Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Pathog ; 18(8): e1010798, 2022 08.
Article in English | MEDLINE | ID: mdl-36007070

ABSTRACT

Hepatitis E virus (HEV) infection is the most common cause of acute viral hepatitis worldwide. Hepatitis E is usually asymptomatic and self-limiting but it can become chronic in immunocompromised patients and is associated with increased fulminant hepatic failure and mortality rates in pregnant women. HEV genome encodes three proteins including the ORF2 protein that is the viral capsid protein. Interestingly, HEV produces 3 isoforms of the ORF2 capsid protein which are partitioned in different subcellular compartments and perform distinct functions in the HEV lifecycle. Notably, the infectious ORF2 (ORF2i) protein is the structural component of virions, whereas the genome-free secreted and glycosylated ORF2 proteins likely act as a humoral immune decoy. Here, by using a series of ORF2 capsid protein mutants expressed in the infectious genotype 3 p6 HEV strain as well as chimeras between ORF2 and the CD4 glycoprotein, we demonstrated how an Arginine-Rich Motif (ARM) located in the ORF2 N-terminal region controls the fate and functions of ORF2 isoforms. We showed that the ARM controls ORF2 nuclear translocation likely to promote regulation of host antiviral responses. This motif also regulates the dual topology and functionality of ORF2 signal peptide, leading to the production of either cytosolic infectious ORF2i or reticular non-infectious glycosylated ORF2 forms. It serves as maturation site of glycosylated ORF2 by furin, and promotes ORF2-host cell membrane interactions. The identification of ORF2 ARM as a unique central regulator of the HEV lifecycle uncovers how viruses settle strategies to condense their genetic information and hijack cellular processes.


Subject(s)
Hepatitis E virus , Hepatitis E , Amino Acid Motifs , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Female , Glycosylation , Hepatitis E/genetics , Hepatitis E/metabolism , Hepatitis E virus/growth & development , Humans , Pregnancy
2.
Brain Behav Immun ; 117: 20-35, 2024 03.
Article in English | MEDLINE | ID: mdl-38157948

ABSTRACT

BACKGROUND: Cerebral malaria (CM) is a fatal neuroinflammatory syndrome caused (in humans) by the protozoa Plasmodium (P.) falciparum. Glial cell activation is one of the mechanisms that contributes to neuroinflammation in CM. RESULT: By studying a mouse model of CM (caused by P. berghei ANKA), we describe that the induction of autophagy promoted p21-dependent senescence in astrocytes and that CXCL-10 was part of the senescence-associated secretory phenotype. Furthermore, p21 expression was observed in post-mortem brain and peripheral blood samples from patients with CM. Lastly, we found that the depletion of senescent astrocytes with senolytic drugs abrogated inflammation and protected mice from CM. CONCLUSION: Our data provide evidence for a novel mechanism through which astrocytes could be involved in the neuropathophysiology of CM. p21 gene expression in blood cell and an elevated plasma CXCL-10 concentration could be valuable biomarkers of CM in humans. In the end, we believe senolytic drugs shall open up new avenues to develop newer treatment options.


Subject(s)
Malaria, Cerebral , Humans , Animals , Mice , Neuroinflammatory Diseases , Astrocytes , Senotherapeutics , Autophagy
3.
Int J Obes (Lond) ; 44(2): 539-543, 2020 02.
Article in English | MEDLINE | ID: mdl-31388097

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) have identified more than 250 loci associated with body mass index (BMI) and obesity. However, post-GWAS functional genomic investigations have been inadequate for understanding how these genetic loci physiologically impact disease development. METHODS: We performed a PCR-free expression assay targeting genes located nearby the GWAS-identified SNPs associated with BMI/obesity in a large panel of human tissues. Furthermore, we analyzed several genetic risk scores (GRS) summing GWAS-identified alleles associated with increased BMI in 4236 individuals. RESULTS: We found that the expression of BMI/obesity susceptibility genes was strongly enriched in the brain, especially in the insula (p = 4.7 × 10-9) and substantia nigra (p = 6.8 × 10-7), which are two brain regions involved in addiction and reward. Inversely, we found that top obesity/BMI-associated loci, including FTO, showed the strongest gene expression enrichment in the two brain regions. CONCLUSIONS: Our data suggest for the first time that the susceptibility genes for common obesity may have an effect on eating addiction and reward behaviors through their high expression in substantia nigra and insula, i.e., a different pattern from monogenic obesity genes that act in the hypothalamus and cause hyperphagia. Further epidemiological studies with relevant food behavior phenotypes are necessary to confirm these findings.


Subject(s)
Behavior, Addictive/genetics , Cerebral Cortex/metabolism , Obesity , Reward , Substantia Nigra/metabolism , Adult , Body Mass Index , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Hyperphagia , Middle Aged , Obesity/genetics , Obesity/metabolism , Polymorphism, Single Nucleotide
4.
Clin Chem Lab Med ; 58(11): 1819-1827, 2020 10 25.
Article in English | MEDLINE | ID: mdl-32238601

ABSTRACT

Background Growing evidence reports an association between inflammatory markers, obesity and blood pressure (BP). Specifically, the intergenic single nucleotide polymorphism (SNP) rs7556897T > C (MAF = 0.34) located between SLC19A3 and the CCL20 was shown to be associated with chronic inflammatory diseases. In addition, CCL20 expression was found increased in pancreatic islets of obese rodents and human pancreatic ß cells under the influence of inflammation. In this study, we hypothesized that SNP rs7556897 could affect BP levels, thus providing a link between inflammation, BP and obesity. Methods BP was measured under supine position with a manual sphygmomanometer; values reported were the means of three readings. We analyzed rs7556897 in 577 normal weight and 689 obese French children. Using real-time polymerase chain reaction (PCR), we quantified CCL20 and SLC19A3 expression in adipose tissue and peripheral blood mononuclear cells (PBMCs) of normal weight and overweight children. Results The rs7556897C allele was negatively associated with diastolic BP in normal weight children (ß = -0.012 ± 0.004, p = 0.006) but positively associated in obese children (ß = 2.178 ± 0.71, p = 0.002). A significant interaction between rs7556897T > C and the obesity status (obese or normal weight) was detected (ß = 3.49, p = 9.79 × 10-5) for BP in a combined population analysis. CCL20 mRNA was only expressed in the adipose tissue of overweight children, and its expression levels were 10.7× higher in PBMCs of overweight children than normal weight children. Finally, CCL20 mRNA levels were positively associated with rs7556897T > C in PBMCs of 58 normal weight children (ß = 0.43, p = 0.002). SLC19A3 was not expressed in PBMCs, and in adipose tissue, it showed same levels of expression in normal weight and overweight children. The gene expression results may highlight a specific involvement of CCL20 via communicating obesity/inflammation pathways that regulate BP. Conclusions Childhood obesity reverses the effect of rs7556897T > C on diastolic BP, possibly via the modulation of CCL20 expression levels.


Subject(s)
Blood Pressure/genetics , Chemokine CCL20/genetics , Membrane Transport Proteins/genetics , Obesity/genetics , Adipose Tissue/metabolism , Adolescent , Chemokine CCL20/metabolism , Child , DNA, Intergenic , Female , France , Gene Expression , Humans , Leukocytes, Mononuclear/metabolism , Male , Polymorphism, Single Nucleotide , White People
5.
Nature ; 483(7389): 350-4, 2012 Feb 19.
Article in English | MEDLINE | ID: mdl-22343897

ABSTRACT

Free fatty acids provide an important energy source as nutrients, and act as signalling molecules in various cellular processes. Several G-protein-coupled receptors have been identified as free-fatty-acid receptors important in physiology as well as in several diseases. GPR120 (also known as O3FAR1) functions as a receptor for unsaturated long-chain free fatty acids and has a critical role in various physiological homeostasis mechanisms such as adipogenesis, regulation of appetite and food preference. Here we show that GPR120-deficient mice fed a high-fat diet develop obesity, glucose intolerance and fatty liver with decreased adipocyte differentiation and lipogenesis and enhanced hepatic lipogenesis. Insulin resistance in such mice is associated with reduced insulin signalling and enhanced inflammation in adipose tissue. In human, we show that GPR120 expression in adipose tissue is significantly higher in obese individuals than in lean controls. GPR120 exon sequencing in obese subjects reveals a deleterious non-synonymous mutation (p.R270H) that inhibits GPR120 signalling activity. Furthermore, the p.R270H variant increases the risk of obesity in European populations. Overall, this study demonstrates that the lipid sensor GPR120 has a key role in sensing dietary fat and, therefore, in the control of energy balance in both humans and rodents.


Subject(s)
Obesity/metabolism , Receptors, G-Protein-Coupled/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Adipogenesis , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Calcium Signaling , Cell Differentiation , DNA Mutational Analysis , Diet, High-Fat , Energy Metabolism , Europe/ethnology , Exons/genetics , Fatty Liver/complications , Fatty Liver/genetics , Gene Expression Regulation , Glucagon-Like Peptide 1/metabolism , Glucose/metabolism , Glucose Intolerance/complications , Humans , Insulin/metabolism , Insulin Resistance , Lipogenesis , Liver/metabolism , Macrophages/metabolism , Mice , Mutation/genetics , Obesity/complications , Obesity/genetics , Obesity/pathology , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Signal Transduction/genetics , White People/genetics
6.
PLoS Med ; 14(9): e1002383, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28898252

ABSTRACT

BACKGROUND: Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes. METHODS & FINDINGS: Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95% CI 1.04-1.06, per HbA1c-raising allele, p = 3 × 10-29); whereas GS-E was not (OR = 1.00, 95% CI 0.99-1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11%) was associated with an absolute decrease in HbA1c of 0.81%-units (95% CI 0.66-0.96) per allele in hemizygous men, and 0.68%-units (95% CI 0.38-0.97) in homozygous women. The G6PD variant may cause approximately 2% (N = 0.65 million, 95% CI 0.55-0.74) of African American adults with T2D to remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants. CONCLUSIONS: As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in people with G6PD deficiency, may be required to avoid missed or delayed diagnoses.


Subject(s)
Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Genetic Variation , Genome-Wide Association Study , Glycated Hemoglobin/genetics , Diabetes Mellitus, Type 2/epidemiology , Glycated Hemoglobin/metabolism , Humans , Phenotype , Risk
7.
PLoS Genet ; 10(4): e1004235, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24699409

ABSTRACT

Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.


Subject(s)
GRB10 Adaptor Protein/genetics , GRB10 Adaptor Protein/metabolism , Islets of Langerhans/metabolism , Alleles , Diabetes Mellitus, Type 2 , Fasting/metabolism , Genome-Wide Association Study/methods , Glucose/genetics , Glucose/metabolism , Humans , Insulin/genetics , Insulin/metabolism , Insulin Resistance/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Signal Transduction/genetics
8.
Nat Genet ; 39(6): 724-6, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17496892

ABSTRACT

We identified a set of SNPs in the first intron of the FTO (fat mass and obesity associated) gene on chromosome 16q12.2 that is consistently strongly associated with early-onset and severe obesity in both adults and children of European ancestry with an experiment-wise P value of 1.67 x 10(-26) in 2,900 affected individuals and 5,100 controls. The at-risk haplotype yields a proportion of attributable risk of 22% for common obesity. We conclude that FTO contributes to human obesity and hence may be a target for subsequent functional analyses.


Subject(s)
Adiposity , Body Mass Index , Chromosomes, Human, Pair 16/genetics , Genetic Predisposition to Disease , Obesity/genetics , Polymorphism, Single Nucleotide/genetics , Adult , Age of Onset , Body Composition , Case-Control Studies , Child , Cohort Studies , Europe , Female , Genetic Variation/genetics , Humans , Introns/genetics , Male , Middle Aged
9.
Mol Biol Evol ; 31(4): 975-83, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24448642

ABSTRACT

Lactase persistence (LP) is a genetically determined trait whereby the enzyme lactase is expressed throughout adult life. Lactase is necessary for the digestion of lactose--the main carbohydrate in milk--and its production is downregulated after the weaning period in most humans and all other mammals studied. Several sources of evidence indicate that LP has evolved independently, in different parts of the world over the last 10,000 years, and has been subject to strong natural selection in dairying populations. In Europeans, LP is strongly associated with, and probably caused by, a single C to T mutation 13,910 bp upstream of the lactase (LCT) gene (-13,910*T). Despite a considerable body of research, the reasons why LP should provide such a strong selective advantage remain poorly understood. In this study, we examine one of the most widely cited hypotheses for selection on LP--that fresh milk consumption supplemented the poor vitamin D and calcium status of northern Europe's early farmers (the calcium assimilation hypothesis). We do this by testing for natural selection on -13,910*T using ancient DNA data from the skeletal remains of eight late Neolithic Iberian individuals, whom we would not expect to have poor vitamin D and calcium status because of relatively high incident UVB light levels. None of the eight samples successfully typed in the study had the derived T-allele. In addition, we reanalyze published data from French Neolithic remains to both test for population continuity and further examine the evolution of LP in the region. Using simulations that accommodate genetic drift, natural selection, uncertainty in calibrated radiocarbon dates, and sampling error, we find that natural selection is still required to explain the observed increase in allele frequency. We conclude that the calcium assimilation hypothesis is insufficient to explain the spread of LP in Europe.


Subject(s)
Calcium/metabolism , Intestinal Absorption/genetics , Lactase/genetics , Selection, Genetic , DNA, Mitochondrial/genetics , Evolution, Molecular , Female , France , Gene Frequency , Genetic Drift , Humans , Models, Genetic , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Spain
10.
Diabetologia ; 57(4): 785-96, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24463962

ABSTRACT

AIMS/HYPOTHESIS: Gene polymorphisms of TCF7L2 are associated with increased risk of type 2 diabetes and transcription factor 7-like 2 (TCF7L2) plays a role in hepatic glucose metabolism. We therefore addressed the impact of TCF7L2 isoforms on hepatocyte nuclear factor 4α (HNF4α) and the regulation of gluconeogenesis genes. METHODS: Liver TCF7L2 transcripts were analysed by quantitative PCR in 33 non-diabetic and 31 type 2 diabetic obese individuals genotyped for TCF7L2 rs7903146. To analyse transcriptional regulation by TCF7L2, small interfering RNA transfection, luciferase reporter and co-immunoprecipitation assays were performed in human hepatoma HepG2 cells. RESULTS: In livers of diabetic compared with normoglycaemic individuals, five C-terminal TCF7L2 transcripts showed increased expression. The type 2 diabetes risk allele of rs7903146 positively correlated with TCF7L2 expression in livers from normoglycaemic individuals only. In HepG2 cells, transcript and TCF7L2 protein levels were increased upon incubation in high glucose and insulin. Of the exon 13 transcripts, six were increased in a glucose dose-responsive manner. TCF7L2 transcriptionally regulated 29 genes related to glucose metabolism, including glucose-6-phosphatase. In cultured HepG2 cells, TCF7L2 did not regulate HNF4Α and FOXO1 transcription, but did affect HNF4α protein expression. The TCF7L2 isoforms T6 and T8 (without exon 13 and with exon 15/14, respectively) specifically interacted with HNF4α. CONCLUSIONS/INTERPRETATION: The different levels of expression of alternative C-terminal TCF7L2 transcripts in HepG2 cells, in livers of normoglycaemic individuals carrying the rs7901346 type 2 diabetes risk allele and in livers of diabetic individuals suggest that these transcripts play a role in the pathophysiology of type 2 diabetes. We also report for the first time a protein interaction in HepG2 cells between HNF4α and the T6 and T8 isoforms of TCF7L2, which suggests a distinct role for these specific alternative transcripts.


Subject(s)
Gluconeogenesis/physiology , Hepatocyte Nuclear Factor 4/metabolism , Liver/metabolism , Transcription Factor 7-Like 2 Protein/metabolism , Adult , Blotting, Western , Female , Gluconeogenesis/genetics , Hep G2 Cells , Hepatocyte Nuclear Factor 4/genetics , Humans , Immunoprecipitation , Male , Middle Aged , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Transcription Factor 7-Like 2 Protein/genetics
11.
Nat Genet ; 37(8): 863-7, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16025115

ABSTRACT

We identified a locus on chromosome 6q16.3-q24.2 (ref. 1) associated with childhood obesity that includes 2.4 Mb common to eight genome scans for type 2 diabetes (T2D) or obesity. Analysis of the gene ENPP1 (also called PC-1), a candidate for insulin resistance, in 6,147 subjects showed association between a three-allele risk haplotype (K121Q, IVS20delT-11 and A-->G+1044TGA; QdelTG) and childhood obesity (odds ratio (OR) = 1.69, P = 0.0006), morbid or moderate obesity in adults (OR = 1.50, P = 0.006 or OR = 1.37, P = 0.02, respectively) and T2D (OR = 1.56, P = 0.00002). The Genotype IBD Sharing Test suggested that this obesity-associated ENPP1 risk haplotype contributes to the observed chromosome 6q linkage with childhood obesity. The haplotype confers a higher risk of glucose intolerance and T2D to obese children and their parents and associates with increased serum levels of soluble ENPP1 protein in children. Expression of a long ENPP1 mRNA isoform, which includes the obesity-associated A-->G+1044TGA SNP, was specific for pancreatic islet beta cells, adipocytes and liver. These findings suggest that several variants of ENPP1 have a primary role in mediating insulin resistance and in the development of both obesity and T2D, suggesting that an underlying molecular mechanism is common to both conditions.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Glucose Tolerance Test , Obesity/genetics , Phosphoric Diester Hydrolases/genetics , Pyrophosphatases/genetics , Adult , Case-Control Studies , Child , Haplotypes , Humans , RNA, Messenger/genetics
12.
Nat Commun ; 14(1): 4646, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37532724

ABSTRACT

Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.


Subject(s)
Atrial Fibrillation , Cardiovascular Diseases , Humans , Cardiovascular Diseases/genetics , Risk Factors , Heart Rate/genetics , Genetic Predisposition to Disease , Mendelian Randomization Analysis/methods , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide
13.
Front Microbiol ; 13: 828636, 2022.
Article in English | MEDLINE | ID: mdl-35283856

ABSTRACT

Hepatitis E virus (HEV) is the major cause of acute hepatitis worldwide. HEV is a positive-sense RNA virus expressing three open reading frames (ORFs). ORF1 encodes the ORF1 non-structural polyprotein, the viral replicase which transcribes the full-length genome and a subgenomic RNA that encodes the structural ORF2 and ORF3 proteins. The present study is focused on the replication step with the aim to determine whether the ORF1 polyprotein is processed during the HEV lifecycle and to identify where the replication takes place inside the host cell. As no commercial antibody recognizes ORF1 in HEV-replicating cells, we aimed at inserting epitope tags within the ORF1 protein without impacting the virus replication efficacy. Two insertion sites located in the hypervariable region were thus selected to tolerate the V5 epitope while preserving HEV replication efficacy. Once integrated into the infectious full-length Kernow C-1 p6 strain, the V5 epitopes did neither impact the replication of genomic nor the production of subgenomic RNA. Also, the V5-tagged viral particles remained as infectious as the wildtype particles to Huh-7.5 cells. Next, the expression pattern of the V5-tagged ORF1 was compared in heterologous expression and replicative HEV systems. A high molecular weight protein (180 kDa) that was expressed in all three systems and that likely corresponds to the unprocessed form of ORF1 was detected up to 25 days after electroporation in the p6 cell culture system. Additionally, less abundant products of lower molecular weights were detected in both in cytoplasmic and nuclear compartments. Concurrently, the V5-tagged ORF1 was localized by confocal microscopy inside the cell nucleus but also as compact perinuclear substructures in which ORF2 and ORF3 proteins were detected. Importantly, using in situ hybridization (RNAScope ®), positive and negative-strand HEV RNAs were localized in the perinuclear substructures of HEV-producing cells. Finally, by simultaneous detection of HEV genomic RNAs and viral proteins in these substructures, we identified candidate HEV factories.

14.
Hum Mol Genet ; 18(13): 2495-501, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19377085

ABSTRACT

A recent study reported an association between the brain natriuretic peptide (BNP) promoter T-381C polymorphism (rs198389) and protection against type 2 diabetes (T2D). As replication in several studies is mandatory to confirm genetic results, we analyzed the T-381C polymorphism in seven independent case-control cohorts and in 291 T2D-enriched pedigrees totalling 39 557 subjects of European origin. A meta-analysis of the seven case-control studies (n = 39 040) showed a nominal protective effect [odds ratio (OR) = 0.86 (0.79-0.94), P = 0.0006] of the CC genotype on T2D risk, consistent with the previous study. By combining all available data (n = 49 279), we further confirmed a modest contribution of the BNP T-381C polymorphism for protection against T2D [OR = 0.86 (0.80-0.92), P = 1.4 x 10(-5)]. Potential confounders such as gender, age, obesity status or family history were tested in 4335 T2D and 4179 normoglycemic subjects and they had no influence on T2D risk. This study provides further evidence of a modest contribution of the BNP T-381C polymorphism in protection against T2D and illustrates the difficulty of unambiguously proving modest-sized associations even with large sample sizes.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Natriuretic Peptide, Brain/genetics , Polymorphism, Single Nucleotide , Aged , Case-Control Studies , Cohort Studies , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/metabolism , Europe/epidemiology , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/metabolism , Pedigree , Risk Factors , White People/genetics
15.
Hum Mol Genet ; 17(12): 1798-802, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18325908

ABSTRACT

Stone et al. previously reported an association between the TBC1D1 gene variant R125W (rs35859249) and severe obesity in women from US pedigrees. We attempted to replicate this result in 9714 French Caucasian individuals, combining family-based and general population studies. We confirmed an association with familial obesity (defined as body mass index (BMI) > or = 97th percentile) in women from 1109 obesity-selected pedigrees (Z-score = 2.70, P = 0.008). Analysis of 16 microsatellite markers on chromosome 4 restricted to the 42 pedigrees carrying the TBC1D1 R125W variant allele also revealed a suggestive evidence of linkage with obesity (maximum likelihood binomial LOD of 2.73, P = 0.0002) on chromosome 4p14, where resides TBC1D1. In contrast, R125W variant was neither associated with BMI nor with obesity in a large population-based cohort. These results confirm a putative role of TBC1D1 R125W variant in familial obesity predisposition.


Subject(s)
GTPase-Activating Proteins/genetics , Genetic Predisposition to Disease , Obesity/genetics , Polymorphism, Single Nucleotide , Adult , Child , Chromosomes, Human, Pair 4 , Female , France , Humans , Male , Microsatellite Repeats , Middle Aged , Pedigree , White People/genetics
16.
Hum Mol Genet ; 17(13): 1916-21, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18375449

ABSTRACT

The therapeutic effects of cannabinoid receptor blockade on obesity-associated phenotypes underline the importance of the endocannabinoid pathway on the energy balance. Using a staged-approach, we examined the contribution of the endocannabinoid receptor 1 gene (CNR1) on obesity and body mass index (BMI) in the European population. With the input of CNR1 exons and 3' and 5' regions sequencing and HapMap database, we selected and genotyped 26 tagging single-nucleotide polymorphisms (SNPs) in 1932 obese cases and 1173 non-obese controls of French European origin. Variants that showed significant associations (P < 0.05) with obesity after correction for multiple testing were further tested in two additional European cohorts including 2645 individuals. For the identification of the potential causal variant(s), we further genotyped SNPs in high linkage disequilibrium (LD) with the obesity-associated variants. Of the 25 successfully genotyped CNR1 SNPs, 12 showed nominal evidence of association with childhood obesity, class I and II and/or class III adult obesity (1.16 < OR < 1.40, 0.00003 < P < 0.04). Intronic SNPs rs806381 and rs2023239, which resisted correction for multiple testing were further associated with higher BMI in both Swiss obese subjects and Danish individuals. The genotyping of all know variants in partial LD (r(2) > 0.5) with these two SNPs in the initial case-control study, identified two better associated SNPs (rs6454674 and rs10485170). Our study of 5750 subjects shows that CNR1 variations increase the risk for obesity and modulate BMI in our European population. As CB1 is a drug target for obesity, a pharmacogenetic analysis of the endocannabinoid blockade obesity treatment may be of interest to identify best responders.


Subject(s)
Body Mass Index , Obesity/genetics , Receptor, Cannabinoid, CB1/genetics , White People/genetics , Adolescent , Adult , Case-Control Studies , Child , Cohort Studies , Female , Genotype , Humans , Linkage Disequilibrium , Male , Middle Aged , Obesity/epidemiology , Polymorphism, Single Nucleotide , Risk Factors
17.
Mediators Inflamm ; 2010: 823486, 2010.
Article in English | MEDLINE | ID: mdl-20339530

ABSTRACT

It was recently demonstrated that TLR4 activation via dietary lipids triggers inflammatory pathway and alters insulin responsiveness in the fat tissue during obesity. Here, we question whether other TLR family members could participate in the TLR-mediated inflammatory processes occurring in the obese adipose tissue. We thus studied the expression of TLR1, TLR2, TLR4, and TLR6 in adipose tissue. These receptors are expressed in omental and subcutaneous human fat tissue, the expression being higher in the omental tissue, independently of the metabolic status of the subject. We demonstrated a correlation of TLRs expression within and between each depot suggesting a coregulation. Murine 3T3-L1 preadipocyte cells stimulated with Pam3CSK4 induced the expression of some proinflammatory markers. Therefore, beside TLR4, other toll-like receptors are differentially expressed in human fat tissue, and functional in an adipocyte cell line, suggesting that they might participate omental adipose tissue-related inflammation that occurs in obesity.


Subject(s)
Adipose Tissue/metabolism , Inflammation Mediators/metabolism , Inflammation/etiology , Inflammation/metabolism , Toll-Like Receptors/metabolism , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Adult , Animals , Case-Control Studies , Cell Differentiation , Female , Gene Expression , Humans , Inflammation/genetics , Lipopeptides/pharmacology , Mice , Middle Aged , Obesity/etiology , Obesity/genetics , Obesity/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Toll-Like Receptor 1/genetics , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 2/agonists , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 6/genetics , Toll-Like Receptor 6/metabolism , Toll-Like Receptors/genetics
18.
Psychiatry Res ; 291: 113293, 2020 09.
Article in English | MEDLINE | ID: mdl-32763550

ABSTRACT

Toxoplasmosis has been previously associated with an increased risk of having schizophrenia in several epidemiological studies. The aim of this prospective study was to examine for the first time a possible association between positive serology to Toxoplasma gondii (T. gondii) and schizophrenia in the Algerian population. Seventy patients affected by schizophrenia according to DSM-5 criteria and seventy healthy controls were enrolled in the study. We found a significant association between schizophrenia and the infection status with a seroprevalence of 70% in patients with schizophrenia compared to 52.9% in controls and a calculated odds ratio of 2.081. In addition, while T. gondii seroprevalence increases significantly with age in controls, this association was not observed in patients with schizophrenia, which display a high percentage of seropositive subjects under 38 years of age, suggesting that T. gondii infection may promote the onset of schizophrenia. Moreover, our analysis also revealed that patients with schizophrenia had significantly lower levels of serum immunoglobulins G (IgG) to T. gondii compared to controls. Thus, this study adds to previous research questioning the asymptomatic aspect of chronic toxoplasmosis and the etiology of schizophrenia.


Subject(s)
Schizophrenia/blood , Schizophrenia/epidemiology , Toxoplasma/isolation & purification , Toxoplasmosis/blood , Toxoplasmosis/epidemiology , Adult , Algeria/epidemiology , Antibodies, Protozoan/blood , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Prospective Studies , Schizophrenia/diagnosis , Seroepidemiologic Studies , Toxoplasmosis/diagnosis , Young Adult
19.
BMC Med Genet ; 10: 27, 2009 Mar 17.
Article in English | MEDLINE | ID: mdl-19292929

ABSTRACT

BACKGROUND: Liver X receptor alpha (LXRA) and beta (LXRB) regulate glucose and lipid homeostasis in model systems but their importance in human physiology is poorly understood. This project aimed to determine whether common genetic variations in LXRA and LXRB associate with type 2 diabetes (T2D) and quantitative measures of glucose homeostasis, and, if so, reveal the underlying mechanisms. METHODS: Eight common single nucleotide polymorphisms in LXRA and LXRB were analyzed for association with T2D in one French cohort (N = 988 cases and 941 controls), and for association with quantitative measures reflecting glucose homeostasis in two non-diabetic population-based samples comprising N = 697 and N = 1344 adults. Investigated quantitative phenotypes included fasting plasma glucose, serum insulin, and HOMAIR as measure of overall insulin resistance. An oral glucose tolerance test was performed in N = 1344 of adults. The two alleles of the proximal LXRB promoter, differing only at the SNP rs17373080, were cloned into reporter vectors and transiently transfected, whereupon allele-specific luciferase activity was measured. rs17373080 overlapped, according to in silico analysis, with a binding site for Nuclear factor 1 (NF1). Promoter alleles were tested for interaction with NF1 using direct DNA binding and transactivation assays. RESULTS: Genotypes at two LXRB promoter SNPs, rs35463555 and rs17373080, associated nominally with T2D (P values 0.047 and 0.026). No LXRA or LXRB SNP associated with quantitative measures reflecting glucose homeostasis. The rs17373080 C allele displayed higher basal transcription activity (P value < 0.05). The DNA-mobility shift assay indicated that oligonucleotides corresponding to either rs17373080 allele bound NF1 transcription factors in whole cell extracts to the same extent. Different NF1 family members showed different capacity to transactivate the LXRB gene promoter, but there was no difference between promoter alleles in NF1 induced transactivation activity. CONCLUSION: Variations in the LXRB gene promoter may be part of the aetiology of T2D. However, the association between LXRB rs35463555 and rs17373080, and T2D are preliminary and needs to be investigated in additional larger cohorts. Common genetic variation in LXRA is unlikely to affect the risk of developing T2D or quantitative phenotypes related to glucose homeostasis.


Subject(s)
Alleles , DNA-Binding Proteins/genetics , Diabetes Mellitus, Type 2/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Aged , Analysis of Variance , Chi-Square Distribution , Cloning, Molecular , Cohort Studies , Electrophoretic Mobility Shift Assay , Female , France , Genes, Reporter , Genome-Wide Association Study , Genotype , Humans , Liver X Receptors , Male , Middle Aged , Orphan Nuclear Receptors , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Sweden , Transfection
20.
BMC Microbiol ; 9: 111, 2009 May 28.
Article in English | MEDLINE | ID: mdl-19476617

ABSTRACT

BACKGROUND: Three percent of the world's population is chronically infected with hepatitis C virus (HCV) and thus at risk of developing liver cancer. Although precise mechanisms regulating HCV entry into hepatic cells are still unknown, several cell surface proteins have been identified as entry factors for this virus. Among these molecules, the tetraspanin CD81 is essential for HCV entry. Interestingly, CD81 is also required for Plasmodium infection. A major characteristic of tetraspanins is their ability to interact with each other and other transmembrane proteins to build tetraspanin-enriched microdomains (TEM). RESULTS: In our study, we describe a human hepatoma Huh-7 cell clone (Huh-7w7) which has lost CD81 expression and can be infected by HCV when human CD81 (hCD81) or mouse CD81 (mCD81) is ectopically expressed. We took advantage of these permissive cells expressing mCD81 and the previously described MT81/MT81w mAbs to analyze the role of TEM-associated CD81 in HCV infection. Importantly, MT81w antibody, which only recognizes TEM-associated mCD81, did not strongly affect HCV infection. Furthermore, cholesterol depletion, which inhibits HCV infection and reduces total cell surface expression of CD81, did not affect TEM-associated CD81 levels. In addition, sphingomyelinase treatment, which also reduces HCV infection and cell surface expression of total CD81, raised TEM-associated CD81 levels. CONCLUSION: In contrast to Plasmodium infection, our data show that association of CD81 with TEM is not essential for the early steps of HCV life cycle, indicating that these two pathogens, while using the same molecules, invade their host by different mechanisms.


Subject(s)
Antigens, CD/metabolism , Hepacivirus/physiology , Membrane Proteins/metabolism , Virus Internalization , Animals , Biotinylation , Cell Line, Tumor , Cell Membrane/virology , Ceramides/metabolism , Cholesterol/metabolism , Hepacivirus/genetics , Hepacivirus/immunology , Hepatitis Antibodies/metabolism , Hepatitis C/virology , Humans , Membrane Microdomains/virology , Mice , Neutralization Tests , Sphingomyelin Phosphodiesterase/metabolism , Tetraspanin 28
SELECTION OF CITATIONS
SEARCH DETAIL