Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
EMBO Rep ; 25(2): 506-523, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225355

ABSTRACT

Transient receptor potential vanilloid (TRPV) channels play a critical role in calcium homeostasis, pain sensation, immunological response, and cancer progression. TRPV channels are blocked by ruthenium red (RR), a universal pore blocker for a wide array of cation channels. Here we use cryo-electron microscopy to reveal the molecular details of RR block in TRPV2 and TRPV5, members of the two TRPV subfamilies. In TRPV2 activated by 2-aminoethoxydiphenyl borate, RR is tightly coordinated in the open selectivity filter, blocking ion flow and preventing channel inactivation. In TRPV5 activated by phosphatidylinositol 4,5-bisphosphate, RR blocks the selectivity filter and closes the lower gate through an interaction with polar residues in the pore vestibule. Together, our results provide a detailed understanding of TRPV subfamily pore block, the dynamic nature of the selectivity filter and allosteric communication between the selectivity filter and lower gate.


Subject(s)
Antineoplastic Agents , Transient Receptor Potential Channels , TRPV Cation Channels/genetics , Ruthenium Red/pharmacology , Cryoelectron Microscopy , Calcium/metabolism
2.
BMC Bioinformatics ; 23(Suppl 3): 403, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36175827

ABSTRACT

BACKGROUND: Microbes are associated with many human diseases and influence drug efficacy. Small-molecule drugs may revolutionize biomedicine by fine-tuning the microbiota on the basis of individual patient microbiome signatures. However, emerging endeavors in small-molecule microbiome drug discovery continue to follow a conventional "one-drug-one-target-one-disease" process. A systematic pharmacology approach that would suppress multiple interacting pathogenic species in the microbiome, could offer an attractive alternative solution. RESULTS: We construct a disease-centric signed microbe-microbe interaction network using curated microbe metabolite information and their effects on host. We develop a Signed Random Walk with Restart algorithm for the accurate prediction of effect of microbes on human health and diseases. With a survey on the druggable and evolutionary space of microbe proteins, we find that 8-10% of them can be targeted by existing drugs or drug-like chemicals and that 25% of them have homologs to human proteins. We demonstrate that drugs for diabetes can be the lead compounds for development of microbiota-targeted therapeutics. We further show that the potential drug targets that specifically exist in pathogenic microbes are periplasmic and cellular outer membrane proteins. CONCLUSION: The systematic studies of the polypharmacological landscape of the microbiome network may open a new avenue for the small-molecule drug discovery of the microbiome. We believe that the application of systematic method on the polypharmacological investigation could lead to the discovery of novel drug therapies.


Subject(s)
Microbiota , Network Pharmacology , Drug Discovery , Humans , Membrane Proteins , Microbial Interactions
3.
J Biol Chem ; 296: 100573, 2021.
Article in English | MEDLINE | ID: mdl-33766560

ABSTRACT

Regulation of the heat- and capsaicin-activated transient receptor potential vanilloid 1 (TRPV1) channel by phosphoinositides is complex and controversial. In the most recent TRPV1 cryo-EM structure, endogenous phosphatidylinositol (PtdIns) was detected in the vanilloid binding site, and phosphoinositides were proposed to act as competitive vanilloid antagonists. This model is difficult to reconcile with phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] being a well-established positive regulator of TRPV1. Here we show that in the presence of PtdIns(4,5)P2 in excised patches, PtdIns, but not PtdIns(4)P, partially inhibited TRPV1 activity at low, but not at high capsaicin concentrations. This is consistent with PtdIns acting as a competitive vanilloid antagonist. However, in the absence of PtdIns(4,5)P2, PtdIns partially stimulated TRPV1 activity. We computationally identified residues, which are in contact with PtdIns, but not with capsaicin in the vanilloid binding site. The I703A mutant of TRPV1 showed increased sensitivity to capsaicin, as expected when removing the effect of an endogenous competitive antagonist. I703A was not inhibited by PtdIns in the presence of PtdIns(4,5)P2, but it was still activated by PtdIns in the absence of PtdIns(4,5)P2 indicating that inhibition, but not activation by PtdIns proceeds via the vanilloid binding site. In molecular dynamics simulations, PtdIns was more stable than PtdIns(4,5)P2 in this inhibitory site, whereas PtdIns(4,5)P2 was more stable than PtdIns in a previously identified, nonoverlapping, putative activating binding site. Our data indicate that phosphoinositides regulate channel activity via functionally distinct binding sites, which may explain some of the complexities of the effects of these lipids on TRPV1.


Subject(s)
Phosphatidylinositols/pharmacology , TRPV Cation Channels/metabolism , Binding Sites , Molecular Dynamics Simulation , Mutation , Protein Conformation , TRPV Cation Channels/chemistry , TRPV Cation Channels/genetics
4.
Int J Mol Sci ; 23(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35887252

ABSTRACT

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease characterized by unexplained physical fatigue, cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. People with ME/CFS often report a prodrome consistent with infections. Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of plasma from 106 ME/CFS cases and 91 frequency-matched healthy controls. Subjects in the ME/CFS group had significantly decreased levels of plasmalogens and phospholipid ethers (p < 0.001), phosphatidylcholines (p < 0.001) and sphingomyelins (p < 0.001), and elevated levels of dicarboxylic acids (p = 0.013). Using machine learning algorithms, we were able to differentiate ME/CFS or subgroups of ME/CFS from controls with area under the receiver operating characteristic curve (AUC) values up to 0.873. Our findings provide the first metabolomic evidence of peroxisomal dysfunction, and are consistent with dysregulation of lipid remodeling and the tricarboxylic acid cycle. These findings, if validated in other cohorts, could provide new insights into the pathogenesis of ME/CFS and highlight the potential use of the plasma metabolome as a source of biomarkers for the disease.


Subject(s)
Fatigue Syndrome, Chronic , Bayes Theorem , Biomarkers , Case-Control Studies , Humans , Metabolomics
5.
BMC Bioinformatics ; 20(1): 110, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30832568

ABSTRACT

BACKGROUND: Existing tools for the aggregation and visualization of differential expression data have discrete functionality and require that end-users rely on multiple software packages with complex dependencies or manually manipulate data for analysis and interpretation. Furthermore, at present, data aggregation and visualization are laborious, time consuming, and subject to human error. This is a serious limitation on the current state of differential transcriptomic analysis, which makes it necessary to expend extensive time and resources to reach the point where biological meaning can be interpreted. Such an approach for analysis also leads to scattered and non-standardized code, unsystematic project management and non-reproducible result sets. RESULTS: Here, we present a differential expression analysis toolkit, DEvis, that provides a powerful, integrated solution for the analysis of differential expression data with a rapid turnaround time. DEvis has simple installation requirements and provides a convenient, user-friendly R package that addresses the issues inherent to complex multi-factor experiments, such as multiple contrast aggregation and integration, result sorting and selection, visualization, project management, and reproducibility. This tool increases the capabilities of differential expression analysis while reducing workload and the potential for manual error. Furthermore, it provides a much-needed encapsulation of scattered functionality, making large and complex analysis more efficient and reproducible. CONCLUSION: DEvis provides a wide range of powerful visualization, data aggregation, and project management tools that provide flexibility and speed in analysis. The functionality provided by DEVis increases efficiency of analysis and supplies researchers with new and relevant means for the analysis of large and complicated transcriptomic experiments. DEvis furthermore incorporates automatic project management capabilities, which standardizes analysis and ensures the reproducibility of results. After the establishment of statistical frameworks that identify differentially expressed genes, this package is the next logical step for differential transcriptomic analysis, establishing the critical framework necessary to manipulate, explore, and extract biologically relevant meaning from differential expression data.


Subject(s)
Data Aggregation , Gene Expression Profiling , Software , Humans , Reproducibility of Results , Sequence Analysis, RNA , Transcriptome/genetics
6.
J Couns Psychol ; 66(2): 170-183, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30589282

ABSTRACT

The demand for high quality engineers is of particular importance as engineering jobs are projected to grow in the next 10 years (United States Bureau of Labor Statistics, 2018). More work is needed to understand factors related to academic engagement, satisfaction, and persistence intentions of Latino/as and women in engineering: 2 underrepresented groups in the engineering pipeline. We present findings that explored the role of social-cognitive, environmental, and personality variables in engineering persistence intentions, engagement and satisfaction of a diverse sample of 1,335 engineering students using an extension of the integrative social cognitive career theory model (SCCT; Lent et al., 2013). Results indicated that (a) the hypothesized model fit the data well for the full sample and across 8 subsamples based on gender-ethnicity (i.e., Latinas, Latinos, White women, and White men) and ethnicity-school type (i.e., Latina/os at Hispanic-serving institutions [HSIs], Latina/os at predominantly White institutions [PWIs], Whites at HSIs, and Whites at PWIs), (b) all but 5 model parameters were significant and positive for the full sample, (c) a subset of model parameters differed by the interactions of race/ethnicity-gender and race/ethnicity-school type groups, and (d) the relations within the model explained a significant amount of variance in engineering academic engagement, satisfaction, and persistence intentions for the full sample and 8 subsamples. Implications of the findings for educational and career interventions aimed at retaining Latina/os and women in engineering are discussed in relation to building on social cognitions in engineering academic engagement, satisfaction, and persistence intentions. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Subject(s)
Academic Success , Cognition/physiology , Engineering/education , Intention , Personal Satisfaction , Students/psychology , Adult , Female , Forecasting , Humans , Male , Self Efficacy , Social Behavior , United States/ethnology , Young Adult
7.
Nat Commun ; 14(1): 5883, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735536

ABSTRACT

Long-chain acyl-coenzyme A (LC-CoA) is a crucial metabolic intermediate that plays important cellular regulatory roles, including activation and inhibition of ion channels. The structural basis of ion channel regulation by LC-CoA is not known. Transient receptor potential vanilloid 5 and 6 (TRPV5 and TRPV6) are epithelial calcium-selective ion channels. Here, we demonstrate that LC-CoA activates TRPV5 and TRPV6 in inside-out patches, and both exogenously supplied and endogenously produced LC-CoA can substitute for the natural ligand phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in maintaining channel activity in intact cells. Utilizing cryo-electron microscopy, we determined the structure of LC-CoA-bound TRPV5, revealing an open configuration with LC-CoA occupying the same binding site as PI(4,5)P2 in previous studies. This is consistent with our finding that PI(4,5)P2 could not further activate the channels in the presence of LC-CoA. Our data provide molecular insights into ion channel regulation by a metabolic signaling molecule.


Subject(s)
Acyl Coenzyme A , Calcium Channels , Cryoelectron Microscopy , Binding Sites , Cell Cycle
8.
Food Sci Biotechnol ; 31(4): 463-473, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35464248

ABSTRACT

Cinnamic acid (CiA) and phenylpropanoid derivatives are widely distributed in plant foods. In this study, anti- and pro-oxidant properties of the derivatives and their roles in modulating cell growth were investigated. Ferulic acid, sinapinic acid, caffeic acid (CaA), and 3,4-dihydroxyhydrocinnamic acid (DHC) showed strong radical scavenging activities. They, except DHC, also performed considerable inhibitory effects on lipid peroxidation and reduced levels of intracellular reactive oxygen species (ROS). CaA and DHC, however, produced substantial amount of H2O2 with oxidative degradation in culture conditions. CaA and DHC (> 400 µM) showed potent cytotoxic effects which were abolished by superoxide dismutase/catalase; they significantly enhanced cell growth ROS-dependently at low levels (~ 100 µM). CiA derivatives without bearing hydroxyl group did not show any appreciable antioxidant activities. The results indicate that CiA derivatives with ortho-dihydroxyl group had strong anti- and pro-oxidant properties, which also play an important role in modulating cell growth. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01042-x.

9.
medRxiv ; 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35043127

ABSTRACT

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease that is characterized by unexplained physical fatigue unrelieved by rest. Symptoms also include cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. A syndrome clinically similar to ME/CFS has been reported following well-documented infections with the coronaviruses SARS-CoV and MERS-CoV. At least 10% of COVID-19 survivors develop post acute sequelae of SARS-CoV-2 infection (PASC). Although many individuals with PASC have evidence of structural organ damage, a subset have symptoms consistent with ME/CFS including fatigue, post exertional malaise, cognitive dysfunction, gastrointestinal disturbances, and postural orthostatic intolerance. These common features in ME/CFS and PASC suggest that insights into the pathogenesis of either may enrich our understanding of both syndromes, and could expedite the development of strategies for identifying those at risk and interventions that prevent or mitigate disease. METHODS: Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of 888 metabolic analytes in plasma samples of 106 ME/CFS cases and 91 frequency-matched healthy controls. RESULTS: In ME/CFS cases, regression, Bayesian and enrichment analyses revealed evidence of peroxisomal dysfunction with decreased levels of plasmalogens. Other findings included decreased levels of several membrane lipids, including phosphatidylcholines and sphingomyelins, that may indicate dysregulation of the cytidine-5’-diphosphocholine pathway. Enrichment analyses revealed decreased levels of choline, ceramides and carnitines, and increased levels of long chain triglycerides (TG) and hydroxy-eicosapentaenoic acid. Elevated levels of dicarboxylic acids were consistent with abnormalities in the tricarboxylic acid cycle. Using machine learning algorithms with selected metabolites as predictors, we were able to differentiate female ME/CFS cases from female controls (highest AUC=0.794) and ME/CFS cases without self-reported irritable bowel syndrome (sr-IBS) from controls without sr-IBS (highest AUC=0.873). CONCLUSION: Our findings are consistent with earlier ME/CFS work indicating compromised energy metabolism and redox imbalance, and highlight new abnormalities that may provide insights into the pathogenesis of ME/CFS. ONE SENTENCE SUMMARY: Plasma levels of plasmalogens are decreased in patients with myalgic encephalomyelitis/chronic fatigue syndrome suggesting peroxisome dysfunction.

10.
PLoS One ; 15(7): e0236148, 2020.
Article in English | MEDLINE | ID: mdl-32692761

ABSTRACT

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an unexplained chronic, debilitating illness characterized by fatigue, sleep disturbances, cognitive dysfunction, orthostatic intolerance and gastrointestinal problems. Using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we analyzed the plasma proteomes of 39 ME/CFS patients and 41 healthy controls. Logistic regression models, with both linear and quadratic terms of the protein levels as independent variables, revealed a significant association between ME/CFS and the immunoglobulin heavy variable (IGHV) region 3-23/30. Stratifying the ME/CFS group based on self-reported irritable bowel syndrome (sr-IBS) status revealed a significant quadratic effect of immunoglobulin lambda constant region 7 on its association with ME/CFS with sr-IBS whilst IGHV3-23/30 and immunoglobulin kappa variable region 3-11 were significantly associated with ME/CFS without sr-IBS. In addition, we were able to predict ME/CFS status with a high degree of accuracy (AUC = 0.774-0.838) using a panel of proteins selected by 3 different machine learning algorithms: Lasso, Random Forests, and XGBoost. These algorithms also identified proteomic profiles that predicted the status of ME/CFS patients with sr-IBS (AUC = 0.806-0.846) and ME/CFS without sr-IBS (AUC = 0.754-0.780). Our findings are consistent with a significant association of ME/CFS with immune dysregulation and highlight the potential use of the plasma proteome as a source of biomarkers for disease.


Subject(s)
B-Lymphocytes/immunology , Biomarkers/blood , Fatigue Syndrome, Chronic/blood , Fatigue Syndrome, Chronic/immunology , Proteome/analysis , B-Lymphocytes/pathology , Case-Control Studies , Fatigue Syndrome, Chronic/pathology , Female , Humans , Male , Middle Aged , Prognosis , Tandem Mass Spectrometry
11.
Front Genet ; 10: 1381, 2019.
Article in English | MEDLINE | ID: mdl-32063919

ABSTRACT

Advances in next-generation sequencing and high-throughput techniques have enabled the generation of vast amounts of diverse omics data. These big data provide an unprecedented opportunity in biology, but impose great challenges in data integration, data mining, and knowledge discovery due to the complexity, heterogeneity, dynamics, uncertainty, and high-dimensionality inherited in the omics data. Network has been widely used to represent relations between entities in biological system, such as protein-protein interaction, gene regulation, and brain connectivity (i.e. network construction) as well as to infer novel relations given a reconstructed network (aka link prediction). Particularly, heterogeneous multi-layered network (HMLN) has proven successful in integrating diverse biological data for the representation of the hierarchy of biological system. The HMLN provides unparalleled opportunities but imposes new computational challenges on establishing causal genotype-phenotype associations and understanding environmental impact on organisms. In this review, we focus on the recent advances in developing novel computational methods for the inference of novel biological relations from the HMLN. We first discuss the properties of biological HMLN. Then we survey four categories of state-of-the-art methods (matrix factorization, random walk, knowledge graph, and deep learning). Thirdly, we demonstrate their applications to omics data integration and analysis. Finally, we outline strategies for future directions in the development of new HMLN models.

12.
Viruses ; 11(3)2019 03 19.
Article in English | MEDLINE | ID: mdl-30893858

ABSTRACT

New technologies enable viral discovery in a diversity of hosts, providing insights into viral evolution. We used one such approach, the virome capture sequencing for vertebrate viruses (VirCapSeq-VERT) platform, on 21 samples originating from six dead Maxwell's duikers (Philantomba maxwellii) from Taï National Park, Côte d'Ivoire. We detected the presence of an orthohepadnavirus in one animal and characterized its 3128 bp genome. The highest viral copy numbers were detected in the spleen, followed by the lung, blood, and liver, with the lowest copy numbers in the kidney and heart; the virus was not detected in the jejunum. Viral copy numbers in the blood were in the range known from humans with active chronic infections leading to liver histolytic damage, suggesting this virus could be pathogenic in duikers, though many orthohepadnaviruses appear to be apathogenic in other hosts, precluding a formal test of this hypothesis. The virus was not detected in 29 other dead duiker samples from the Côte d'Ivoire and Central African Republic, suggesting either a spillover event or a low prevalence in these populations. Phylogenetic analysis placed the virus as a divergent member of the mammalian clade of orthohepadnaviruses, though its relationship to other orthohepadnaviruses remains uncertain. This represents the first orthohepadnavirus described in an artiodactyl. We have tentatively named this new member of the genus Orthohepadnavirus (family Hepadnaviridae), Taï Forest hepadnavirus. Further studies are needed to determine whether it, or some close relatives, are present in a broader range of artiodactyls, including livestock.


Subject(s)
Antelopes/virology , Orthohepadnavirus/classification , Orthohepadnavirus/isolation & purification , Animals , Cote d'Ivoire , Genetic Variation , Genome, Viral , Parks, Recreational , Phylogeny
13.
PLoS One ; 14(4): e0214227, 2019.
Article in English | MEDLINE | ID: mdl-30969980

ABSTRACT

Bats are implicated as natural reservoirs for a wide range of zoonotic viruses including SARS and MERS coronaviruses, Ebola, Marburg, Nipah, Hendra, Rabies and other lyssaviruses. Accordingly, many One Health surveillance and viral discovery programs have focused on bats. In this report we present viral metagenomic data from bats collected in the Kingdom of Saudi Arabia [KSA]. Unbiased high throughput sequencing of fecal samples from 72 bat individuals comprising four species; lesser mouse-tailed bat (Rhinopoma hardwickii), Egyptian tomb bat (Taphozous perforatus), straw-colored fruit bat (Eidolon helvum), and Egyptian fruit bat (Rousettus aegyptiacus) revealed molecular evidence of a diverse set of viral families: Picornaviridae (hepatovirus, teschovirus, parechovirus), Reoviridae (rotavirus), Polyomaviridae (polyomavirus), Papillomaviridae (papillomavirus), Astroviridae (astrovirus), Caliciviridae (sapovirus), Coronaviridae (coronavirus), Adenoviridae (adenovirus), Paramyxoviridae (paramyxovirus), and unassigned mononegavirales (chuvirus). Additionally, we discovered a bastro-like virus (Middle East Hepe-Astrovirus), with a genomic organization similar to Hepeviridae. However, since it shared homology with Hepeviridae and Astroviridae at ORF1 and in ORF2, respectively, the newly discovered Hepe-Astrovirus may represent a phylogenetic bridge between Hepeviridae and Astroviridae.


Subject(s)
Chiroptera/virology , Metagenome/genetics , Metagenomics , Phylogeny , Animals , Caliciviridae/genetics , Caliciviridae/isolation & purification , Chiroptera/genetics , Egypt , Feces/virology , High-Throughput Nucleotide Sequencing , Humans , Mammals/virology , Middle East , Middle East Respiratory Syndrome Coronavirus , Paramyxoviridae/genetics , Paramyxoviridae/isolation & purification , Picornaviridae/genetics , Picornaviridae/isolation & purification , RNA Viruses/genetics , Rotavirus/genetics , Rotavirus/isolation & purification , Saudi Arabia
14.
Inflamm Bowel Dis ; 25(10): 1656-1662, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31112614

ABSTRACT

BACKGROUND: Viral infections have been suggested as possible triggers for the onset of ulcerative colitis (UC). METHODS: We employed VirCapSeq-Vert, a high-throughput sequencing virus capture platform, to examine the stool virome of children with newly diagnosed moderate to severe UC. We surveyed fecal samples collected at presentation, after symptom remission, and from a control group diagnosed with irritable bowel syndrome. RESULTS: Seventy subjects with UC (mean age 13 years, 45 had moderate symptoms, 25 had severe, 69 of 70 had a Mayo endoscopy subscore 2/3) were studied. We detected a wide range of animal viruses that were taxonomically classified into 12 viral families. A virus was present in 50% of fecal samples collected at presentation, 41% of samples collected after remission, and 40% of samples in our control group. The most frequently identified viruses were diet-based gyroviruses. The UC cohort had a significantly higher prevalence of anelloviruses compared with the control cohort. However, we did not identify a single virus that can be implicated in the onset of UC and did not find an association between UC disease severity and viral presence. CONCLUSION: Presence of virus in stool was not associated with the onset of pediatric UC.


Subject(s)
Colitis, Ulcerative/diagnosis , DNA, Viral/genetics , Feces/virology , Virus Diseases/complications , Viruses/genetics , Adolescent , Case-Control Studies , Child , Child, Preschool , Colitis, Ulcerative/epidemiology , Colitis, Ulcerative/virology , DNA, Viral/isolation & purification , Female , Follow-Up Studies , High-Throughput Nucleotide Sequencing , Humans , Male , Prevalence , Prognosis , Severity of Illness Index , United States/epidemiology , Virus Diseases/virology , Viruses/classification , Viruses/isolation & purification
15.
Neurosci Lett ; 443(3): 119-22, 2008 Oct 10.
Article in English | MEDLINE | ID: mdl-18682272

ABSTRACT

The coordinated and timed movements of human limbs require interactive cerebellar functions. We investigated the function of intercerebellar connectivity in controlling the movement speed of both hands with functional MRI experiments. Nine healthy, right-handed subjects performed finger movements at lower and higher speeds, as instructed. With finger movements at a higher speed, regional responses in the bilateral cerebellum were increased in both hands. However, the contribution of the ipsilateral cerebellum to the contralateral cerebellum, which was assessed by psychophysiological interaction analysis, was increased only in the dominant hand. Results of this study indicated that there is a speed-dependent modulation of intercerebellar connectivity for finger movement and this modulation has hemispheric asymmetry.


Subject(s)
Brain Mapping , Cerebellum/physiology , Functional Laterality/physiology , Movement/physiology , Nerve Net/physiology , Adult , Cerebellum/blood supply , Female , Fingers/innervation , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Nerve Net/blood supply , Oxygen/blood , Psychomotor Performance/physiology , Psychophysics
16.
mBio ; 9(2)2018 04 17.
Article in English | MEDLINE | ID: mdl-29666289

ABSTRACT

House mice (Mus musculus) thrive in large urban centers worldwide. Nonetheless, little is known about the role that they may play in contributing to environmental contamination with potentially pathogenic bacteria. Here, we describe the fecal microbiome of house mice with emphasis on detection of pathogenic bacteria and antimicrobial resistance genes by molecular methods. Four hundred sixteen mice were collected from predominantly residential buildings in seven sites across New York City over a period of 13 months. 16S rRNA sequencing identified Bacteroidetes as dominant and revealed high levels of Proteobacteria A targeted PCR screen of 11 bacteria, as indicated by 16S rRNA analyses, found that mice are carriers of several gastrointestinal disease-causing agents, including Shigella, Salmonella, Clostridium difficile, and diarrheagenic Escherichia coli Furthermore, genes mediating antimicrobial resistance to fluoroquinolones (qnrB) and ß-lactam drugs (blaSHV and blaACT/MIR) were widely distributed. Culture and molecular strain typing of C. difficile revealed that mice harbor ribotypes associated with human disease, and screening of kidney samples demonstrated genetic evidence of pathogenic Leptospira species. In concert, these findings support the need for further research into the role of house mice as potential reservoirs for human pathogens and antimicrobial resistance in the built environment.IMPORTANCE Mice are commensal pests often found in close proximity to humans, especially in urban centers. We surveyed mice from seven sites across New York City and found multiple pathogenic bacteria associated with febrile and gastrointestinal disease as well as an array of antimicrobial resistance genes.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Disease Reservoirs/microbiology , Drug Resistance, Bacterial , Feces/microbiology , Microbiota , Animals , Anti-Bacterial Agents/pharmacology , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, Bacterial , Mice , New York City , Phylogeny , Quinolones/pharmacology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , beta-Lactams/pharmacology
17.
mBio ; 9(2)2018 04 17.
Article in English | MEDLINE | ID: mdl-29666290

ABSTRACT

The microbiome of wild Mus musculus (house mouse), a globally distributed invasive pest that resides in close contact with humans in urban centers, is largely unexplored. Here, we report analysis of the fecal virome of house mice in residential buildings in New York City, NY. Mice were collected at seven sites in Manhattan, Queens, Brooklyn, and the Bronx over a period of 1 year. Unbiased high-throughput sequencing of feces revealed 36 viruses from 18 families and 21 genera, including at least 6 novel viruses and 3 novel genera. A representative screen of 15 viruses by PCR confirmed the presence of 13 of these viruses in liver. We identified an uneven distribution of diversity, with several viruses being associated with specific locations. Higher mouse weight was associated with an increase in the number of viruses detected per mouse, after adjusting for site, sex, and length. We found neither genetic footprints to known human viral pathogens nor antibodies to lymphocytic choriomeningitis virus.IMPORTANCE Mice carry a wide range of infectious agents with zoonotic potential. Their proximity to humans in the built environment is therefore a concern for public health. Laboratory mice are also the most common experimental model for investigating the pathobiology of infectious diseases. In this survey of mice trapped in multiple locations within New York City over a period of 1 year, we found a diverse collection of viruses that includes some previously not associated with house mice and others that appear to be novel. Although we found no known human pathogens, our findings provide insights into viral ecology and may yield models that have utility for clinical microbiology.


Subject(s)
Disease Reservoirs/virology , Feces/virology , Viruses/classification , Viruses/isolation & purification , Animals , High-Throughput Nucleotide Sequencing , Mice , New York City , Polymerase Chain Reaction , Sequence Analysis, DNA
18.
Sci Rep ; 8(1): 10056, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29968805

ABSTRACT

The pathogenesis of ME/CFS, a disease characterized by fatigue, cognitive dysfunction, sleep disturbances, orthostatic intolerance, fever, irritable bowel syndrome (IBS), and lymphadenopathy, is poorly understood. We report biomarker discovery and topological analysis of plasma metabolomic, fecal bacterial metagenomic, and clinical data from 50 ME/CFS patients and 50 healthy controls. We confirm reports of altered plasma levels of choline, carnitine and complex lipid metabolites and demonstrate that patients with ME/CFS and IBS have increased plasma levels of ceramide. Integration of fecal metagenomic and plasma metabolomic data resulted in a stronger predictive model of ME/CFS (cross-validated AUC = 0.836) than either metagenomic (cross-validated AUC = 0.745) or metabolomic (cross-validated AUC = 0.820) analysis alone. Our findings may provide insights into the pathogenesis of ME/CFS and its subtypes and suggest pathways for the development of diagnostic and therapeutic strategies.


Subject(s)
Fatigue Syndrome, Chronic/metabolism , Fatigue Syndrome, Chronic/pathology , Metabolomics/methods , Biomarkers , Case-Control Studies , Fatigue , Fatigue Syndrome, Chronic/diagnosis , Feces/microbiology , Female , Humans , Irritable Bowel Syndrome , Male , Metagenomics/methods , Middle Aged , Phenotype , Sleep Wake Disorders
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(2 Pt 1): 021909, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17930067

ABSTRACT

Replication via sporulation is the replication strategy for all multicellular life, and may even be observed in unicellular life (such as with budding yeast). We consider diploid populations replicating via one of two possible sporulation mechanisms. (1) Asexual sporulation, whereby adult organisms produce single-celled diploid spores that grow into adults themselves. (2) Sexual sporulation, whereby adult organisms produce single-celled diploid spores that divide into haploid gametes. The haploid gametes enter a haploid "pool," where they may recombine with other haploids to form a diploid spore that then grows into an adult. We consider a haploid fusion rate given by second-order reaction kinetics. We work with a simplified model where the diploid genome consists of only two chromosomes, each of which may be rendered defective with a single point mutation of the wild-type. We find that the asexual strategy is favored when the rate of spore production is high compared to the characteristic growth rate from a spore to a reproducing adult. Conversely, the sexual strategy is favored when the rate of spore production is low compared to the characteristic growth rate from a spore to a reproducing adult. As the characteristic growth time increases, or as the population density increases, the critical ratio of spore production rate to organism growth rate at which the asexual strategy overtakes the sexual one is pushed to higher values. Therefore, the results of this model suggest that, for complex multicellular organisms, sexual replication is favored at high population densities and low growth and sporulation rates.


Subject(s)
Reproduction, Asexual , Reproduction , Yeasts/physiology , Animals , Biophysics/methods , Diploidy , Evolution, Molecular , Female , Haploidy , Humans , Kinetics , Male , Models, Biological , Models, Statistical , Models, Theoretical , Mutation
20.
Microbiome ; 5(1): 44, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28441964

ABSTRACT

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by unexplained persistent fatigue, commonly accompanied by cognitive dysfunction, sleeping disturbances, orthostatic intolerance, fever, lymphadenopathy, and irritable bowel syndrome (IBS). The extent to which the gastrointestinal microbiome and peripheral inflammation are associated with ME/CFS remains unclear. We pursued rigorous clinical characterization, fecal bacterial metagenomics, and plasma immune molecule analyses in 50 ME/CFS patients and 50 healthy controls frequency-matched for age, sex, race/ethnicity, geographic site, and season of sampling. RESULTS: Topological analysis revealed associations between IBS co-morbidity, body mass index, fecal bacterial composition, and bacterial metabolic pathways but not plasma immune molecules. IBS co-morbidity was the strongest driving factor in the separation of topological networks based on bacterial profiles and metabolic pathways. Predictive selection models based on bacterial profiles supported findings from topological analyses indicating that ME/CFS subgroups, defined by IBS status, could be distinguished from control subjects with high predictive accuracy. Bacterial taxa predictive of ME/CFS patients with IBS were distinct from taxa associated with ME/CFS patients without IBS. Increased abundance of unclassified Alistipes and decreased Faecalibacterium emerged as the top biomarkers of ME/CFS with IBS; while increased unclassified Bacteroides abundance and decreased Bacteroides vulgatus were the top biomarkers of ME/CFS without IBS. Despite findings of differences in bacterial taxa and metabolic pathways defining ME/CFS subgroups, decreased metabolic pathways associated with unsaturated fatty acid biosynthesis and increased atrazine degradation pathways were independent of IBS co-morbidity. Increased vitamin B6 biosynthesis/salvage and pyrimidine ribonucleoside degradation were the top metabolic pathways in ME/CFS without IBS as well as in the total ME/CFS cohort. In ME/CFS subgroups, symptom severity measures including pain, fatigue, and reduced motivation were correlated with the abundance of distinct bacterial taxa and metabolic pathways. CONCLUSIONS: Independent of IBS, ME/CFS is associated with dysbiosis and distinct bacterial metabolic disturbances that may influence disease severity. However, our findings indicate that dysbiotic features that are uniquely ME/CFS-associated may be masked by disturbances arising from the high prevalence of IBS co-morbidity in ME/CFS. These insights may enable more accurate diagnosis and lead to insights that inform the development of specific therapeutic strategies in ME/CFS subgroups.


Subject(s)
Bacteria/classification , Cytokines/blood , Fatigue Syndrome, Chronic/microbiology , Metagenomics/methods , Adult , Aged , Bacteria/genetics , Bacteria/isolation & purification , Body Mass Index , Fatigue Syndrome, Chronic/classification , Fatigue Syndrome, Chronic/immunology , Feces/microbiology , Female , Humans , Male , Metabolic Networks and Pathways , Middle Aged , Phylogeny , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL