Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Opt Express ; 20(11): 11918-23, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22714177

ABSTRACT

We report a PM all-normal, all-in-fiber passively mode-locked laser operating at 1030 nm. The main pulse shaping mechanism is provided by a tilted chirped-FBG. The laser delivers nanojoule range highly chirped pulses at a repetition rate of about 40 MHz. The FWHM of the optical spectrum is up to 7.8 nm leading to sub-500 fs compressed optical pulses. The influence of the filtering bandwidth and the output coupling ratio has been investigated.


Subject(s)
Fiber Optic Technology/instrumentation , Lasers , Equipment Design , Equipment Failure Analysis
2.
J Biophotonics ; 15(1): e202100188, 2022 01.
Article in English | MEDLINE | ID: mdl-34676670

ABSTRACT

Attainable levels of signal-to-background ratio (SBR) in Raman spectroscopy of biological samples is limited by the presence of endogenous fluorophores. It is customary to remove the ubiquitous fluorescence background using postacquisition data processing. However, new approaches are needed to reduce background contributions and maximize the fraction of the sensor dynamical range occupied by Raman photons. Time-resolved detection using pulsed lasers and time-gated measurements can be used to address the signal-to-background problem in biological samples by limiting light detection to nonresonant interaction phenomena with relaxation time scales occurring on sub-nanosecond time scales, thereby excluding contributions from resonant phenomena such as fluorescence. A time-gated Fourier-transform spectrometer was assembled using a commercially available interferometer, a single channel single-photon avalanche diode and time tagging electronics. A time gate of 300 ps increased the signal-to-background-ratio of the 1440 cm-1 Raman band from 36% to 69% in an olive oil sample hereby demonstrating the potential of this approach for autofluorescence suppression.


Subject(s)
Interferometry , Spectrum Analysis, Raman , Lasers , Photons , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL