Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Psychiatry ; 26(12): 7076-7090, 2021 12.
Article in English | MEDLINE | ID: mdl-34244620

ABSTRACT

Aging-related neurological deficits negatively impact mental health, productivity, and social interactions leading to a pronounced socioeconomic burden. Since declining brain dopamine signaling during aging is associated with the onset of neurological impairments, we produced a selective dopamine transporter (DAT) inhibitor to restore endogenous dopamine levels and improve cognitive function. We describe the synthesis and pharmacological profile of (S,S)-CE-158, a highly specific DAT inhibitor, which increases dopamine levels in brain regions associated with cognition. We find both a potentiation of neurotransmission and coincident restoration of dendritic spines in the dorsal hippocampus, indicative of reinstatement of dopamine-induced synaptic plasticity in aging rodents. Treatment with (S,S)-CE-158 significantly improved behavioral flexibility in scopolamine-compromised animals and increased the number of spontaneously active prefrontal cortical neurons, both in young and aging rodents. In addition, (S,S)-CE-158 restored learning and memory recall in aging rats comparable to their young performance in a hippocampus-dependent hole board test. In sum, we present a well-tolerated, highly selective DAT inhibitor that normalizes the age-related decline in cognitive function at a synaptic level through increased dopamine signaling.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Neuronal Plasticity , Aging , Animals , Brain , Hippocampus , Neuronal Plasticity/physiology , Rats
2.
Biomolecules ; 13(9)2023 09 19.
Article in English | MEDLINE | ID: mdl-37759815

ABSTRACT

The high structural similarity, especially in transmembrane regions, of dopamine, norepinephrine, and serotonin transporters, as well as the lack of all crystal structures of human isoforms, make the specific targeting of individual transporters rather challenging. Ligand design itself is also rather limited, as many chemists, fully aware of the synthetic and analytical challenges, tend to modify lead compounds in a way that reduces the number of chiral centers and hence limits the potential chemical space of synthetic ligands. We have previously shown that increasing molecular complexity by introducing additional chiral centers ultimately leads to more selective and potent dopamine reuptake inhibitors. Herein, we significantly extend our structure-activity relationship of dopamine transporter-selective ligands and further demonstrate how stereoisomers of defined absolute configuration may fine-tune and direct the activity towards distinct targets. From the pool of active compounds, using the examples of stereoisomers 7h and 8h, we further showcase how in vitro activity significantly differs in in vivo drug efficacy experiments, calling for proper validation of individual stereoisomers in animal studies. Furthermore, by generating a large library of compounds with defined absolute configurations, we lay the groundwork for computational chemists to further optimize and rationally design specific monoamine transporter reuptake inhibitors.


Subject(s)
Norepinephrine Plasma Membrane Transport Proteins , Serotonin Plasma Membrane Transport Proteins , Animals , Humans , Serotonin Plasma Membrane Transport Proteins/metabolism , Biological Transport , Structure-Activity Relationship , Norepinephrine , Ligands
3.
Biomolecules ; 13(3)2023 03 03.
Article in English | MEDLINE | ID: mdl-36979402

ABSTRACT

The worldwide increase in cognitive decline, both in aging and with psychiatric disorders, warrants a search for pharmacological treatment. Although dopaminergic treatment approaches represent a major step forward, current dopamine transporter (DAT) inhibitors are not sufficiently specific as they also target other transporters and receptors, thus showing unwanted side effects. Herein, we describe an enantiomerically pure, highly specific DAT inhibitor, S-CE-123, synthetized in our laboratory. Following binding studies to DAT, NET and SERT, GPCR and kinome screening, pharmacokinetics and a basic neurotoxic screen, S-CE-123 was tested for its potential to enhance and/or rescue cognitive functions in young and in aged rats in the non-invasive reward-motivated paradigm of a hole-board test for spatial learning. In addition, an open field study with young rats was carried out. We demonstrated that S-CE-123 is a low-affinity but highly selective dopamine reuptake inhibitor with good bioavailability. S-CE-123 did not induce hyperlocomotion or anxiogenic or stereotypic behaviour in young rats. Our compound improved the performance of aged but not young rats in a reward-motivated task. The well-described impairment of the dopaminergic system in aging may underlie the age-specific effect. We propose S-CE-123 as a possible candidate for developing a tentative therapeutic strategy for age-related cognitive decline and cognitive dysfunction in psychiatric disorders.


Subject(s)
Benzhydryl Compounds , Dopamine , Rats , Animals , Dopamine/metabolism , Benzhydryl Compounds/pharmacology , Dopamine Uptake Inhibitors/chemistry , Dopamine Uptake Inhibitors/pharmacology , Cognition
4.
J Med Chem ; 63(1): 391-417, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31841637

ABSTRACT

Atypical dopamine reuptake inhibitors, such as modafinil, are used for the treatment of sleeping disorders and investigated as potential therapeutics against cocaine addiction and for cognitive enhancement. Our continuous effort to find modafinil analogues with higher inhibitory activity on and selectivity toward the dopamine transporter (DAT) has previously led to the promising thiazole-containing derivatives CE-103, CE-111, CE-123, and CE-125. Here, we describe the synthesis and activity of a series of compounds based on these scaffolds, which resulted in several new selective DAT inhibitors and gave valuable insights into the structure-activity relationships. Introduction of the second chiral center and subsequent chiral separations provided all four stereoisomers, whereby the S-configuration on both generally exerted the highest activity and selectivity on DAT. The representative compound of this series was further characterized by in silico, in vitro, and in vivo studies that have demonstrated both safety and efficacy profile of this compound class.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopamine Uptake Inhibitors/pharmacology , Modafinil/analogs & derivatives , Modafinil/pharmacology , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacology , Thiazoles/pharmacology , Animals , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Uptake Inhibitors/chemical synthesis , Dopamine Uptake Inhibitors/metabolism , Dopamine Uptake Inhibitors/pharmacokinetics , HEK293 Cells , Humans , Male , Modafinil/metabolism , Modafinil/pharmacokinetics , Molecular Docking Simulation , Molecular Structure , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Protein Binding , Rats, Sprague-Dawley , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin and Noradrenaline Reuptake Inhibitors/chemical synthesis , Serotonin and Noradrenaline Reuptake Inhibitors/metabolism , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacokinetics , Stereoisomerism , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/metabolism , Thiazoles/pharmacokinetics
5.
J Med Chem ; 60(22): 9330-9348, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29091428

ABSTRACT

Modafinil is a wake promoting compound with high potential for cognitive enhancement. It is targeting the dopamine transporter (DAT) with moderate selectivity, thereby leading to reuptake inhibition and increased dopamine levels in the synaptic cleft. A series of modafinil analogues have been reported so far, but more target-specific analogues remain to be discovered. It was the aim of this study to synthesize and characterize such analogues and, indeed, a series of compounds were showing higher activities on the DAT and a higher selectivity toward DAT versus serotonin and norepinephrine transporters than modafinil. This was achieved by substituting the amide moiety by five- and six-membered aromatic heterocycles. In vitro studies indicated binding to the cocaine pocket on DAT, although molecular dynamics revealed binding different from that of cocaine. Moreover, no release of dopamine was observed, ruling out amphetamine-like effects. The absence of neurotoxicity of a representative analogue may encourage further preclinical studies of the above-mentioned compounds.


Subject(s)
Benzhydryl Compounds/pharmacology , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopamine Uptake Inhibitors/pharmacology , Heterocyclic Compounds/pharmacology , 1-Methyl-4-phenylpyridinium/metabolism , Animals , Benzhydryl Compounds/chemical synthesis , Binding Sites , Dopamine/metabolism , Dopamine Uptake Inhibitors/chemical synthesis , HEK293 Cells , Heterocyclic Compounds/chemical synthesis , Humans , Male , Modafinil , Molecular Docking Simulation , Molecular Dynamics Simulation , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Rats, Sprague-Dawley , Serotonin and Noradrenaline Reuptake Inhibitors/chemical synthesis , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacology , Structure-Activity Relationship , Sulfoxides/chemical synthesis , Sulfoxides/pharmacology , Thiophenes/chemical synthesis , Thiophenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL