Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 839
Filter
Add more filters

Publication year range
1.
Genes Dev ; 34(1-2): 72-86, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31831627

ABSTRACT

Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) are key effectors of the Hippo pathway to control cell growth and organ size, of which dysregulation yields to tumorigenesis or hypertrophy. Upon activation, YAP/TAZ translocate into the nucleus and bind to TEAD transcription factors to promote transcriptional programs for proliferation or cell specification. Immediate early genes, represented by AP-1 complex, are rapidly induced and control later-phase transcriptional program to play key roles in tumorigenesis and organ maintenance. Here, we report that YAP/TAZ directly promote FOS transcription that in turn contributes to the biological function of YAP/TAZ. YAP/TAZ bind to the promoter region of FOS to stimulate its transcription. Deletion of YAP/TAZ blocks the induction of immediate early genes in response to mitogenic stimuli. FOS induction contributes to expression of YAP/TAZ downstream target genes. Genetic deletion or chemical inhibition of AP-1 suppresses growth of YAP-driven cancer cells, such as Lats1/2-deficient cancer cells as well as Gαq/11 mutated uveal melanoma. Furthermore, AP-1 inhibition almost completely abrogates the hepatomegaly induced by YAP overexpression. Our findings reveal a feed-forward interplay between immediate early transcription of AP-1 and Hippo pathway function.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Gene Expression Regulation, Neoplastic , Trans-Activators/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Gene Deletion , Gene Expression Regulation, Neoplastic/drug effects , Genes, fos/genetics , HEK293 Cells , Humans , Liver/metabolism , Melanoma/physiopathology , Mice , Mitogens/pharmacology , Organ Size/genetics , Promoter Regions, Genetic/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Uveal Neoplasms/physiopathology , YAP-Signaling Proteins
2.
Nano Lett ; 24(3): 805-813, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38213286

ABSTRACT

Over the past few decades, the increased application of nanomaterials has raised questions regarding their safety and possible toxic effects. Organoids have been suggested as promising tools, offering efficient assays for nanomaterial-induced toxicity evaluation. However, organoid systems have some limitations, such as size heterogeneity and poor penetration of nanoparticles because of the extracellular matrix, which is necessary for organoid culture. Here, we developed a novel system for the improved safety assessment of nanomaterials by establishing a 3D floating organoid paradigm. In addition to overcoming the limitations of two-dimensional systems including the lack of in vitro-in vivo cross-talk, our method provides multiple benefits as compared with conventional organoid systems that rely on an extracellular matrix for culture. Organoids cultured using our method exhibited relatively uniform sizing and structural integrity and were more conducive to the internalization of nanoparticles. Our floating culture system will accelerate the research and development of safe nanomaterials.


Subject(s)
Nanostructures , Organoids , Extracellular Matrix
3.
Small ; : e2400046, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441356

ABSTRACT

The development of cost-effective and high-performance oxygen evolution reaction (OER) catalysts is a significant challenge. This study presents the synthesis of binder-free NiFe@NiFe layered double hydroxide (NNF) via one-pot electrodeposition on carbon paper and Ni foam at high current densities. The presence of Ni sulfate residues on the prepared NNF is also investigated. The findings indicate that Ni sulfate significantly improves OER performance and durability. The sulfate content can be controlled by varying the method and duration of washing. NNF prepared through dipping (NNF-D) exhibits outstanding OER activity with a low overpotential of 241 mV, which is 25 mV lower than that of NNF washed for 60 s (NNF-W-60 s) at 10 mA cm-2 in 1 m KOH. Furthermore, density functional theory analyses indicate that the Ni sulfate residue helps modify the electronic structure, thereby optimizing the binding strength of *OOH. This synthetic strategy is expected to inspire the development of next-generation catalysts utilizing various adsorbates.

4.
Anal Biochem ; 692: 115576, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38796118

ABSTRACT

Regular monitoring of Norovirus presence in environmental and food samples is crucial due to its high transmission rates and outbreak potential. For detecting Norovirus GI, reverse transcription qPCR method is commonly used, but its sensitivity can be affected by assay performance. This study shows significantly reduced assay performance in digital PCR or qPCR when using primers targeting Norovirus GI genome 5291-5319 (NC_001959), located on the hairpin of the predicted RNA structure. It is highly recommended to avoid this region in commercial kit development or diagnosis to minimizing potential risk of false negatives.


Subject(s)
Norovirus , Reverse Transcriptase Polymerase Chain Reaction , Norovirus/genetics , Norovirus/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , RNA, Viral/genetics , RNA, Viral/analysis , Humans , Caliciviridae Infections/diagnosis , Caliciviridae Infections/virology
5.
Immunity ; 43(3): 579-90, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26341400

ABSTRACT

Infiltration of regulatory T (Treg) cells into many tumor types correlates with poor patient prognoses. However, mechanisms of intratumoral Treg cell function remain to be elucidated. We investigated Treg cell function in a genetically engineered mouse model of lung adenocarcinoma and found that Treg cells suppressed anti-tumor responses in tumor-associated tertiary lymphoid structures (TA-TLSs). TA-TLSs have been described in human lung cancers, but their function remains to be determined. TLSs in this model were spatially associated with >90% of tumors and facilitated interactions between T cells and tumor-antigen-presenting dendritic cells (DCs). Costimulatory ligand expression by DCs and T cell proliferation rates increased in TA-TLSs upon Treg cell depletion, leading to tumor destruction. Thus, we propose that Treg cells in TA-TLSs can inhibit endogenous immune responses against tumors, and targeting these cells might provide therapeutic benefit for cancer patients.


Subject(s)
Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes/immunology , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/metabolism , Animals , Cell Proliferation , Cells, Cultured , Dendritic Cells/immunology , Dendritic Cells/metabolism , Flow Cytometry , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Immunohistochemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lymphocyte Activation/immunology , Lymphocyte Depletion , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Transgenic , Microscopy, Confocal , Neoplasms/genetics , Neoplasms/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes, Regulatory/metabolism
6.
Crit Rev Food Sci Nutr ; : 1-32, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764334

ABSTRACT

Cultured meat is expected to become an important material for future food production; however, contrary to initial expectations, the full-scale industrialization of cultured meat is slow and the actual level and opened technology amount is very limited. This study reviews the publicly available technologies of cultured meat and suggests future developmental directions and research agenda. As a result of analyzing papers, patents, and press releases published over the past 10 years, it was found that cultured meat production technology is still at the prototype production level. This is because most papers published are about culture medium and scaffold development, culture conditions, and there is almost no research on finished cultured meat products. Worldwide, most of the filed patents are for producing cultured meat principles; most of them do not use food-grade materials and are not economically feasible for industrialization. Therefore, future research on the industrialization of cultured meat should focus on effective acquisition technologies for satellite cells; cell lineage and undifferentiated state maintenance technologies; the development of serum-free media and culture devices; the prevention of genetic modification, safety verification, and mass production. Furthermore, basic research on mechanisms and influencing factors related to cultured meat production is warranted.

7.
J Pineal Res ; 76(4): e12957, 2024 May.
Article in English | MEDLINE | ID: mdl-38803089

ABSTRACT

Recently, microorganism and exogenous melatonin application has been recognized as an efficient biological tool for enhancing salt tolerance and heavy metal detoxification in agriculture crops. Thus, the goal of this study was to isolate and evaluate a novel melatonin-producing plant growth promoting bacterium. With high-throughput whole genome sequencing, phytohormone measurements, expression profiling, and biochemical analysis, we can identify a novel PGPB that produces melatonin and unravel how it promotes soybean growth and development and protects against salt and Cd stress. We identify the melatonin synthesis pathway (tryptophan→tryptamine→serotonin melatonin) of the halotolerant (NaCl > 800 mM) and heavy metal-resistant (Cd >3 mM) rhizobacterium Bacillus safensis EH143 and use it to treat soybean plants subjected to Cd and NaCl stresses. Results show that EH143 will highly bioaccumulate heavy metals and significantly improve P and Ca2+ uptake and the K+/Na+ (93%↑under salt stress) ratio while reducing Cd uptake (49% under Cd stress) in shoots. This activity was supported by the expression of the ion regulator HKT1, MYPB67, and the calcium sensors CDPK5 and CaMK1 which ultimately led to increased plant growth. EH143 significantly decreased ABA content in shoots by 13%, 20%, and 34% and increased SA biosynthesis in shoots by 14.8%, 31%, and 48.2% in control, salt, and Cd-treated plants, upregulating CYP707A1 and CYP707A2 and PAL1 and ICS, respectively. The melatonin content significantly decreased along with a reduced expression of ASMT3 following treatment with EH143; moreover, reduced expression of peroxidase (POD) and superoxide dismutase (SOD) by 134.5% and 39% under salt+Cd stress, respectively and increased level of total amino acids were observed. Whole-genome sequencing and annotation of EH143 revealed the presence of the melatonin precursor tryptophan synthase (trpA, trpB, trpS), metal and other ion regulators (Cd: cadA, potassium: KtrA and KtrB, phosphate: glpT, calcium: yloB, the sodium/glucose cotransporter: sgIT, and the magnesium transporter: mgtE), and enzyme activators (including the siderophore transport proteins yfiZ and yfhA, the SOD sodA, the catalase katA1, and the glutathione regulator KefG) that may be involved in programming the plant metabolic system. As a consequence, EH143 treatment significantly reduced the contents of lipid peroxidation (O2-, MDA, and H2O2) up to 69%, 46%, and 29% in plants under salt+Cd stress, respectively. These findings suggest that EH143 could be a potent biofertilizer to alleviate NaCl and Cd toxicity in crops and serve as an alternative substitute for exogenous melatonin application.


Subject(s)
Bacillus , Cadmium , Glycine max , Melatonin , Melatonin/metabolism , Glycine max/metabolism , Glycine max/drug effects , Glycine max/microbiology , Cadmium/metabolism , Bacillus/metabolism , Salt Stress , Stress, Physiological/drug effects , Salt Tolerance
8.
Physiol Plant ; 176(4): e14455, 2024.
Article in English | MEDLINE | ID: mdl-39073158

ABSTRACT

Nanoparticles are promising alternatives to synthetic fertilizers in the context of climate change and sustainable agriculture. Maize plants were grown under gradient concentrations (50 µM, 100 µM, 200 µM, 500 µM, and 1 mM) of chitosan (Ch), fulvic acid (FA) or chitosan-fulvic acid nanoparticles (Ch-FANPs). Based on the overall phenotypic assessment, 100 µM was selected for downstream experiments. Maize plants grown under this optimized concentration were thereafter subjected to drought stress by water withholding for 14 days. Compared to the individual performances, the combined treatment of Ch-FANPs supported the best plant growth over chitosan, fulvic acid, or sole watered plants and alleviated the adverse effects of drought by enhancing root and shoot growth, and biomass by an average 20%. In addition, Ch-FANPs-treated plants exhibited a significant reduction in hydrogen peroxide (H2O2) content (~10%), with a concomitant increase in ascorbate peroxidase (APX) activity (>100%) while showing a reduced lipid peroxidation level observed by the decrease in malondialdehyde (MDA) content (~100%) and low electrolyte leakage level. Furthermore, chlorophyll content increased significantly (>100%) in maize plants treated with Ch-FANPs compared to Ch or FA and control in response to drought. The expression of drought-induced transcription factors, ZmDREB1A, ZmbZIP1, and ZmNAC28, and the ABA-dependent ZmCIPK3 was upregulated by Ch-FANPs. Owing to the above, Ch-FANPs are proposed as a growth-promoting agent and elicitor of drought tolerance in maize via activation of antioxidant machinery and transcriptional reprogramming of drought-related genes.


Subject(s)
Antioxidants , Benzopyrans , Chitosan , Droughts , Gene Expression Regulation, Plant , Nanoparticles , Zea mays , Zea mays/drug effects , Zea mays/physiology , Zea mays/genetics , Chitosan/pharmacology , Antioxidants/metabolism , Gene Expression Regulation, Plant/drug effects , Benzopyrans/pharmacology , Transcription Factors/metabolism , Transcription Factors/genetics , Hydrogen Peroxide/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Chlorophyll/metabolism , Drought Resistance
9.
Inorg Chem ; 63(2): 1414-1426, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38166391

ABSTRACT

Reevaluating the composition of the double metal cyanide catalyst (DMC) as a salt of (NC)6Co3- anions with 1:1 Zn2+/(X)Zn+ cations (X = Cl, RO, AcO), we prepared a series of well-defined DMCs, [ClZn+][Zn2+][(NC)6Co3-][ROH], [(RO)Zn+][Zn2+][(NC)6Co3-], [(AcO)Zn+][Zn2+][(NC)6Co3-], [(RO)Zn+]p[ClZn+](1-p)[Zn2+][(NC)6Co3-], [(AcO)Zn+]p[(tBuO)Zn+]q[Zn2+][(NC)6Co3-], and [(AcO)Zn+]p[(tBuO)Zn+]q[ClZn+]r[Zn2+][(NC)6Co3-]. The structure of [(MeOC3H6O)Zn+][Zn2+][(NC)6Co3-] was precisely determined at the atomic level through Rietveld refinement of the synchrotron X-ray powder diffraction data. By evaluating the catalyst's performance in both propylene oxide (PO) polymerization and PO/CO2 copolymerization, a correlation between structure and performance was established on various aspects including activity, dispersity, unsaturation level, and carbonate fraction in the resulting polyols. Ultimately, our study identified highly efficient catalysts that outperformed the state-of-the-art benchmark DMC not only in PO polymerization [DMC-(OAc/OtBu/Cl)(0.59/0.38/0.15)] but also in PO/CO2 copolymerization [DMC-(OAc/OtBu)(0.95/0.08)].

10.
Virus Genes ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023842

ABSTRACT

Echinacea is an herbaceous plant originating from North America that is cultivated for gardening and landscaping because of its showy flowers. Using high-throughput sequencing, we identified two viral contigs from echinacea seeds that were related to the family Tombusviridae. These two viruses were similar to oat chlorotic stunt virus (OCSV) and other unassigned tombusviruses; therefore, we tentatively named them Echinacea-associated tombusviruses 1 and 2 (EaTV1 and EaTV2, respectively). The EaTVs represent putative readthrough sites and have no poly(A) tails, aligning with the common features of family Tombusviridae. The EaTVs are included in a monophyletic group of OCSV and several unassigned tombusviruses. Because OCSV is the only member of Avenavirus to date, EaTVs are tentative members of Avenavirus, or they are close sister species to OCSV with several unassigned tombusviruses. RNA-dependent RNA polymerases and coat proteins were well conserved among EaTVs and unassigned tombusviruses; however, their similarities were not correlated, implying divergent and complex evolution.

11.
Article in English | MEDLINE | ID: mdl-38809397

ABSTRACT

PURPOSE: Hepatotoxicity has emerged as a major cause of statin treatment interruption. Although organic anion-transporting polypeptide 1B1 (SLCO1B1), multidrug resistance protein 1 (ABCB1), and breast cancer resistance protein (ABCG2) have been identified as transporters of statins, knowledge of their role in statin-associated hepatotoxicity remains limited. Therefore, we aimed to conduct a comprehensive analysis to elucidate the association between hepatotoxicity and SLCO1B1, ABCB1, and ABCG2 polymorphisms. METHODS: This study retrospectively analyzed prospectively collected samples. We selected 10 single nucleotide polymorphisms (SNPs) of SLCO1B1, 9 SNPs of ABCB1, and 12 SNPs of ABCG2. We developed two models for multivariable analyses (Model I: clinical factors only; Model II: both clinical and genetic factors), and the attributable risk (%) of variables in Model II was determined. RESULTS: Among 851 patients, 66 (7.8%) developed hepatotoxicity. In Model I, lipophilic statins, atrial fibrillation (Afib), and diabetes mellitus showed a significant association with hepatotoxicity. In Model II, lipophilic statins and Afib, SLCO1B1 rs11045818 A allele, SLCO1B1 rs4149035 T allele, and ABCG2 rs2622629 TT genotype were associated with higher hepatotoxicity risk. Among them, the SLCO1B1 rs11045818 A allele exhibited the highest attributable risk (93.2%). The area under the receiver operating characteristic curve in Model I was 0.62 (95% CI: 0.55-0.69), and it was increased to 0.71 in Model II (95% CI: 0.64-0.77). CONCLUSION: This study investigated the correlation between hepatotoxicity and polymorphisms of transporter genes in patients taking statins. The findings could help improve personalized treatments for patients receiving statin therapy.

12.
Phytopathology ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976565

ABSTRACT

Epidemiological studies to better understand wheat blast (WB) spatial and temporal patterns were conducted in three field environments in Bolivia between 2019 and 2020. The temporal dynamics of wheat leaf blast (WLB) and spike blast (WSB) were best described by the logistic model compared to the Gompertz and exponential models. The non-linear logistic infection rates (rL) were higher under defined inoculation in experiments two and three than under undefined inoculation in experiment one, and they were also higher for WSB than for WLB. The onset of WLB began with a spatial cluster pattern according to autocorrelation analysis and Moran's Index (I) values, with higher severity and earlier onset for defined than for undefined inoculation until the last sampling time. The WSB onset did not start with a spatial cluster pattern; instead, it was detected later until the last sampling date across experiments, with higher severity and earlier onset for defined than for undefined inoculation. Maximum severity (Kmax) was 1.0 for WSB, and less than 1.0 for WLB. Aggregation of WLB and WSB was higher for defined than for undefined inoculation. The directionality of hotspot development was similar for both WLB and WSB, mainly occurring concentrically for defined inoculation. Our results show no evidence of synchronized development but suggest a temporal and spatial progression of disease symptoms on wheat leaves and spikes. Thus, we recommend that monitoring and management of WB should be considered during early growth stages of wheat planted in areas of high risk.

13.
Lasers Med Sci ; 39(1): 170, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958779

ABSTRACT

PURPOSE: Despite the importance of self-monitoring blood glucose (SMBG) for management of diabetes mellitus (DM), frequent blood sampling is discouraged by bleeding risk due to dual-antiplatelet agent therapy (DAPT) or thrombocytopenia. METHODS: We compared the bleeding time (BT) of sampling by using a laser-lancing-device (LMT-1000) and a conventional lancet in patients with DM and thrombocytopenia or patients undergoing DAPT. BT was measured using the Duke method, and pain and satisfaction scores were assessed using numeric rating scale (NRS) and visual analog scale (VAS). The consistency in the values of glucose and glycated-hemoglobin (HbA1c) sampled using the LMT-1000 or lancet were compared. RESULTS: The BT of sampling with the LMT-1000 was shorter than that with the lancet in patients with thrombocytopenia (60s vs. 85s, P = 0.024). The NRS was lower and the VAS was higher in laser-applied-sampling than lancet-applied sampling in the DAPT-user group (NRS: 1 vs. 2, P = 0.010; VAS: 7 vs. 6, P = 0.003), whereas the group with thrombocytopenia only showed improvement in the VAS score (8 vs. 7, P = 0.049). Glucose and HbA1c sampled by the LMT-1000 and lancet were significantly correlated in both the DAPT-user and the thrombocytopenia groups. CONCLUSION: The LMT-1000 can promote SMBG by shortening BT in subject with thrombocytopenia and by increasing satisfaction score, as well as by showing reliable glucose and HbA1c value.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Hemorrhage , Lasers , Humans , Female , Male , Aged , Middle Aged , Blood Glucose Self-Monitoring/instrumentation , Blood Glucose/analysis , Hemorrhage/etiology , Glycated Hemoglobin/analysis , Blood Specimen Collection/instrumentation , Blood Specimen Collection/methods , Blood Specimen Collection/adverse effects , Diabetes Mellitus/blood , Thrombocytopenia/blood , Thrombocytopenia/etiology , Capillaries , Platelet Aggregation Inhibitors/therapeutic use
14.
Nano Lett ; 23(6): 2262-2268, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36913488

ABSTRACT

The electrochemical CO2 reduction reaction (CO2RR) provides an alternative protocol to producing industrial chemicals with renewable electricity sources, and the highly selective, durable, and economic catalysts should expedite CO2RR applications. Here, we demonstrate a composite Cu-In2O3 catalyst in which a trace amount of In2O3 decorated on Cu surface greatly improves the selectivity and stability for CO2-to-CO reduction as compared to the counterparts (Cu or In2O3), realizing a CO faradaic efficiency (FECO) of 95% at -0.7 V (vs RHE) and no obvious degradation within 7 h. In situ X-ray absorption spectroscopy reveals that In2O3 undergoes the redox reaction and preserves the metallic state of Cu during the CO2RR process. Strong electronic interaction and coupling occur at the Cu/In2O3 interface which serves as the active site for selective CO2RR. Theoretical calculation confirms the roles of In2O3 in preventing oxidation and altering the electronic structure of Cu to assist COOH* formation and demote CO* adsorption at the Cu/In2O3 interface.

15.
Molecules ; 29(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38338437

ABSTRACT

This study aimed to isolate the proteolytic fraction from the silkworm thorn fruit (Cudrania tricuspidata) through ethanol precipitation at different ratios, and to determine its proteolytic activity and optimal activity conditions. Furthermore, the hydrolysis characteristics and antioxidant activity of soy protein isolate (SPI) and whey protein concentrate (WPC) hydrolyzates obtained through the enzymatic hydrolysis of freeze-dried silkworm thorn fruit powder (SF) were evaluated. For isolation and partial purification of proteolytic fraction, the water-solubilized fraction of the silkworm thorn fruit was purified through ethanol precipitation at four different ratios of 1:1, 1:2, 1:4, and 1:6 (v/v). The protein recovery rate, caseinolytic activity, protein pattern, and optimal activity (pH, temperature, and inhibitors) of fractional ethanol precipitate obtained from the silkworm thorn fruit (ESF) were evaluated. The proteolytic fraction obtained from silkworm thorn fruit exhibited a major protein band around 65-70 kDa and showed the highest proteolytic activity at a 1:4 ratio of ethanol precipitation (p < 0.05). The optimal activity of the measured enzyme fraction was determined to be at pH 9.0 and 50 °C, and the proteolytic activity of ESF was almost inhibited by phenyl methyl sulphonyl fluoride (PMSF, 2 mM), a serine protease inhibitor. Compared to Alcalase and papain, extensively used as commercial enzymes, the silkworm thorn fruit powder was less effective in hydrolyzing SPI and WPC. Nevertheless, SPI and WPC hydrolyzates mediated with silkworm thorn fruit powder showed even better antioxidant activities than those mediated with Alcalase and papain. Thus, our results show the potential application of silkworm thorn fruit as a novel source of plant protease for producing human-grade protein hydrolyzates.


Subject(s)
Bombyx , Maclura , Animals , Humans , Hydrolysis , Bombyx/metabolism , Papain/metabolism , Fruit/metabolism , Powders , Peptide Hydrolases/metabolism , Whey Proteins , Soybean Proteins , Subtilisins/metabolism , Ethanol
16.
Diabetologia ; 66(5): 931-954, 2023 05.
Article in English | MEDLINE | ID: mdl-36759348

ABSTRACT

AIMS/HYPOTHESIS: Non-alcoholic fatty liver disease (NAFLD) associated with type 2 diabetes may more easily progress towards severe forms of non-alcoholic steatohepatitis (NASH) and cirrhosis. Although the Wnt effector transcription factor 7-like 2 (TCF7L2) is closely associated with type 2 diabetes risk, the role of TCF7L2 in NAFLD development remains unclear. Here, we investigated how changes in TCF7L2 expression in the liver affects hepatic lipid metabolism based on the major risk factors of NAFLD development. METHODS: Tcf7l2 was selectively ablated in the liver of C57BL/6N mice by inducing the albumin (Alb) promoter to recombine Tcf7l2 alleles floxed at exon 5 (liver-specific Tcf7l2-knockout [KO] mice: Alb-Cre;Tcf7l2f/f). Alb-Cre;Tcf7l2f/f and their wild-type (Tcf7l2f/f) littermates were fed a high-fat diet (HFD) or a high-carbohydrate diet (HCD) for 22 weeks to reproduce NAFLD/NASH. Mice were refed a standard chow diet or an HCD to stimulate de novo lipogenesis (DNL) or fed an HFD to provide exogenous fatty acids. We analysed glucose and insulin sensitivity, metabolic respiration, mRNA expression profiles, hepatic triglyceride (TG), hepatic DNL, selected hepatic metabolites, selected plasma metabolites and liver histology. RESULTS: Alb-Cre;Tcf7l2f/f essentially exhibited increased lipogenic genes, but there were no changes in hepatic lipid content in mice fed a normal chow diet. However, following 22 weeks of diet-induced NAFLD/NASH conditions, liver steatosis was exacerbated owing to preferential metabolism of carbohydrate over fat. Indeed, hepatic Tcf7l2 deficiency enhanced liver lipid content in a manner that was dependent on the duration and amount of exposure to carbohydrates, owing to cell-autonomous increases in hepatic DNL. Mechanistically, TCF7L2 regulated the transcriptional activity of Mlxipl (also known as ChREBP) by modulating O-GlcNAcylation and protein content of carbohydrate response element binding protein (ChREBP), and targeted Srebf1 (also called SREBP1) via miRNA (miR)-33-5p in hepatocytes. Eventually, restoring TCF7L2 expression at the physiological level in the liver of Alb-Cre;Tcf7l2f/f mice alleviated liver steatosis without altering body composition under both acute and chronic HCD conditions. CONCLUSIONS/INTERPRETATION: In mice, loss of hepatic Tcf7l2 contributes to liver steatosis by inducing preferential metabolism of carbohydrates via DNL activation. Therefore, TCF7L2 could be a promising regulator of the NAFLD associated with high-carbohydrate diets and diabetes since TCF7L2 deficiency may lead to development of NAFLD by promoting utilisation of excess glucose pools through activating DNL. DATA AVAILABILITY: RNA-sequencing data have been deposited into the NCBI GEO under the accession number GSE162449 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162449 ).


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Diabetes Mellitus, Type 2/metabolism , Lipogenesis/genetics , Mice, Inbred C57BL , Liver/metabolism , Hepatocytes/metabolism , Diet, High-Fat , Triglycerides/metabolism , Glucose/metabolism , Transcription Factor 7-Like 2 Protein/genetics , Transcription Factor 7-Like 2 Protein/metabolism
17.
Biochem Biophys Res Commun ; 673: 169-174, 2023 09 17.
Article in English | MEDLINE | ID: mdl-37392480

ABSTRACT

Strumpellin/Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complex subunit 5 (WASHC5) is a core component of the WASH complex, and its mutations confer pathogenicity for hereditary spastic paraplegia (HSP) type SPG8, a rare neurodegenerative gait disorder. WASH complex activates actin-related protein-2/3-mediated actin polymerization and plays a pivotal role in intracellular membrane trafficking in endosomes. In this study, we examined the role of strumpellin in the regulation of structural plasticity of cortical neurons involved in gait coordination. Administration of a lentivirus containing a strumpellin-targeting short hairpin RNA (shRNA) to cortical motor neurons lead to abnormal motor coordination in mice. Strumpellin knockdown using shRNA attenuated dendritic arborization and synapse formation in cultured cortical neurons, and this effect was rescued by wild-type strumpellin expression. Compared with the wild-type, strumpellin mutants N471D or V626F identified in patients with SPG8 exhibited no differences in rescuing the defects. Moreover, the number of F-actin clusters in neuronal dendrites was decreased by strumpellin knockdown and rescued by strumpellin expression. In conclusion, our results indicate that strumpellin regulates the structural plasticity of cortical neurons via actin polymerization.


Subject(s)
Actins , Spastic Paraplegia, Hereditary , Animals , Mice , Actins/metabolism , Endosomes/metabolism , Gait , Neurons/metabolism , RNA, Small Interfering/metabolism , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/metabolism
18.
BMC Plant Biol ; 23(1): 639, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38082263

ABSTRACT

BACKGROUND: Chitosan biopolymer is an emerging non-toxic and biodegradable plant elicitor or bio-stimulant. Chitosan nanoparticles (CSNPs) have been used for the enhancement of plant growth and development. On the other hand, NO is an important signaling molecule that regulates several aspects of plant physiology under normal and stress conditions. Here we report the synthesis, characterization, and use of chitosan-GSNO nanoparticles for improving drought stress tolerance in soybean. RESULTS: The CSGSNONPs released NO gas for a significantly longer period and at a much lower rate as compared to free GSNO indicating that incorporation of GSNO in CSNPs can protect the NO-donor from rapid decomposition and ensure optimal NO release. CS-GSNONPs improved drought tolerance in soybean plants reflected by a significant increase in plant height, biomass, root length, root volume, root surface area, number of root tips, forks, and nodules. Further analyses indicated significantly lower electrolyte leakage, higher proline content, higher catalase, and ascorbate peroxidase activity, and reduction in MDA and H2O2 contents after treatment with 50 µM CS-GSNONPs under drought stress conditions. Quantitative real-time PCR analysis indicated that CS-GSNONPs protected against drought-induced stress by regulating the expression of drought stress-related marker genes such as GmDREB1a, GmP5CS, GmDEFENSIN, and NO-related genes GmGSNOR1 and GmNOX1. CONCLUSIONS: This study highlights the potential of nano-technology-based delivery systems for nitric oxide donors to improve plant growth, and development and protect against stresses.


Subject(s)
Chitosan , Nanoparticles , Droughts , Drought Resistance , Glycine max/genetics , Hydrogen Peroxide/metabolism , Stress, Physiological/genetics
19.
Hepatology ; 75(6): 1523-1538, 2022 06.
Article in English | MEDLINE | ID: mdl-34773257

ABSTRACT

BACKGROUND AND AIMS: Currently there is no Food and Drug Administration-approved drug to treat NAFLD and NASH, the rates of which are increasing worldwide. Although NAFLD/NASH are highly complex and heterogeneous conditions, most pharmacotherapy pipelines focus on a single mechanistic target. Considering the importance of the gut-liver axis in their pathogenesis, we investigated the therapeutic effect of a long-acting dual agonist of glucagon-like peptide (GLP)-1 and GLP-2 receptors in mice with NAFLD/NASH. APPROACH AND RESULTS: C57BL/6J mice were fed a choline-deficient high-fat diet/high fructose and sucrose solution. After 16 weeks, mice were randomly allocated to receive vehicle, GLP1-Fc, GLP2-Fc, or GLP1/2-Fc fusion (GLP1/2-Fc) subcutaneously every 2 days for 4 weeks. Body weight was monitored, insulin/glucose tolerance tests were performed, feces were collected, and microbiome profiles were analyzed. Immobilized cell systems were used to evaluate direct peptide effect. Immunohistochemistry, quantitative PCR, immunoblot analysis, tunnel assay, and biochemical assays were performed to assess drug effects on inflammation, hepatic fibrosis, cell death, and intestinal structures. The mice had well-developed NASH phenotypes. GLP1/2-Fc reduced body weight, glucose levels, hepatic triglyceride levels, and cellular apoptosis. It improved liver fibrosis, insulin sensitivity, and intestinal tight junctions, and increased microvillus height, crypt depth, and goblet cells of intestine compared with a vehicle group. Similar effects of GLP1/2-Fc were found in in vitro cell systems. GLP1/2-Fc also changed microbiome profiles. We applied fecal microbiota transplantation (FMT) gain further insight into the mechanism of GLP1/2-Fc-mediated protection. We confirmed that FMT exerted an additive effect on GLP1-Fc group, including the body weight change, liver weight, hepatic fat accumulation, inflammation, and hepatic fibrosis. CONCLUSIONS: A long-acting dual agonist of GLP-1 and GLP-2 receptors is a promising therapeutic strategy to treat NAFLD/NASH.


Subject(s)
Microbiota , Non-alcoholic Fatty Liver Disease , Animals , Body Weight , Diet, High-Fat/adverse effects , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-2 Receptor/metabolism , Inflammation/metabolism , Liver/pathology , Liver Cirrhosis/complications , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology
20.
Acc Chem Res ; 55(17): 2526-2541, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35986693

ABSTRACT

A radical shift toward energy transfer photocatalysis from electron transfer photocatalysis under visible-light photoirradiation is often due to the greener prospects of atom and process economy. Recent advances in energy transfer photocatalysis embrace unique strategies for direct small-molecule activation and sometimes extraordinary chemical bond formation in the absence of additional/sacrificial reagents. Selective energy transfer photocatalysis requires careful selection of substrates and photocatalysts for a perfect match with respect to their triplet energies while having incompatible redox potentials to prevent competitive electron transfer pathways. Substrates containing labile N-O bonds are potential targets for generating reactive key intermediates via photocatalysis to access a variety of functionalized molecules. Typically, the differential electron densities of N and O heteroatoms have been exploited for generation of either N- or O-centered radical intermediates from the functionalized substrates by the electron transfer pathway. However, the latest developments involve direct N-O bond homolysis via energy transfer to generate both N- and O-centered radicals for their subsequent utilization in diverse organic transformations, also in the absence of sacrificial redox reagents. In this Account, we highlight our key contributions in the field of N-O bond activation via energy transfer photocatalysis to generate reactive radical intermediates, with coverage of useful mechanistic insights. More specifically, well-designed N-O bond-containing substrates such as 1,2,4-oxadiazolines, oxime esters, N-indolyl carbonates, and N-enoxybenzotriazoles were successfully utilized in versatile transformations involving selective energy transfer over electron transfer from photocatalysts with high triplet state energy. Direct access to reactive N-, O-, and C-centered (if decarboxylation follows) radical intermediates was achieved for diverse cross-couplings and rearrangement processes. In particular, a variety of open-shell nitrogen reactive intermediates, including N(sp2) and N(sp3) radicals and nitrenes, have been utilized. Notably, diversified transformations of identical substrates have been achieved through careful control of the reaction conditions. 1,2,4-Oxadiazolines were converted into spiro-azolactams through iminyl intermediates in the presence of 1O2, benzimidazoles, or sulfoximines with external sulfoxide reagent through triplet nitrene intermediates under inert conditions. Besides, oxime esters underwent either intramolecular C(sp3)-N radical-radical coupling or intermolecular C(sp3)-N radical-radical coupling by a combined energy transfer-hydrogen atom transfer strategy. Furthermore, a series of electrochemical and photophysical experiments as well as computational studies were performed to substantiate the proposed selective energy-transfer-driven reaction pathways. We hope that this Account will serve as a guide for the rational design of selective energy transfer processes through the activation of further labile chemical bonds.


Subject(s)
Hydrogen , Oximes , Energy Transfer , Esters , Hydrogen/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL