ABSTRACT
SIGNIFICANCE: We validated a novel paradigm to measure aniseikonia across the visual field and used a mathematical approach that is able to describe the magnitude and shape of aniseikonia in a concise, clinically meaningful fashion. PURPOSE: The measurement of aniseikonia has been performed clinically for more than half a century; however, amalgamation of field-wide local variations in binocular spatial localization into clinically applicable global metrics has yet to be attempted. Thus, the goal of the current study was twofold: first, to measure field-wide aniseikonia and second, to compare how local and global metrics each capture optically induced aniseikonia. METHODS: Twelve visually normal observers performed a dichoptic localization task at 24 locations in the visual field. This was done in four conditions: (A) while wearing red-green filters, (B) while wearing green-red filters, (C) while wearing a monocular 5% overall size lens, and (D) while wearing a monocular 6% meridional size lens. The physical settings at perceptual equality were then used to compute both local (relative magnification) and global (coefficients for Zernike terms) descriptors of aniseikonia. RESULTS: The comparison of each lens condition to the baseline condition confirmed predicted shifts in both the sign and magnitude of aniseikonia at both the local and global levels; however, the intraobserver levels of precision were moderate, and systematic underestimations were present across all locations in conditions C and D. CONCLUSIONS: Local and global analyses derived from dichoptic localization data were both able to capture optically induced changes in binocular spatial perception; however, solutions that address the diagnostic and therapeutic challenges associated with this paradigm are needed before clinical implementation can proceed.
Subject(s)
Aniseikonia/diagnosis , Refraction, Ocular/physiology , Vision Tests/instrumentation , Visual Fields/physiology , Adult , Aniseikonia/physiopathology , Eyeglasses , Female , Humans , Male , Young AdultABSTRACT
Sugarcane mill mud/filter cake is an activated sludge-like byproduct from the clarifier of a raw sugar production factory, where cane juice is heated to ≈90°C for 1-2 hr, after the removal of bagasse. Mill mud is enriched with organic carbon, nitrogen, and nutrient minerals; no prior report utilized 16S rRNA gene sequencing to characterize the microbial composition. Mill mud could be applied to agricultural fields as biofertilizer to replace or supplement chemical fertilizers, and as bio-stimulant to replenish microorganisms and organic carbon depleted by erosion and post-harvest field burning. However, mill mud has historically caused waste management challenges in the United States. This study reports on the chemical and microbial (16S rRNA) characteristics for mill muds of diverse origin and ages. Chemical signature (high phosphorus) distinguished mill mud from bagasse (high carbon to nitrogen (C/N) ratio) and soil (high pH) samples of diverse geographical/environmental origins. Bacterial alpha diversity of all sample types (mill mud, bagasse, and soil) was inversely correlated with C/N. Firmicutes dominated the microbial composition of fresh byproducts (mill mud and bagasse) as-produced within the operating factory. Upon aging and environmental exposure, the microbial community of the byproducts diversified to resemble that of soils, and became dominated by varying proportions of other phyla such as Acidobacteria, Chloroflexi, and Planctomyces. In summary, chemical properties allowed grouping of sample types (mill mud, bagasse, and soil-like), and microbial diversity analyses visualized aging caused by outdoor exposures including soil amendment and composting. Results suggest that a transient turnover of microbiome by amendments shifts towards more resilient population governed by the chemistry of bulk soil.