Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters

Publication year range
1.
Brain ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723175

ABSTRACT

Various subjective and objective methods have been proposed to identify which interictal epileptiform discharge (IED)-related EEG-fMRI results are more likely to delineate seizure generating tissue in patients with drug-resistant focal epilepsy for the purposes of surgical planning. In this intracranial EEG-fMRI study, we evaluated the utility of these methods to localize clinically relevant regions pre-operatively and compared the extent of resection of these areas to post-operative outcome. Seventy patients admitted for intracranial video-EEG monitoring were recruited for a simultaneous intracranial EEG-fMRI study. For all analyses of blood oxygen level-dependent responses associated with IEDs, an experienced epileptologist identified the most Clinically Relevant brain activation cluster using available clinical information. The Maximum cluster (the cluster with the highest z-score) was also identified for all analyses and assigned to one of three confidence levels (low, medium, or high) based on the difference of the peak z-scores between the Maximum and Second Maximum cluster (the cluster with the second highest peak z-value). The distance was measured and compared between the peak voxel of the aforementioned clusters and the electrode contacts where the interictal discharge and seizure onset were recorded. In patients who subsequently underwent epilepsy surgery, the spatial concordance between the aforementioned clusters and the area of resection was determined and compared to post-operative outcome. We evaluated 106 different IEDs in 70 patients. Both subjective (identification of the Clinically Relevant cluster) and objective (Maximum cluster much more significant than the second maximum cluster) methods of culling non-localizing EEG-fMRI activation maps increased the spatial concordance between these clusters and the corresponding IED or seizure onset zone contacts. However, only the objective methods of identifying medium and high confidence maps resulted in a significant association between resection of the peak voxel of the Maximum cluster and post-operative outcome. Resection of this area was associated with good post-operative outcomes but was not sufficient for seizure freedom. On the other hand, we found that failure to resect the medium and high confidence Maximum clusters was associated with a poor post-surgical outcome (negative predictive value = 1.0, sensitivity = 1.0). Objective methods to identify higher confidence EEG-fMRI results are needed to localize areas necessary for good post-operative outcomes. However, resection of the peak voxel within higher confidence Maximum clusters is not sufficient for good outcomes. Conversely, failure to resect the peak voxel in these clusters is associated with a poor post-surgical outcome.

2.
Epilepsia ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101302

ABSTRACT

OBJECTIVE: To use intracranial electroencephalography (EEG) to characterize functional magnetic resonance imaging (fMRI) activation maps associated with high-frequency oscillations (HFOs) (80-250 Hz) and examine their proximity to HFO- and seizure-generating tissue. METHODS: Forty-five patients implanted with intracranial depth electrodes underwent a simultaneous EEG-fMRI study at 3 T. HFOs were detected algorithmically from cleaned EEG and visually confirmed by an experienced electroencephalographer. HFOs that co-occurred with interictal epileptiform discharges (IEDs) were subsequently identified. fMRI activation maps associated with HFOs were generated that occurred either independently of IEDs or within ±200 ms of an IED. For all significant analyses, the Maximum, Second Maximum, and Closest activation clusters were identified, and distances were measured to both the electrodes where the HFOs were observed and the electrodes involved in seizure onset. RESULTS: We identified 108 distinct groups of HFOs from 45 patients. We found that HFOs with IEDs produced fMRI clusters that were closer to the local field potentials of the corresponding HFOs observed within the EEG than HFOs without IEDs. In addition to the fMRI clusters being closer to the location of the EEG correlate, HFOs with IEDs generated Maximum clusters with greater z-scores and larger volumes than HFOs without IEDs. We also observed that HFOs with IEDs resulted in more discrete activation maps. SIGNIFICANCE: Intracranial EEG-fMRI can be used to probe the hemodynamic response to HFOs. The hemodynamic response associated with HFOs that co-occur with IEDs better identifies known epileptic tissue than HFOs that occur independently.

3.
Epilepsia ; 65(8): 2295-2307, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38845414

ABSTRACT

OBJECTIVE: Temporal lobe epilepsy (TLE) has a high probability of becoming drug resistant and is frequently considered for surgical intervention. However, 30% of TLE cases have nonlesional magnetic resonance imaging (MRI) scans, which is associated with worse surgical outcomes. Characterizing interactions between temporal and extratemporal structures in these patients may help understand these poor outcomes. Simultaneous intracranial electroencephalography-functional MRI (iEEG-fMRI) can measure the hemodynamic changes associated with interictal epileptiform discharges (IEDs) recorded directly from the brain. This study was designed to characterize the whole brain patterns of IED-associated fMRI activation recorded exclusively from the mesial temporal lobes of patients with nonlesional TLE. METHODS: Eighteen patients with nonlesional TLE undergoing iEEG monitoring with mesial temporal IEDs underwent simultaneous iEEG-fMRI at 3 T. IEDs were marked, and statistically significant clusters of fMRI activation were identified. The locations of IED-associated fMRI activation for each patient were determined, and patients were grouped based on the location and pattern of fMRI activation. RESULTS: Two patterns of IED-associated fMRI activation emerged: primarily localized (n = 7), where activation was primarily located within the ipsilateral temporal lobe, and primarily diffuse (n = 11), where widespread bilateral extratemporal activation was detected. The primarily diffuse group reported significantly fewer focal to bilateral tonic-clonic seizures and had better postsurgical outcomes. SIGNIFICANCE: Simultaneous iEEG-fMRI can measure the hemodynamic changes associated with focal IEDs not visible on scalp EEG, such as those arising from the mesial temporal lobe. Significant fMRI activation associated with these IEDs was observed in all patients. Two distinct patterns of IED-associated activation were seen: primarily localized to the ipsilateral temporal lobe and more widespread, bilateral activation. Patients with widespread IED associated-activation had fewer focal to bilateral tonic-clonic seizures and better postsurgical outcome, which may suggest a neuroprotective mechanism limiting the spread of ictal events.


Subject(s)
Electrocorticography , Electroencephalography , Epilepsy, Temporal Lobe , Magnetic Resonance Imaging , Temporal Lobe , Humans , Magnetic Resonance Imaging/methods , Male , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/physiopathology , Female , Adult , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiopathology , Temporal Lobe/surgery , Middle Aged , Young Adult , Electroencephalography/methods , Electrocorticography/methods , Oxygen/blood , Adolescent , Brain Mapping/methods
4.
Neuroimage ; 230: 117783, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33516896

ABSTRACT

The desire to enhance the sensitivity and specificity of resting-state (rs-fMRI) measures has prompted substantial recent research into removing noise components. Chief among contributions to noise in rs-fMRI are physiological processes, and the neuronal implications of respiratory-volume variability (RVT), a main rs-fMRI-relevant physiological process, is incompletely understood. The potential implications of RVT in modulating and being modulated by autonomic nervous regulation, has yet to be fully understood by the rs-fMRI community. In this work, we use high-density electroencephalography (EEG) along with simultaneously acquired RVT recordings to help address this question. We hypothesize that (1) there is a significant relationship between EEG and RVT in multiple EEG bands, and (2) that this relationship varies by brain region. Our results confirm our first hypothesis, although all brain regions are shown to be equally implicated in RVT-related EEG-signal fluctuations. The lag between RVT and EEG is consistent with previously reported values. However, an interesting finding is related to the polarity of the correlation between RVT and EEG. Our results reveal potentially two main regimes of EEG-RVT association, one in which EEG leads RVT with a positive association between the two, and one in which RVT leads EEG but with a negative association between the two. We propose that these two patterns can be interpreted differently in terms of the involvement of higher cognition. These results further suggest that treating RVT simply as noise is likely a questionable practice, and that more work is needed to avoid discarding cognitively relevant information when performing physiological correction rs-fMRI.


Subject(s)
Brain Waves/physiology , Brain/diagnostic imaging , Brain/physiology , Respiratory Mechanics/physiology , Rest/physiology , Electroencephalography/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Tidal Volume/physiology
5.
Magn Reson Med ; 86(1): 245-257, 2021 07.
Article in English | MEDLINE | ID: mdl-33624352

ABSTRACT

PURPOSE: Spin-echo (SE) functional MRI (fMRI) can be highly advantageous compared to gradient-echo (GE) fMRI with respect to magnetic field-inhomogeneity artifacts. However, at 3T, the majority of blood oxygenation level-dependent (BOLD) fMRI experiments are performed using T2∗ -weighted GE sequences because of their superior sensitivity compared to SE-fMRI. The presented SE implementation of a highly accelerated GE pulse sequence therefore aims to improve the sensitivity of SE-fMRI while profiting from a reduction of susceptibility-induced signal dropout. METHODS: Spin-echo MR encephalography (SE-MREG) is compared with the more conventionally used spin-echo echo-planar imaging (SE-EPI) and spin-echo simultaneous multislice (SE-SMS) at 3T in terms of capability to detect neuronal activations and resting-state functional connectivity. For activation analysis, healthy subjects underwent consecutive SE-MREG (pulse repetition time [TR] = 0.25 seconds), SE-SMS (TR = 1.3 seconds), and SE-EPI (TR = 4.4 seconds) scans in pseudorandomized order applied to a visual block design paradigm for generation of t-statistics maps. For the investigation of functional connectivity, additional resting-state data were acquired for 5 minutes and a seed-based correlation analysis using Stanford's FIND (Functional Imaging in Neuropsychiatric Disorders) atlas was performed. RESULTS: The increased sampling rate of SE-MREG relative to SE-SMS and SE-EPI improves the sensitivity to detect BOLD activation by 33% and 54%, respectively, and increases the capability to extract resting-state networks. Compared with a brain region that is not affected by magnetic field inhomogeneities, SE-MREG shows 2.5 times higher relative signal strength than GE-MREG in mesial temporal structures. CONCLUSION: SE-MREG offers a viable possibility for whole-brain fMRI with consideration of brain regions that are affected by strong susceptibility-induced magnetic field gradients.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Artifacts , Brain/diagnostic imaging , Echo-Planar Imaging , Humans , Image Processing, Computer-Assisted , Sensitivity and Specificity
6.
Magn Reson Med ; 86(2): 777-790, 2021 08.
Article in English | MEDLINE | ID: mdl-33749021

ABSTRACT

PURPOSE: Highly undersampled acquisitions have been proposed to push the limits of temporal resolution in functional MRI. This contribution is aimed at identifying parameter sets that let the user trade-off between ultra-high temporal resolution and spatial signal quality by varying the sampling densities. The proposed method maintains the synergies of a temporal resolution that enables direct filtering of physiological artifacts for highest statistical power, and 3D read-outs with optimal use of encoding capabilities of multi-coil arrays for efficient sampling and high signal-to-noise ratio (SNR). METHODS: One- to four-shot interleaved spherical stack-of-spiral trajectories with repetition times from 96 to 352 ms at a nominal resolution of 3 mm using different sampling densities were compared for image quality and temporal SNR (tSNR). The one- and three-shot trajectories were employed in a resting state study for functional characterization. RESULTS: Compared to a previously described single-shot trajectory, denser sampled trajectories of the same type are shown to be less prone to blurring and off-resonance vulnerability that appear in addition to the variable density artifacts of the point spread function. While the multi-shot trajectories lead to a decrease in tSNR efficiency, the high SNR due to the 3D read-out, combined with notable increases in image quality, leads to superior overall results of the three-shot interleaved stack of spirals. A resting state analysis of 15 subjects shows significantly improved functional sensitivity in areas of high off-resonance gradients. CONCLUSION: Mild variable-density sampling leads to excellent tSNR behavior and no increased off-resonance vulnerability, and is suggested unless maximum temporal resolution is sought.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Algorithms , Artifacts , Brain/diagnostic imaging , Humans , Image Enhancement , Signal-To-Noise Ratio
7.
Brain Topogr ; 34(3): 373-383, 2021 05.
Article in English | MEDLINE | ID: mdl-33730357

ABSTRACT

EEG-fMRI has gained increasing importance in epilepsy pre-surgical diagnosis. However, 40-70% of EEG-fMRI recordings in patients lack interictal epileptiform discharges (IEDs) during the scan, which could be overcome by detecting matching topography maps. We tried to validate this method in clinical settings taking various electroclinical factors into consideration. Eleven patients who had undergone EEG-fMRI during pre-surgical evaluation for drug-resistant epilepsy and who had had clinical long-term video-EEG were studied. Spike-related blood oxygen level-dependent (BOLD) maps were created using IEDs occurring during the EEG-fMRI scan. Separate maps were then generated from IEDs marked on the clinical long-term EEG recordings, which were averaged to produce topographical IED maps and correlated with the EEGs recorded inside the scanner yielding a correlation coefficient time course. Epileptogenic zones were defined by an expert panel during pre-surgical evaluation and validated by an epilepsy surgery resulting in a good outcome. Both techniques' performance was evaluated according to factors including arousal during IED recording, IED topography and lateralization, lesion type, and localization. Topography-related EEG-fMRI yielded more specific results compared to the spike-related method. Superficial lesion location and ipsilateral IED seem to result in a higher concordance of BOLD maps. The polarity of BOLD responses may be lesion-dependent, and both positive and negative BOLD changes may be associated with the irritative zone. Topography-related EEG-fMRI may show improved specificity especially for superficial lesions producing ipsilateral spikes. This method can be used as an alternative either in the absence of spikes during the simultaneous EEG-fMRI acquisition or to sharpen a diffusely activated BOLD-map.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Brain Mapping , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Electroencephalography , Epilepsy/diagnostic imaging , Epilepsy/surgery , Humans , Magnetic Resonance Imaging
8.
MAGMA ; 34(1): 85-108, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33079327

ABSTRACT

OBJECTIVE: This review article gives an account of the development of the MR-encephalography (MREG) method, which started as a mere 'Gedankenexperiment' in 2005 and gradually developed into a method for ultrafast measurement of physiological activities in the brain. After going through different approaches covering k-space with radial, rosette, and concentric shell trajectories we have settled on a stack-of-spiral trajectory, which allows full brain coverage with (nominal) 3 mm isotropic resolution in 100 ms. The very high acceleration factor is facilitated by the near-isotropic k-space coverage, which allows high acceleration in all three spatial dimensions. METHODS: The methodological section covers the basic sequence design as well as recent advances in image reconstruction including the targeted reconstruction, which allows real-time feedback applications, and-most recently-the time-domain principal component reconstruction (tPCR), which applies a principal component analysis of the acquired time domain data as a sparsifying transformation to improve reconstruction speed as well as quality. APPLICATIONS: Although the BOLD-response is rather slow, the high speed acquisition of MREG allows separation of BOLD-effects from cardiac and breathing related pulsatility. The increased sensitivity enables direct detection of the dynamic variability of resting state networks as well as localization of single interictal events in epilepsy patients. A separate and highly intriguing application is aimed at the investigation of the glymphatic system by assessment of the spatiotemporal patterns of cardiac and breathing related pulsatility. DISCUSSION: MREG has been developed to push the speed limits of fMRI. Compared to multiband-EPI this allows considerably faster acquisition at the cost of reduced image quality and spatial resolution.


Subject(s)
Brain Mapping , Brain/diagnostic imaging , Epilepsy , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Principal Component Analysis
9.
J Cardiothorac Vasc Anesth ; 35(11): 3362-3373, 2021 11.
Article in English | MEDLINE | ID: mdl-34154920

ABSTRACT

For decades, spinal drains for cerebrospinal fluid (CSF) pressure monitoring and drainage have been used as adjuncts to protect against spinal cord injury resulting from thoracic aortic aneurysm repair. There are many different approaches to placement and management of CSF drains, with no true consensus on best practice. Furthermore, the incidence of complications resulting from spinal drains largely has been stagnant. This review describes the history and rationale behind placement of CSF drains, explore various considerations, techniques, and equipment, and discuss potential considerations for developing more comprehensive protocols.


Subject(s)
Aortic Aneurysm, Thoracic , Endovascular Procedures , Spinal Cord Injuries , Spinal Cord Ischemia , Aortic Aneurysm, Thoracic/surgery , Drainage , Humans , Incidence
10.
Magn Reson Med ; 84(3): 1321-1335, 2020 09.
Article in English | MEDLINE | ID: mdl-32068309

ABSTRACT

PURPOSE: To improve the reconstruction efficiency (i.e., computational load) and stability of iterative reconstruction for non-Cartesian fMRI when using high undersampling rates and/or in the presence of strong off-resonance effects. THEORY AND METHODS: The magnetic resonance encephalography (MREG) sequence with 3D non-Cartesian trajectory and 0.1s repetition time (TR) was applied to acquire fMRI datasets. Different from a conventional time-point-by-time-point sequential reconstruction (SR), the proposed time-domain principal component reconstruction (tPCR) performs three steps: (1) decomposing the k-t-space fMRI datasets into time-domain principal component space using singular value decomposition, (2) reconstructing each principal component with redistributed computation power according to their weights, and (3) combining the reconstructed principal components back to image-t-space. The comparison of reconstruction accuracy was performed by simulation experiments and then verified in real fMRI data. RESULTS: The simulation experiments showed that the proposed tPCR was able to significantly reduce reconstruction errors, and subsequent functional activation errors, relative to SR at identical computational cost. Alternatively, at fixed reconstruction accuracy, computation time was greatly reduced. The improved performance was particularly obvious for L1-norm nonlinear reconstructions relative to L2-norm linear reconstructions and robust to different regularization strength, undersampling rates, and off-resonance effects intensity. By examining activation maps, tPCR was also found to give similar improvements in real fMRI experiments. CONCLUSION: The proposed proof-of-concept tPCR framework could improve (1) the reconstruction efficiency of iterative reconstruction, and (2) the reconstruction stability especially for nonlinear reconstructions. As a practical consideration, the improved reconstruction speed promotes the application of highly undersampled non-Cartesian fast fMRI.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Algorithms , Tomography, X-Ray Computed
11.
Magn Reson Med ; 83(4): 1442-1457, 2020 04.
Article in English | MEDLINE | ID: mdl-31565814

ABSTRACT

PURPOSE: The purpose of this study is to introduce a novel design method of a shim coil array specifically optimized for whole brain shimming and to compare the performance of the resulting coils to conventional spherical harmonic shimming. METHODS: The proposed design approach is based on the stream function method and singular value decomposition. Eighty-four field maps from 12 volunteers measured in seven different head positions were used during the design process. The cross validation technique was applied to find an optimal number of coil elements in the array. Additional 42 field maps from 6 further volunteers were used for an independent validation. A bootstrapping technique was used to estimate the required population size to achieve a stable coil design. RESULTS: Shimming using 12 and 24 coil elements outperforms fourth- and fifth-order spherical harmonic shimming for all measured field maps, respectively. Coil elements show novel coil layouts compared to the conventional spherical harmonic coils and existing multi-coils. Both leave-one-out and independent validation demonstrate the generalization ability of the designed arrays. The bootstrapping analysis predicts that field maps from approximately 140 subjects need to be acquired to arrive at a stable design. CONCLUSIONS: The results demonstrate the validity of the proposed method to design a shim coil array matched to the human brain anatomy, which naturally satisfies the laws of electrodynamics. The design method may also be applied to develop new shim coil arrays matched to other human organs.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Equipment Design , Humans
12.
NMR Biomed ; 33(11): e4394, 2020 11.
Article in English | MEDLINE | ID: mdl-32815236

ABSTRACT

Preclinical 4D flow MRI remains challenging and is restricted for parallel imaging acceleration due to the limited number of available receive channels. A radial acquisition with combined parallel imaging and temporal compressed sensing reconstruction was implemented to achieve accelerated preclinical 4D flow MRI. In order to increase the accuracy of the measured velocities, a quantitative evaluation of different temporal regularization weights for the compressed sensing reconstruction based on velocity instead of magnitude data is performed. A 3D radial retrospectively triggered phase contrast sequence with a combined parallel imaging and compressed sensing reconstruction with temporal regularization was developed. It was validated in a phantom and in vivo (C57BL/6 J mice), against an established fully sampled Cartesian sequence. Different undersampling factors (USFs [12, 15, 20, 30, 60]) were evaluated, and the effect of undersampling was analyzed in detail for magnitude and velocity data. Temporal regularization weights λ were evaluated for different USFs. Acceleration factors of up to 20 compared with full Nyquist sampling were achieved. The peak flow differences compared with the Cartesian measurement were the following: USF 12, 3.38%; USF 15, 4.68%; USF 20, 0.95%. The combination of 3D radial center-out trajectories and compressed sensing reconstruction is robust against motion and flow artifacts and can significantly reduce measurement time to 30 min at a resolution of 180 µm3 . Concisely, radial acquisition with combined compressed sensing and parallel imaging proved to be an excellent method for analyzing complex flow patterns in mice.


Subject(s)
Aorta/diagnostic imaging , Hemorheology , Magnetic Resonance Imaging , Acceleration , Animals , Disease Models, Animal , Image Processing, Computer-Assisted , Mice, Inbred C57BL , Mice, Knockout , Phantoms, Imaging , Pulse , Reproducibility of Results
13.
Magn Reson Med ; 81(2): 1118-1129, 2019 02.
Article in English | MEDLINE | ID: mdl-30230016

ABSTRACT

PURPOSE: A partial image reconstruction formalism is introduced for the targeted extraction of real-time feedback from arbitrary trajectories when full image reconstruction in real time is computationally too demanding. METHODS: Explicit calculation and storage of linear combinations of lines of the reconstruction matrix by an incomplete basis change in spatial coordinates lead to translation of the expensive full reconstruction from a frame-wise application to a region of interest (ROI)-wise application. This step is independent from signal data and can be executed before the experiment. Subsequently, the results of the sum over fully reconstructed voxels can be evaluated directly. Data from a high-speed fMRI acquisition was used to investigate the targeted partial reconstruction of a functional ROI atlas, incorporating an intravolume dephasing correction. The same data and ROIs were used for a comparison of the time series obtained with those obtained from already existing methods for compartment-wise reconstruction. To examine real-time feasibility, the reconstruction was implemented and tested for online reconstruction performance. RESULTS: The reconstruction yields results that are virtually identical to the standard reconstruction (i.e., the magnitude sums over the ROIs), with negligible discrepancies even after termination of the conjugate gradient algorithm at a feasible number of iterations. Notably, more discrepancies arise with existing compartment-wise reconstructions. The online real-time implementation evaluated 1 ROI within 2.8 ms in the case of a highly parallel 3D whole brain acquisition. CONCLUSION: The high reconstruction fidelity and speed are satisfying for the exemplary application of real-time functional feedback using a highly parallel 3D whole brain acquisition.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Algorithms , Humans , Linear Models , Magnetic Resonance Imaging , Motor Cortex/diagnostic imaging , Software
14.
PLoS Comput Biol ; 14(3): e1006056, 2018 03.
Article in English | MEDLINE | ID: mdl-29579045

ABSTRACT

Knowing brain connectivity is of great importance both in basic research and for clinical applications. We are proposing a method to infer directed connectivity from zero-lag covariances of neuronal activity recorded at multiple sites. This allows us to identify causal relations that are reflected in neuronal population activity. To derive our strategy, we assume a generic linear model of interacting continuous variables, the components of which represent the activity of local neuronal populations. The suggested method for inferring connectivity from recorded signals exploits the fact that the covariance matrix derived from the observed activity contains information about the existence, the direction and the sign of connections. Assuming a sparsely coupled network, we disambiguate the underlying causal structure via L1-minimization, which is known to prefer sparse solutions. In general, this method is suited to infer effective connectivity from resting state data of various types. We show that our method is applicable over a broad range of structural parameters regarding network size and connection probability of the network. We also explored parameters affecting its activity dynamics, like the eigenvalue spectrum. Also, based on the simulation of suitable Ornstein-Uhlenbeck processes to model BOLD dynamics, we show that with our method it is possible to estimate directed connectivity from zero-lag covariances derived from such signals. In this study, we consider measurement noise and unobserved nodes as additional confounding factors. Furthermore, we investigate the amount of data required for a reliable estimate. Additionally, we apply the proposed method on full-brain resting-state fast fMRI datasets. The resulting network exhibits a tendency for close-by areas being connected as well as inter-hemispheric connections between corresponding areas. In addition, we found that a surprisingly large fraction of more than one third of all identified connections were of inhibitory nature.


Subject(s)
Connectome/methods , Magnetic Resonance Imaging/methods , Brain/physiology , Brain Mapping/methods , Computer Simulation , Databases, Factual , Humans , Linear Models , Models, Neurological , Nerve Net/physiology , Neural Networks, Computer , Neural Pathways/physiology , Neurons/physiology
15.
Epilepsy Behav ; 90: 238-246, 2019 01.
Article in English | MEDLINE | ID: mdl-30538081

ABSTRACT

RATIONALE: The spontaneous synchronized activity and intrinsic organization of the Default Mode Network (DMN) has been found to be altered because of epileptic activity of temporal lobe origin. Thus, the aim of the present study was to compare DMN's topological properties in patients with seizure-free (SF) and not seizure-free (NSF) temporal lobe epilepsy (TLE). METHODS: Functional connectivity within the DMN was determined from an 8-minute resting state functional magnetic resonance imaging (fMRI) in 27 patients with TLE (12 SF, 15 NSF) and 15 healthy controls (HC). The DMN regions of interest were extracted according to the automated anatomical labeling (AAL) atlas. Network properties were assessed using standard graph-theoretical measures. RESULTS: Analyses revealed, irrespectively of focus lateralization, borderline significance for longer paths (p = 0.049) and in trend reduced local efficiency within the DMN of SF when compared with that of NSF (p = 0.075). The SF and NSF patients did not differ in global network topology from HC (p > 0.05). At the nodal network level, the degree of central hubs was significantly reduced in SF when compared with that in NSF (0.002 ≤ p ≤ 0.080) and HC (0.001 ≤ p ≤ 0.066) while simultaneously, right anterior superior temporal gyrus revealed significantly higher degree in SF than in NSF (p = 0.005) and HC (p = 0.016). CONCLUSION: Seizure freedom seems to be associated with hub redistributions that may underlie longer paths and (in trend) reduced local efficiency of the network. An associated slower system response might reduce the probability of a rapid spread of epileptic discharges over the whole network and may help to prevent hypersynchronous neuronal activity in brain networks that may result in epileptic seizures.


Subject(s)
Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Seizures/diagnostic imaging , Seizures/physiopathology , Adolescent , Adult , Aged , Brain Mapping/methods , Electroencephalography/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiopathology , Young Adult
16.
J Cardiothorac Vasc Anesth ; 33(6): 1518-1526, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30876767

ABSTRACT

OBJECTIVES: To assess the correlation between left atrial measurements using 2- and 3-dimensional transesophageal echocardiography. DESIGN: Prospective, observational study. SETTING: Single, tertiary care, academic medical center. PARTICIPANTS: The study comprised 63 consecutive patients undergoing cardiac surgery with cardiopulmonary bypass and intraoperative transesophageal echocardiography. INTERVENTIONS: In addition to the standard comprehensive intraoperative transesophageal examination, study images were obtained by designated anesthesiologists from the study team. MEASUREMENTS AND MAIN RESULTS: The 2-dimensional transesophageal echocardiography views included 4-chamber, 2-chamber, aortic valve short axis, and aortic valve long axis. For the 3-dimensional images, full-volume (90 × 90) data sets were acquired from 4-chamber and aortic valve short-axis views over 4 beats with apnea. Left atrial height, mediolateral length, anteroposterior length, and area were measured in 2- and 3-dimensional images. Left atrial length in the short- and long-axis views of the aortic valve also were measured in 2- and 3-dimensional images. Results indicate that for all patients in this study, the 2- and 3-dimensional measurements correlate well and the 2 observers were in agreement with each other. CONCLUSIONS: Two- and 3-dimensional measurements of the left atrium correlated well. Measurements made using 3-dimensional transesophageal echocardiography were subject to similar limitations as those made using 2-dimensional echocardiography. The benefits of 3-dimensional transesophageal echocardiography and multiplanar reconstruction could be expanded by improvements in ultrasound technology and software.


Subject(s)
Atrial Function, Left/physiology , Cardiac Surgical Procedures , Echocardiography, Three-Dimensional/methods , Echocardiography, Transesophageal/methods , Heart Atria/diagnostic imaging , Aged , Female , Heart Atria/physiopathology , Humans , Intraoperative Period , Male , Prospective Studies
17.
Neuroimage ; 180(Pt B): 547-558, 2018 10 15.
Article in English | MEDLINE | ID: mdl-28803941

ABSTRACT

The development of highly accelerated fMRI acquisition techniques has led to novel possibilities to monitor cerebral activity non-invasively and with unprecedented temporal resolutions. With the emergence of dynamic connectivity and its ability to provide a much richer characterization of brain function compared to static measures, fast fMRI may yet play a crucial role in tracking dynamically varying networks. In spite of the dominance of slow hemodynamic contributions to the BOLD signal, high temporal sampling rates nevertheless improve the measurement of physiological noise, yielding an exceptional sensitivity for the detection of periods of transient connectivity at time scales of a few tens of seconds. There is also evidence that relevant BOLD fluctuations are detectable at high frequencies, implying that the benefits of fast fMRI extend beyond the ability to sample nuisance confounds. Here we review the latest technological advancements that have established fast fMRI as an effective acquisition technique, as well as its current and future implications on the analysis of dynamic networks.


Subject(s)
Brain Mapping/methods , Brain/physiology , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Humans , Image Interpretation, Computer-Assisted/methods
18.
Epilepsy Behav ; 78: 179-186, 2018 01.
Article in English | MEDLINE | ID: mdl-29103838

ABSTRACT

OBJECTIVE: Rolandic epilepsy (RE) is characterized by typical interictal-electroencephalogram (EEG) patterns mainly localized in centrotemporal and parietooccipital areas. An aberrant intrinsic organization of the default mode network (DMN) due to repeated disturbances from spike-generating areas may be able to account for specific cognitive deficits and behavioral problems in RE. The aim of the present study was to investigate cognitive development (CD) and socioemotional development (SED) in patients with RE during active disease in relation to DMN connectivity and network topology. METHODS: In 10 children with RE and active EEG, CD was assessed using the Wechsler Intelligence Scale for Children-IV (WISC-IV); SED was assessed using the Fünf-Faktoren-Fragebogen für Kinder (FFFK), a Big-Five inventory for the assessment of personality traits in children. Functional connectivity (FC) in the DMN was determined from a 15-minute resting state functional magnetic resonance imaging (fMRI), and network properties were calculated using standard graph-theoretical measures. RESULTS: More severe deficits of verbal abilities tended to be associated with an earlier age at epilepsy onset, but were not directly related to the number of seizures and disease duration. Nonetheless, at the network level, disease duration was associated with alterations of the efficiency and centrality of parietal network nodes and midline structures. Particularly, centrality of the left inferior parietal lobe (IPL) was found to be linked with CD. Reduced centrality of the left IPL and alterations supporting a rather segregated processing within DMN's subsystems was associated with a more favorable CD. A more complicated SED was associated with high seizure frequency and long disease duration, and revealed links with a less favorable CD. SIGNIFICANCE: An impaired CD and - because of their interrelation - SED might be mediated by a common pathomechanism reflected in an aberrant organization, and thus, a potential functional deficit of the DMN. A functional segregation of (left) parietal network nodes from the DMN and a rather segregated processing mode within the DMN might have positive implications/protective value for CD in patients with RE.


Subject(s)
Cognition/physiology , Epilepsy, Rolandic/physiopathology , Magnetic Resonance Imaging/methods , Adolescent , Brain/physiopathology , Brain Mapping/methods , Child , Cognition Disorders/epidemiology , Cognition Disorders/physiopathology , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/physiopathology , Comorbidity , Electroencephalography , Epilepsy, Rolandic/diagnostic imaging , Epilepsy, Rolandic/epidemiology , Female , Humans , Male , Nerve Net/physiopathology , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Parietal Lobe/physiopathology , Socioeconomic Factors
19.
Neuroimage ; 154: 33-42, 2017 07 01.
Article in English | MEDLINE | ID: mdl-27845256

ABSTRACT

Due to the intrinsic low sensitivity of BOLD-fMRI long scanning is required. Subject motion during fMRI scans reduces statistical significance of the activation maps and increases the prevalence of false activations. Motion correction is therefore an essential tool for a successful fMRI data analysis. Retrospective motion correction techniques are now commonplace and are incorporated into a wide range of fMRI analysis toolboxes. These techniques are advantageous due to robustness, sequence independence and have minimal impact on the fMRI study setup. Retrospective techniques however, do not provide an accurate intra-volume correction, nor can these techniques correct for the spin-history effects. The application of prospective motion correction in fMRI appears to be effective in reducing false positives and increasing sensitivity when compared to retrospective techniques, particularly in the cases of substantial motion. Especially advantageous in this regard is the combination of prospective motion correction with dynamic distortion correction. Nevertheless, none of the recent methods are able to recover activations in presence of motion that are comparable to no-motion conditions, which motivates further research in the area of adaptive dynamic imaging.


Subject(s)
Artifacts , Functional Neuroimaging/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Functional Neuroimaging/standards , Humans , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards
20.
Hum Brain Mapp ; 38(2): 817-830, 2017 02.
Article in English | MEDLINE | ID: mdl-27696603

ABSTRACT

Resting-state networks have become an important tool for the study of brain function. An ultra-fast imaging technique that allows to measure brain function, called Magnetic Resonance Encephalography (MREG), achieves an order of magnitude higher temporal resolution than standard echo-planar imaging (EPI). This new sequence helps to correct physiological artifacts and improves the sensitivity of the fMRI analysis. In this study, EPI is compared with MREG in terms of capability to extract resting-state networks. Healthy controls underwent two consecutive resting-state scans, one with EPI and the other with MREG. Subject-level independent component analyses (ICA) were performed separately for each of the two datasets. Using Stanford FIND atlas parcels as network templates, the presence of ICA maps corresponding to each network was quantified in each subject. The number of detected individual networks was significantly higher in the MREG data set than for EPI. Moreover, using short time segments of MREG data, such as 50 seconds, one can still detect and track consistent networks. Fast fMRI thus results in an increased capability to extract distinct functional regions at the individual subject level for the same scan times, and also allow the extraction of consistent networks within shorter time intervals than when using EPI, which is notably relevant for the analysis of dynamic functional connectivity fluctuations. Hum Brain Mapp 38:817-830, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Brain Mapping , Brain/diagnostic imaging , Brain/physiology , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neural Pathways/physiology , Rest , Adult , Echo-Planar Imaging , Electroencephalography , Executive Function/physiology , Female , Humans , Male , Neural Pathways/diagnostic imaging , Oxygen/blood , Principal Component Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL