Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Chemistry ; 30(6): e202303428, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38050744

ABSTRACT

We developed intramolecular carboxyamidations of alkyne-tethered O-acylhydroxamates followed by either thermally induced spontaneous or 4-(dimethylamino)pyridine-catalyzed O→O or O→N acyl group migration. Under iron-catalyzed conditions, the carboxyamidation products were generated in high yield from both Z-alkene and arene-tethered substrates. DFT calculations indicate that the iron-catalyzed carboxyamidation proceeds via a stepwise mechanism involving iron-imidyl radical cyclization followed by intramolecular acyloxy transfer from the iron center to the alkenyl radical center to furnish the cis-carboxyamidation product. Upon treatment with 4-(dimethylamino)pyridine, the Z-alkene-tethered carboxyamidation products underwent selective O→O acyl migration to generate 2-acyloxy-5-acyl pyrroles. Thermal O→N acyl migration occurs during carboxyamidation if the Z-alkene linker contains an alkyl or an aryl substituent at the ß-position of the carbonyl group. On the other hand, the arene linker-containing compounds selectively undergo O→N acyl migration to generate N-acyl-3-acylisoindolinones, and the corresponding O→O acyl migration forming isoindole derivatives was not observed.

2.
J Org Chem ; 89(7): 4496-4502, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38506399

ABSTRACT

Acyl ketenes react with polar unsaturated functional groups to give unique heterocyclic rings, yet reactions with unpolarized unsaturated functional groups have not been reported. Herein, we describe two effective ring-forming reactions between acetyl ketene and electron-deficient alkynes. The first reaction involves in situ tethering between acetyl ketene and nucleophile-containing 1,3-diynones, which promotes sequential intramolecular 1,6/1,4-additions to generate 2-methylene-2H-pyrans in various yields (24-91%). The other involves a zwitterionic intermediate generated from acetyl ketene and DABCO, which undergoes a Michael addition with terminal alkynyl ketones to generate 3-acyl-4-pyrones (11-79%).

3.
Mar Drugs ; 22(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38393062

ABSTRACT

The present study aims to explore the probable anti-adipogenesis effect of Dictyopteris divaricata (D. divaricata) in 3T3-L1 preadipocytes by regulating heme oxygenase-1 (HO-1). The extract of D. divaricata retarded lipid accretion and decreased triglyceride (TG) content in 3T3-L1 adipocytes but increased free glycerol levels. Treatment with the extract inhibited lipogenesis by inhibiting protein expressions of fatty acid synthase (FAS) and lipoprotein lipase (LPL), whereas lipolysis increased by activating phosphorylation of hormone-sensitive lipase (p-HSL) and AMP-activated protein kinase (p-AMPK). The extract inhibited adipocyte differentiation of 3T3-L1 preadipocytes through down-regulating adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1). This is attributed to the triggering of Wnt/ß-catenin signaling. In addition, this study found that treatment with the extract activated HO-1 expression. Pharmacological approaches revealed that treatment with Zinc Protoporphyrin (ZnPP), an HO-1 inhibitor, resulted in an increase in lipid accumulation and a decrease in free glycerol levels. Finally, three adipogenic transcription factors, such as PPARγ, C/EBPα, and SREBP1, restored their expression in the presence of ZnPP. Analysis of chemical constituents revealed that the extract of D. divaricata is rich in 1,4-benzenediol, 7-tetradecenal, fucosterol, and n-hexadecanoic acid, which are known to have multiple pharmacological properties.


Subject(s)
Adipogenesis , Phaeophyceae , Animals , Mice , Lipolysis , 3T3-L1 Cells , Heme Oxygenase-1/metabolism , PPAR gamma/metabolism , Glycerol/pharmacology , Glycerol/metabolism , Cell Differentiation , Adipocytes , CCAAT-Enhancer-Binding Protein-alpha , Transcription Factors/metabolism , Lipids/pharmacology
4.
Chemistry ; 29(19): e202203371, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36628950

ABSTRACT

The cycloisomerization of alkyne-tethered N-benzoyloxycarbamates to 2-(3H)oxazolones is described. Two catalytic systems are tailored for intramolecular 5-exo-alkyne carboxyamidation and concomitant alkene isomerization. PtCl2 /CO (5 mol%, toluene, 100 °C) promotes both carboxyamidation and alkene isomerization but has a limited substrate scope. On the other hand, FeCl3 (5 mol%, CH3 CN, 100 °C) promotes carboxyamidation effectively but a cocatalyst is required for the exocyclic alkene isomerization. Thus, a two-step one-pot protocol has been developed for a broader reaction scope, which involves FeCl3 -catalyzed carboxyamidation and base-induced alkene isomerization. Crossover experiments suggest that these reactions proceed mainly through a mechanism involving acylnitrenoid intermediates rather than carbenoid intermediates.

5.
Int J Mol Sci ; 24(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446242

ABSTRACT

Angiotensin I-converting enzyme (ACE) is an important blood pressure regulator. In this study, we aimed to investigate the ACE-inhibitory effects of meroterpenoids isolated from the brown alga, Sargassum macrocarpum, and the molecular mechanisms underlying ACE inhibition. Four fractions of S. macrocarpum were prepared using hexane, chloroform, ethyl acetate, and water as solvents and analyzed for their potential ACE-inhibitory effects. The chloroform fraction showed the strongest ACE-inhibitory effect, with an IC50 value of 0.18 mg/mL. Three meroterpenoids, sargachromenol, 7-methyl sargachromenol, and sargaquinoic acid, were isolated from the chloroform fraction. Meroterpenoids isolated from S. macrocarpum had IC50 values of 0.44, 0.37, and 0.14 mM. The molecular docking study revealed that the ACE-inhibitory effect of the isolated meroterpenoids was mainly attributed to Zn-ion, hydrogen bonds, pi-anion, and pi-alkyl interactions between the meroterpenoids and ACE. These results suggest that S. macrocarpum could be a potential raw material for manufacturing antihypertensive nutraceutical ingredients.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Sargassum , Angiotensin-Converting Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Sargassum/chemistry , Peptidyl-Dipeptidase A/chemistry , Chloroform
6.
Curr Issues Mol Biol ; 44(11): 5815-5826, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36421679

ABSTRACT

Sargassum horneri is a seaweed species with diverse bioactivities. However, its antifibrotic effects during nasal polyp (NP) formation are not clearly understood. Therefore, we investigated the inhibitory effect of S. horneri on fibrosis progression in NP-derived fibroblasts (NPDFs) and NP tissues ex vivo. NPDFs were stimulated with TGF-ß1 in the presence or absence of S. horneri ethanol extract (SHE). The extracellular matrix (ECM) protein production levels, myofibroblast differentiation (α-smooth muscle actin, α-SMA), and phosphorylation of Smad 2/3 and -ERK in TGF-ß1-stimulated NPDFs were investigated using western blotting. Further, the contractile activity of SHE was assessed by performing a collagen gel contraction assay. The expression levels of collagen-1, fibronectin, and α-SMA were investigated in NP organ cultures treated with SHE. TGF-ß1 stimulated ECM protein expression, myofibroblast differentiation, and collagen contractile activity while these were attenuated by pretreatment with SHE. We also found antifibrotic effect of SHE on ex vivo NP tissues. The antifibrotic effects of SHE were modulated through the attenuation of Smad 2/3 and ERK signaling pathways in TGF-ß1-stimulated NPDFs. In conclusion, SHE inhibited ECM protein accumulation and myofibroblast differentiation during NP remodeling. Thus, SHE may be helpful as a treatment for NP recurrence after endoscopic sinus surgery.

7.
Chemistry ; 28(56): e202202015, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-35771213

ABSTRACT

A new [4+2] cycloaddition of allenyne-alkyne is developed. The reaction is believed to proceed with forming an α,3-dehydrotoluene intermediate. This species behaves as a σπ-diradical to react with a hydrogen atom donor, whereas it displays a zwitterionic reactivity toward weak nucleophiles. The efficiency of trapping α,3-dehydrotoluene depends not only on its substituents but also the trapping agents. Notable features of the reaction are the activating role of the extra alkyne of the 1,3-diyne that reacts with the allenyne moiety and the opposite mode of trapping with oxygen and nitrogen nucleophiles. Oxygen nucleophiles result in the oxygen-end incorporation at the benzylic position of the α,3-dehydrotoluene, whereas with amine nucleophiles the nitrogen-end is incorporated into the aromatic core. Relying on the allenyne-alkyne cycloaddition as an enabling strategy, a concise total synthesis of phosphodiesterase-4 inhibitory selaginpulvilin A is realized.


Subject(s)
Alkynes , Cyclic Nucleotide Phosphodiesterases, Type 4 , Amines , Cycloaddition Reaction , Diynes , Hydrogen , Nitrogen , Oxygen
8.
Mar Drugs ; 20(8)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35892939

ABSTRACT

Ecklonia maxima is a brown seaweed, which is abundantly distributed in South Africa. This study investigated an efficient approach using high-performance centrifugal partition chromatography (HPCPC), which has been successfully developed for the isolation and purification of phlorotannins, eckmaxol, and dieckol from the ethyl acetate fraction of E. maxima (EEM). We evaluated EEM for its inhibitory effect against lipopolysaccharide (LPS)-induced inflammatory responses in zebrafish embryos. The separation of eckmaxol and dieckol from samples of EEM using HPCPC was found to be of high purity and yield under an optimal solvent system composed of n-hexane:ethyl acetate:methanol:water (2:7:3:7, v/v/v/v). To evaluate the anti-inflammatory efficacy of EEM containing active compounds, zebrafish embryos exposed to LPS were compared with and without EEM treatment for nitric oxide (NO) production, reactive oxygen species (ROS) generation, and cell death two days after fertilization. These evaluations indicate that EEM alleviated inflammation by inhibiting cell death, ROS, and NO generation induced by LPS treatment. According to these results, eckmaxol and dieckol isolated from brown seaweed E. maxima could be considered effective anti-inflammatory agents as pharmaceutical and functional food ingredients.


Subject(s)
Phaeophyceae , Seaweed , Animals , Anti-Inflammatory Agents/pharmacology , Chromatography, Liquid , Lipopolysaccharides/pharmacology , Nitric Oxide/metabolism , Phaeophyceae/chemistry , Reactive Oxygen Species/metabolism , Seaweed/metabolism , South Africa , Zebrafish/metabolism
9.
Mar Drugs ; 20(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35736156

ABSTRACT

The aim of this study was to assess the potential hypertensive effects of the IGTGIPGIW peptide purified from Hippocampus abdominalis alcalase hydrolysate (HA) for application in the functional food industry. We investigated the antihypertensive effects of IGTGIPGIW in vitro by assessing nitric oxide production in EA.hy926 endothelial cells, which is a major factor affecting vasorelaxation. The potential vasorelaxation effect was evaluated using 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, a fluorescent stain. IGTGIPGIW significantly increased the expression of endothelial-derived relaxing factors, including endothelial nitric oxide synthase and protein kinase B, in EA.hy926 cells. Furthermore, oral administration of IGTGIPGIW significantly lowered the systolic blood pressure (183.60 ± 1.34 mmHg) and rapidly recovered the diastolic blood pressure (143.50 ± 5.55 mmHg) in the spontaneously hypertensive rat model in vivo. Our results demonstrate the antihypertensive activity of the IGTGIPGIW peptide purified from H. abdominalis and indicate its suitability for application in the functional food industry.


Subject(s)
Antihypertensive Agents , Nitric Oxide Synthase Type III , Smegmamorpha , Animals , Antihypertensive Agents/pharmacology , Blood Pressure , Endothelial Cells , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Peptides/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Inbred SHR
10.
Am J Physiol Cell Physiol ; 320(5): C916-C925, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33760662

ABSTRACT

Niemann-Pick C1 Like-1 (NPC1L1) mediates the uptake of micellar cholesterol by intestinal epithelial cells and is the molecular target of the cholesterol-lowering drug ezetimibe (EZE). The detailed mechanisms responsible for intracellular shuttling of micellar cholesterol are not fully understood due to the lack of a suitable NPC1L1 substrate that can be traced by fluorescence imaging and biochemical methods. 27-Alkyne cholesterol has been previously shown to serve as a substrate for different cellular processes similar to native cholesterol. However, it is not known whether alkyne cholesterol is absorbed via an NPC1L1-dependent pathway. We aimed to determine whether alkyne cholesterol is a substrate for NPC1L1 in intestinal cells. Human intestinal epithelial Caco2 cells were incubated with micelles containing alkyne cholesterol in the presence or absence of EZE. Small intestinal closed loops in C57BL/6J mice were injected with micelles containing alkyne cholesterol with or without EZE. Alkyne cholesterol esterification in Caco2 cells was significantly inhibited by EZE and by inhibitor of clathrin-mediated endocytosis Pitstop 2. The esterification was similarly reduced by inhibitors of the acyl-CoA cholesterol acyltransferase (ACAT). Alkyne cholesterol efficiently labeled the apical membrane of Caco2 cells and the amount retained on the membrane was significantly increased by EZE as judged by accessibility to exogenous cholesterol oxidase. In mouse small intestine, the presence of EZE reduced total alkyne cholesterol uptake by ∼75%. These data show that alkyne cholesterol acts as a substrate for NPC1L1 and may serve as a nonradioactive tracer to measure cholesterol absorption in both in vitro and in vivo models.


Subject(s)
Cholesterol/metabolism , Epithelial Cells/metabolism , Intestinal Absorption , Intestinal Mucosa/metabolism , Membrane Transport Proteins/metabolism , Animals , Anticholesteremic Agents/pharmacology , Biological Transport , Caco-2 Cells , Cholesterol/analogs & derivatives , Endocytosis , Epithelial Cells/drug effects , Ezetimibe/pharmacology , Humans , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Membrane Transport Proteins/drug effects , Mice, Inbred C57BL
11.
J Am Chem Soc ; 143(19): 7490-7500, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33961744

ABSTRACT

Metallaaromatics constitute a unique class of aromatic compounds where one or more transition metal elements are incorporated into the aromatic system, the parent of which is metallabenzene. One of the main concerns about metallabenzenes generally deals with the structural characterization related to their relative aromaticity compared to the carbon archetype. Transition metal-containing metallabenzenes are also implicated in certain catalytic processes such as alkyne metathesis polymerization; however, these transition metal-based metallaaromatic compounds have not been developed as a catalyst. Herein, we describe an effective strategy to generate diverse arrays of ruthenabenzenes and demonstrated them as an aromatic equivalent of the Grubbs-type ruthenium alkylidene catalysts. These ruthenabenzenes can be prepared via an enyne metathesis and metallotropic [1,3]-shift cascade process to form alkyne-chelated ruthenium alkylidene intermediates followed by spontaneous cycloaromatization. The aromatic nature of these complexes was confirmed by spectroscopic and X-ray crystallographic data, and the mechanistic pathways for the cycloaromatization process were studied by DFT calculations. These ruthenabenzenes display robust catalytic activity for metathesis and other transformations, which illustrates that metallabenzenes are not only compounds of structural and theoretical interests but also are a novel platform for new catalyst development.


Subject(s)
Alkenes/chemistry , Organometallic Compounds/chemistry , Ruthenium/chemistry , Catalysis , Density Functional Theory , Hydrogen-Ion Concentration , Molecular Structure
12.
Biochem Biophys Res Commun ; 535: 6-11, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33340766

ABSTRACT

No effective cryopreservation technique exists for fish eggs and embryos; thus, the cryopreservation of germ cells (spermatogonia or oogonia) and subsequent generation of eggs and sperm would be an alternative solution for the long-term preservation of piscine genetic resources. Nevertheless, in our previous study using rainbow trout, we showed that recipients transplanted with XY spermatogonia or XX oogonia produced unnatural sex-biased F1 offspring. To overcome these obstacles, we transplanted immature germ cells (XX oogonia or XY spermatogonia; frozen for 33 days) into the body cavities of triploid hatchlings, and the transplanted germ cells possessed a high capacity for differentiating into eggs and sperm in the ovaries and testes of recipients. Approximately 30% of triploid recipients receiving frozen germ cells generated normal salmon that displayed the donor-derived black body color phenotype, although all triploid salmon not receiving transplants were functionally sterile. Furthermore, F1 offspring obtained from insemination of the oogonia-derived eggs and spermatogonia-derived sperm show a normal sex ratio of 1:1 (female:male). Thus, this method presented a critical technique for practical conservation projects for other teleost fish species and masu salmon.


Subject(s)
Cryopreservation/methods , Oncorhynchus/growth & development , Oogonia/cytology , Oogonia/transplantation , Ovum/cytology , Spermatogonia/cytology , Spermatogonia/transplantation , Spermatozoa/cytology , Aging , Animals , Cell Differentiation , Conservation of Natural Resources/methods , Female , Germ Cells , Male , Oncorhynchus/embryology , Oogonia/metabolism , Ovum/metabolism , Sex Ratio , Spermatogonia/metabolism , Spermatozoa/metabolism , Triploidy
13.
Mar Drugs ; 19(2)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567534

ABSTRACT

Sargassum horneri (S. horneri) is a well-known brown seaweed widely distributed worldwide. Several biological activities of S. horneri have been reported. However, its effects on lipid metabolism and the underlying mechanisms remain elusive. In the present study, we examined the inhibitory effect of the active compound "(-)-loliolide ((6S,7aR)-6-hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydro-1-benzofuran-2(4H)-one (HTT))" from S. horneri extract on lipid accumulation in differentiated adipocytes. MTT assays demonstrated that (-)-loliolide is not toxic to 3T3-L1 adipocytes in a range of concentrations. (-)-loliolide significantly reduced intracellular lipid accumulation in the differentiated phase of 3T3-L1 adipocytes as shown by Oil Red O staining. Western blot analysis revealed that (-)-loliolide increased the expression of lipolytic protein phospho-hormone-sensitive lipase (p-HSL) and thermogenic protein peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1). Additionally, (-)-loliolide decreased expression of adipogenic and lipogenic proteins, including sterol regulatory element-binding protein-1 (SREBP-1), peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (C/EBP-α), and fatty acid-binding protein 4 (FABP4) in 3T3-L1 adipocytes. These results indicate that (-)-loliolide from S. horneri could suppress lipid accumulation via regulation of antiadipogenic and prolipolytic mechanisms in 3T3-L1 cells. Considering the multifunctional effect of (-)-loliolide, it can be useful as a lipid-lowering agent in the management of patients who suffer from obesity.


Subject(s)
Benzofurans/pharmacology , Lipid Metabolism/drug effects , Sargassum/chemistry , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , CCAAT-Enhancer-Binding Protein-alpha/antagonists & inhibitors , Lipolysis/drug effects , Mice , Obesity/drug therapy , PPAR gamma/antagonists & inhibitors , Sterol Regulatory Element Binding Protein 1/antagonists & inhibitors , Thermogenesis/drug effects
14.
Mar Drugs ; 19(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34564159

ABSTRACT

In this study, we isolated sargachromenol (SC) from Sargassum horneri and evaluated its anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. SC did not show cytotoxicity at all concentrations and effectively increased the cell viability by reducing the nitric oxide (NO) and intracellular reactive oxygen species (ROS) production in LPS-stimulated RAW 264.7 macrophages. In addition, SC decreased the mRNA expression levels of inflammatory cytokines (IL-1ß, IL-6, and TNF-α) and inflammatory mediators (iNOS and COX-2). Moreover, SC suppressed the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and mitogen-activated protein kinase (MAPK) signaling, whereas activated the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling in LPS-stimulated RAW 264.7 macrophages. Interestingly, the anti-inflammatory effect of SC was abolished by the inhibition of HO-1 in LPS-stimulated RAW 264.7 macrophages. According to the results, this study suggests that the antioxidant capacity of SC leads to its anti-inflammatory effect and it potentially may be utilized in the nutraceutical and pharmaceutical sectors.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Benzopyrans/pharmacology , Macrophages/drug effects , Macrophages/metabolism , NF-E2-Related Factor 2/metabolism , Sargassum , Animals , Cell Survival/drug effects , Cytokines/metabolism , Lipopolysaccharides , Mice , NF-kappa B/metabolism , RAW 264.7 Cells
15.
Mar Drugs ; 19(2)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557339

ABSTRACT

Grateloupia elliptica (G. elliptica) is a red seaweed with antioxidant, antidiabetic, anticancer, anti-inflammatory, and anticoagulant activities. However, the anti-obesity activity of G. elliptica has not been fully investigated. Therefore, the effect of G. elliptica ethanol extract on the suppression of intracellular lipid accumulation in 3T3-L1 cells by Oil Red O staining (ORO) was evaluated. Among the eight red seaweeds tested, G. elliptica 60% ethanol extract (GEE) exhibited the highest inhibition of lipid accumulation. GEE was the only extract to successfully suppress lipid accumulation among ethanol extracts from eight red seaweeds. In this study, we successfully isolated chlorophyll derivative (CD) from the ethyl acetate fraction (EA) of GEE by high-performance liquid chromatography and evaluated their inhibitory effect on intracellular lipid accumulation in 3T3-L1 adipocytes. CD significantly suppressed intracellular lipid accumulation. In addition, CD suppressed adipogenic protein expression such as sterol regulatory element-binding protein-1 (SREBP-1), peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (C/EBP-α), and fatty acid binding protein 4 (FABP4). Taken together, our results indicate that CD from GEE inhibits lipid accumulation by suppressing adipogenesis via the downregulation of adipogenic protein expressions in the differentiated adipocytes. Therefore, chlorophyll from G. elliptica has a beneficial effect on lipid metabolism and it could be utilized as a potential therapeutic agent for preventing obesity.


Subject(s)
Adipogenesis/drug effects , Chlorophyll/pharmacology , Lipid Metabolism/drug effects , Seaweed , 3T3-L1 Cells , Animals , CCAAT-Enhancer-Binding Proteins/genetics , Chlorophyll/analogs & derivatives , Chlorophyll/therapeutic use , Chromatography, High Pressure Liquid , Down-Regulation , Fatty Acid-Binding Proteins/genetics , Mice , Obesity/drug therapy , PPAR gamma/genetics , Seaweed/chemistry , Sterol Regulatory Element Binding Protein 1/genetics
16.
Mar Drugs ; 18(12)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260666

ABSTRACT

This study involves enzymatic extraction of fucoidan from Sargassum swartzii and further purification via ion-exchange chromatography. The chemical and molecular characteristics of isolated fucoidan is evaluated concerning its anti-inflammatory potential in RAW 264.7 macrophages under LPS induced conditions. Structural properties of fucoidan were assessed via FTIR and NMR spectroscopy. NO production stimulated by LPS was significantly declined by fucoidan. This was witnessed to be achieved via fucoidan acting on mediators such as iNOS and COX-2 including pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß), with dose dependent down-regulation. Further, the effect is exhibited by the suppression of TLR mediated MyD88, IKK complex, ultimately hindering NF-κB and MAPK activation, proposing its therapeutic applications in inflammation related disorders. The research findings provide an insight in relation to the sustainable utilization of fucoidan from marine brown algae S. swartzii as a potent anti-inflammatory agent in the nutritional, pharmaceutical, and cosmeceutical sectors.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Macrophages/drug effects , NF-kappa B/metabolism , Polysaccharides/pharmacology , Sargassum/metabolism , Toll-Like Receptors/metabolism , Animals , Anti-Inflammatory Agents/isolation & purification , Inflammation Mediators/metabolism , Macrophages/metabolism , Mice , Molecular Structure , Polysaccharides/isolation & purification , RAW 264.7 Cells , Signal Transduction , Structure-Activity Relationship
17.
Mar Drugs ; 18(4)2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32276359

ABSTRACT

Fucoidans are biocompatible, heterogeneous, and fucose rich sulfated polysaccharides biosynthesized in brown algae, which are renowned for their broad-spectrum biofunctional properties. As a continuation of our preliminary screening studies, the present work was undertaken to extract polysaccharides from the edible brown algae Sargassum polycystum by a modified enzyme assisted extraction process using Celluclast, a food-grade cellulase, and to purify fucoidan by DEAE-cellulose anion exchange chromatography. The apoptotic and antiproliferative properties of the purified fucoidan (F5) were evaluated on HL-60 and MCF-7 cells. Structural features were characterized by FTIR and NMR analysis. F5 indicated profound antiproliferative effects on HL-60 leukemia and MCF-7 breast cancer cells with IC50 values of 84.63 ± 0.08 µg mL-1 and 93.62 ± 3.53 µg mL-1 respectively. Further, F5 treatment increased the apoptotic body formation, DNA damage, and accumulation of HL-60 and MCF-7 cells in the Sub-G1 phase of the cell cycle. The effects were found to proceed via the mitochondria-mediated apoptosis pathway. The Celluclast assisted extraction is a cost-efficient method of yielding fucoidan. With further studies in place, purified fucoidan of S. polycystum could be applied as functional ingredients in food and pharmaceuticals.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Mitochondria/drug effects , Polysaccharides/pharmacology , Sargassum/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , HL-60 Cells/drug effects , Humans , MCF-7 Cells/drug effects , Polysaccharides/isolation & purification
18.
J Appl Clin Med Phys ; 21(9): 124-133, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32677272

ABSTRACT

PURPOSE/OBJECTIVES: To report our experience of combining three approaches of an automatic plan integrity check (APIC), a standard plan documentation, and checklist methods to minimize errors in the treatment planning process. MATERIALS/METHODS: We developed APIC program and standardized plan documentation via scripting in the treatment planning system, with an enforce function of APIC usage. We used a checklist method to check for communication errors in patient charts (referred to as chart errors). Any errors in the plans and charts (referred to as the planning errors) discovered during the initial chart check by the therapists were reported to our institutional Workflow Enhancement (WE) system. Clinical Implementation of these three methods is a progressive process while the APIC was the major progress among the three methods. Thus, we chose to compared the total number of planning errors before (including data from 2013 to 2014) and after (including data from 2015 to 2018) APIC implementation. We assigned the severity of these errors into five categories: serious (S), near miss with safety net (NM), clinical interruption (CLI), minor impediment (MI), and bookkeeping (BK). The Mann-Whitney U test was used for statistical analysis. RESULTS: A total of 253 planning error forms, containing 272 errors, were submitted during the study period, representing an error rate of 3.8%, 3.1%, 2.1%, 0.8%, 1.9% and 1.3% of total number of plans in these years respectively. A marked reduction of planning error rate in the S and NM categories was statistically significant (P < 0.01): from 0.6% before APIC to 0.1% after APIC. The error rate for all categories was also significantly reduced (P < 0.01), from 3.4% before APIC and 1.5% per plan after APIC. CONCLUSION: With three combined methods, we reduced both the number and the severity of errors significantly in the process of treatment planning.


Subject(s)
Checklist , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Dosage
19.
Nat Chem Biol ; 13(3): 268-274, 2017 03.
Article in English | MEDLINE | ID: mdl-28024150

ABSTRACT

Controlled distribution of lipids across various cell membranes is crucial for cell homeostasis and regulation. We developed an imaging method that allows simultaneous in situ quantification of cholesterol in two leaflets of the plasma membrane (PM) using tunable orthogonal cholesterol sensors. Our imaging revealed marked transbilayer asymmetry of PM cholesterol (TAPMC) in various mammalian cells, with the concentration in the inner leaflet (IPM) being ∼12-fold lower than that in the outer leaflet (OPM). The asymmetry was maintained by active transport of cholesterol from IPM to OPM and its chemical retention at OPM. Furthermore, the increase in the IPM cholesterol level was triggered in a stimulus-specific manner, allowing cholesterol to serve as a signaling lipid. We found excellent correlation between the IPM cholesterol level and cellular Wnt signaling activity, suggesting that TAPMC and stimulus-induced PM cholesterol redistribution are crucial for tight regulation of cellular processes under physiological conditions.


Subject(s)
Cell Membrane/chemistry , Cholesterol/analysis , Lipids/chemistry , Cell Line , HEK293 Cells , Humans
20.
Environ Res ; 172: 150-158, 2019 05.
Article in English | MEDLINE | ID: mdl-30782534

ABSTRACT

Particulate matter (PM) air pollution has gradually become a widespread problem in East Asia. PM may cause unfamiliar inflammatory responses, oxidative stress, and pulmonary tissue damage, and a comprehensive understanding of the underlying mechanisms is required in order to develop effective anti-inflammatory agents. In this study, fine dust collected from Beijing, China (CPM) (size < PM13 with majority < PM2.5) was evaluated for its oxidative stress- and inflammation-inducing effects, which cause cell damage, in A459 human lung epithelial cells. Oxidative stress was marked by an increase in intracellular ROS levels and the production of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and heme oxygenase-1 (HO-1). Upon induction of oxidative stress, a marked increase was observed in the expression of key inflammatory mediators such as COX-2 and PGE2 and the pro-inflammatory cytokines TNF-α and IL-6 via NF-kB and MAPK pathways. Cellular damage was marked by a reduction in viability, increased lactate dehydrogenase (LDH) release, formation of apoptotic and necrotic bodies, accumulation of sub-G1 phase cells, and DNA damage. Apoptosis was found to be mediated via the activation of caspases through the mitochondria-mediated pathway. Fucosterol, purified from the brown alga Sargassum binderi (Sonder ex J. Agardh) by bio-assay-guided fractionation and purification, exhibited potential therapeutic effects against CPM-induced detrimental effects. Further studies could focus on developing fucosterol, in forms such as steroidal inhalers, against PM-induced pulmonary tissue inflammation.


Subject(s)
Air Pollutants , Epithelial Cells , Lung Diseases , Lung Injury , Particulate Matter , Sargassum , Stigmasterol/analogs & derivatives , A549 Cells , Air Pollutants/toxicity , Anti-Inflammatory Agents/pharmacology , Beijing , China , Epithelial Cells/drug effects , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Lung/cytology , Lung/drug effects , Lung Diseases/chemically induced , Lung Diseases/drug therapy , Lung Injury/chemically induced , Lung Injury/prevention & control , Oxidative Stress/drug effects , Particulate Matter/toxicity , Sargassum/chemistry , Stigmasterol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL