypertrophy reversed spontaneously when calcineurin activity was turned off, and expression of fetal genes reverted to baseline. Fibrosis, a prominent feature of pathological cardiac remodeling, manifested partial reversibility. CONCLUSIONS: Together, these data establish and define the deleterious effects of calcineurin signaling in the adult heart and reveal that calcineurin-dependent hypertrophy with concentric geometry precedes systolic dysfunction and heart failure. Furthermore, these findings demonstrate that during much of the disease process, calcineurin-dependent remodeling remains reversible.


Subject(s)
Calcineurin/metabolism , Cardiomegaly/enzymology , Heart Failure/enzymology , Myocytes, Cardiac/enzymology , Ventricular Dysfunction, Left/enzymology , Ventricular Remodeling , Animals , Calcineurin/genetics , Cardiomegaly/diagnostic imaging , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Disease Progression , Doxycycline/pharmacology , Female , Fibrosis , Gene Expression Regulation, Enzymologic , Heart Failure/diagnostic imaging , Heart Failure/genetics , Heart Failure/physiopathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Myocardial Contraction , Myocytes, Cardiac/pathology , Promoter Regions, Genetic/genetics , Time Factors , Ultrasonography , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left
20.
Curr Opin Crit Care ; 19(5): 432-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23856896

ABSTRACT

PURPOSE OF REVIEW: The advent of high-throughput whole-genome sequencing has the potential to revolutionize the conduct of outbreak investigation. Because of its ultimate resolution power for differentiating between closely related pathogen strains, whole-genome sequencing could augment the traditional epidemiologic investigations of infectious disease outbreaks. RECENT FINDINGS: The combination of whole-genome sequencing and intensive epidemiologic analysis provided new insights on the sources and transmission dynamics of large-scale epidemics caused by Escherichia coli and Vibrio cholerae, nosocomial outbreaks caused by methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae, Mycobacterium abscessus, community-centered outbreaks caused by Mycobacterium tuberculosis, and natural disaster-associated outbreaks caused by environmentally acquired molds. SUMMARY: When combined with traditional epidemiologic investigation, whole-genome sequencing has proven useful for elucidating the sources and transmission dynamics of disease outbreaks. Development of a fully automated bioinformatics pipeline for the analysis of whole-genome sequence data is much needed to make this powerful tool more widely accessible.


Subject(s)
Cross Infection/genetics , Cross Infection/microbiology , Disease Outbreaks , Foodborne Diseases/genetics , Foodborne Diseases/microbiology , Genome, Bacterial/genetics , Genome, Fungal/genetics , Mycoses/genetics , Mycoses/microbiology , Sequence Analysis, DNA , Bacterial Toxins/genetics , Bacterial Typing Techniques , Disasters , Humans , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL