Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Pathol ; 237(1): 85-97, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25950520

ABSTRACT

Pancreatitis is a significant clinical problem and the lack of effective therapeutic options means that treatment is often palliative rather than curative. A deeper understanding of the pathogenesis of both acute and chronic pancreatitis is necessary to develop new therapies. Pathological changes in pancreatitis are dependent on innate immune cell recruitment to the site of initial tissue damage, and on the coordination of downstream inflammatory pathways. The chemokine receptor CXCR2 drives neutrophil recruitment during inflammation, and to investigate its role in pancreatic inflammation, we induced acute and chronic pancreatitis in wild-type and Cxcr2(-/-) mice. Strikingly, Cxcr2(-/-) mice were strongly protected from tissue damage in models of acute pancreatitis, and this could be recapitulated by neutrophil depletion or by the specific deletion of Cxcr2 from myeloid cells. The pancreata of Cxcr2(-/-) mice were also substantially protected from damage during chronic pancreatitis. Neutrophil depletion was less effective in this model, suggesting that CXCR2 on non-neutrophils contributes to the development of chronic pancreatitis. Importantly, pharmacological inhibition of CXCR2 in wild-type mice replicated the protection seen in Cxcr2(-/-) mice in acute and chronic models of pancreatitis. Moreover, acute pancreatic inflammation was reversible by inhibition of CXCR2. Thus, CXCR2 is critically involved in the development of acute and chronic pancreatitis in mice, and its inhibition or loss protects against pancreatic damage. CXCR2 may therefore be a viable therapeutic target in the treatment of pancreatitis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Pancreas/drug effects , Pancreatitis, Chronic/prevention & control , Pancreatitis/prevention & control , Peptides/pharmacology , Receptors, Interleukin-8B/antagonists & inhibitors , Acute Disease , Animals , Ceruletide , Cytoprotection , Disease Models, Animal , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Pancreas/immunology , Pancreas/metabolism , Pancreas/pathology , Pancreatitis/chemically induced , Pancreatitis/genetics , Pancreatitis/immunology , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis, Chronic/chemically induced , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/immunology , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/pathology , Receptors, Interleukin-8B/deficiency , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/immunology , Signal Transduction/drug effects , Time Factors
2.
Nat Commun ; 13(1): 7551, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36477656

ABSTRACT

The pro-tumourigenic role of epithelial TGFß signalling in colorectal cancer (CRC) is controversial. Here, we identify a cohort of born to be bad early-stage (T1) colorectal tumours, with aggressive features and a propensity to disseminate early, that are characterised by high epithelial cell-intrinsic TGFß signalling. In the presence of concurrent Apc and Kras mutations, activation of epithelial TGFß signalling rampantly accelerates tumourigenesis and share transcriptional signatures with those of the born to be bad T1 human tumours and predicts recurrence in stage II CRC. Mechanistically, epithelial TGFß signalling induces a growth-promoting EGFR-signalling module that synergises with mutant APC and KRAS to drive MAPK signalling that re-sensitise tumour cells to MEK and/or EGFR inhibitors. Together, we identify epithelial TGFß signalling both as a determinant of early dissemination and a potential therapeutic vulnerability of CRC's with born to be bad traits.


Subject(s)
Apoptosis , Transforming Growth Factor beta , Humans , Apoptosis/genetics
3.
Nat Commun ; 12(1): 3464, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103493

ABSTRACT

Right-sided (proximal) colorectal cancer (CRC) has a poor prognosis and a distinct mutational profile, characterized by oncogenic BRAF mutations and aberrations in mismatch repair and TGFß signalling. Here, we describe a mouse model of right-sided colon cancer driven by oncogenic BRAF and loss of epithelial TGFß-receptor signalling. The proximal colonic tumours that develop in this model exhibit a foetal-like progenitor phenotype (Ly6a/Sca1+) and, importantly, lack expression of Lgr5 and its associated intestinal stem cell signature. These features are recapitulated in human BRAF-mutant, right-sided CRCs and represent fundamental differences between left- and right-sided disease. Microbial-driven inflammation supports the initiation and progression of these tumours with foetal-like characteristics, consistent with their predilection for the microbe-rich right colon and their antibiotic sensitivity. While MAPK-pathway activating mutations drive this foetal-like signature via ERK-dependent activation of the transcriptional coactivator YAP, the same foetal-like transcriptional programs are also initiated by inflammation in a MAPK-independent manner. Importantly, in both contexts, epithelial TGFß-receptor signalling is instrumental in suppressing the tumorigenic potential of these foetal-like progenitor cells.


Subject(s)
Carcinogenesis/metabolism , Colonic Neoplasms/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Animals , Carcinogenesis/pathology , Cell Differentiation , Cell Survival , Colon/pathology , Colonic Neoplasms/genetics , Epithelial Cells/metabolism , Fetus/pathology , Inflammation/pathology , Kaplan-Meier Estimate , MAP Kinase Signaling System , Mice, Inbred C57BL , Mutation , Prognosis , Proto-Oncogene Proteins B-raf/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , YAP-Signaling Proteins
4.
Nat Genet ; 53(1): 16-26, 2021 01.
Article in English | MEDLINE | ID: mdl-33414552

ABSTRACT

Oncogenic KRAS mutations and inactivation of the APC tumor suppressor co-occur in colorectal cancer (CRC). Despite efforts to target mutant KRAS directly, most therapeutic approaches focus on downstream pathways, albeit with limited efficacy. Moreover, mutant KRAS alters the basal metabolism of cancer cells, increasing glutamine utilization to support proliferation. We show that concomitant mutation of Apc and Kras in the mouse intestinal epithelium profoundly rewires metabolism, increasing glutamine consumption. Furthermore, SLC7A5, a glutamine antiporter, is critical for colorectal tumorigenesis in models of both early- and late-stage metastatic disease. Mechanistically, SLC7A5 maintains intracellular amino acid levels following KRAS activation through transcriptional and metabolic reprogramming. This supports the increased demand for bulk protein synthesis that underpins the enhanced proliferation of KRAS-mutant cells. Moreover, targeting protein synthesis, via inhibition of the mTORC1 regulator, together with Slc7a5 deletion abrogates the growth of established Kras-mutant tumors. Together, these data suggest SLC7A5 as an attractive target for therapy-resistant KRAS-mutant CRC.


Subject(s)
Colorectal Neoplasms/genetics , Large Neutral Amino Acid-Transporter 1/metabolism , Mutation/genetics , Proto-Oncogene Proteins p21(ras)/genetics , 5' Untranslated Regions/genetics , Amino Acid Transport System ASC/metabolism , Animals , Carcinogenesis/pathology , Cell Proliferation , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Glutamine/metabolism , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Kaplan-Meier Estimate , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Inbred C57BL , Minor Histocompatibility Antigens/metabolism , Neoplasm Metastasis , Oncogenes , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
5.
Cancer Res ; 80(11): 2325-2339, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32156779

ABSTRACT

The recurring association of specific genetic lesions with particular types of cancer is a fascinating and largely unexplained area of cancer biology. This is particularly true of clear cell renal cell carcinoma (ccRCC) where, although key mutations such as loss of VHL is an almost ubiquitous finding, there remains a conspicuous lack of targetable genetic drivers. In this study, we have identified a previously unknown protumorigenic role for the RUNX genes in this disease setting. Analysis of patient tumor biopsies together with loss-of-function studies in preclinical models established the importance of RUNX1 and RUNX2 in ccRCC. Patients with high RUNX1 (and RUNX2) expression exhibited significantly poorer clinical survival compared with patients with low expression. This was functionally relevant, as deletion of RUNX1 in ccRCC cell lines reduced tumor cell growth and viability in vitro and in vivo. Transcriptional profiling of RUNX1-CRISPR-deleted cells revealed a gene signature dominated by extracellular matrix remodeling, notably affecting STMN3, SERPINH1, and EPHRIN signaling. Finally, RUNX1 deletion in a genetic mouse model of kidney cancer improved overall survival and reduced tumor cell proliferation. In summary, these data attest to the validity of targeting a RUNX1-transcriptional program in ccRCC. SIGNIFICANCE: These data reveal a novel unexplored oncogenic role for RUNX genes in kidney cancer and indicate that targeting the effects of RUNX transcriptional activity could be relevant for clinical intervention in ccRCC.


Subject(s)
Carcinoma, Renal Cell/metabolism , Core Binding Factor Alpha 2 Subunit/biosynthesis , Kidney Neoplasms/metabolism , Animals , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Growth Processes , Cell Line, Tumor , Cell Movement/physiology , Core Binding Factor Alpha 1 Subunit/biosynthesis , Core Binding Factor Alpha 2 Subunit/deficiency , Core Binding Factor Alpha 2 Subunit/genetics , Female , Gene Knockout Techniques , HEK293 Cells , Heterografts , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Male , Mice , Mice, Nude , Prognosis , Transcriptome
7.
Cancer Cell ; 29(6): 832-845, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27265504

ABSTRACT

CXCR2 has been suggested to have both tumor-promoting and tumor-suppressive properties. Here we show that CXCR2 signaling is upregulated in human pancreatic cancer, predominantly in neutrophil/myeloid-derived suppressor cells, but rarely in tumor cells. Genetic ablation or inhibition of CXCR2 abrogated metastasis, but only inhibition slowed tumorigenesis. Depletion of neutrophils/myeloid-derived suppressor cells also suppressed metastasis suggesting a key role for CXCR2 in establishing and maintaining the metastatic niche. Importantly, loss or inhibition of CXCR2 improved T cell entry, and combined inhibition of CXCR2 and PD1 in mice with established disease significantly extended survival. We show that CXCR2 signaling in the myeloid compartment can promote pancreatic tumorigenesis and is required for pancreatic cancer metastasis, making it an excellent therapeutic target.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/drug therapy , Receptors, Interleukin-8B/genetics , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunotherapy , Mice , Neoplasm Metastasis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Prognosis , Receptors, Interleukin-8B/antagonists & inhibitors , Signal Transduction , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/pharmacology , Survival Analysis , Up-Regulation , Xenograft Model Antitumor Assays , Gemcitabine
8.
Nat Commun ; 6: 6001, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25613188

ABSTRACT

Mutations in the tricarboxylic acid (TCA) cycle enzyme fumarate hydratase (FH) are associated with a highly malignant form of renal cancer. We combined analytical chemistry and metabolic computational modelling to investigate the metabolic implications of FH loss in immortalized and primary mouse kidney cells. Here, we show that the accumulation of fumarate caused by the inactivation of FH leads to oxidative stress that is mediated by the formation of succinicGSH, a covalent adduct between fumarate and glutathione. Chronic succination of GSH, caused by the loss of FH, or by exogenous fumarate, leads to persistent oxidative stress and cellular senescence in vitro and in vivo. Importantly, the ablation of p21, a key mediator of senescence, in Fh1-deficient mice resulted in the transformation of benign renal cysts into a hyperplastic lesion, suggesting that fumarate-induced senescence needs to be bypassed for the initiation of renal cancers.


Subject(s)
Fumarates/chemistry , Glutathione/metabolism , Animals , Cell Line , Cell Proliferation , Cell Transformation, Neoplastic , Cellular Senescence , Chromatography, Liquid , Computational Biology , Female , Fibroblasts/metabolism , Fumarate Hydratase/chemistry , Glutamine/chemistry , Immunohistochemistry , Kidney/metabolism , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Metabolomics , Mice , Mice, Inbred C57BL , Mutation , Oxidation-Reduction , Oxidative Stress , Transcriptome
9.
Cell Rep ; 12(9): 1483-96, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26299965

ABSTRACT

Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells.


Subject(s)
Cellular Senescence , Giant Cells/cytology , Mitosis , ras Proteins/metabolism , Cell Line , Cells, Cultured , Giant Cells/metabolism , Humans , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , ras Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL