Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Nano Lett ; 23(15): 6807-6814, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37487233

ABSTRACT

Defects in crystalline lattices cause modulation of the atomic density, and this leads to variations in the associated electrostatics at the nanoscale. Mapping these spatially varying charge fluctuations using transmission electron microscopy has typically been challenging due to complicated contrast transfer inherent to conventional phase contrast imaging. To overcome this, we used four-dimensional scanning transmission electron microscopy (4D-STEM) to measure electrostatic fields near point dislocations in a monolayer. The asymmetry of the atomic density in a (1,0) edge dislocation core in graphene yields a local enhancement of the electric field in part of the dislocation core. Through experiment and simulation, the increased electric field magnitude is shown to arise from "long-range" interactions from beyond the nearest atomic neighbor. These results provide insights into the use of 4D-STEM to quantify electrostatics in thin materials and map out the lateral potential variations that are important for molecular and atomic bonding through Coulombic interactions.

2.
Small ; 17(23): e2100693, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33960117

ABSTRACT

Precise controlled filling of point vacancies in hBN with carbon atoms is demonstrated using a focused electron beam method, which guides mobile C atoms into the desired defect site. Optimization of the technique enables the insertion of a single C atom into a selected monovacancy, and preferential defect filling with sub-2 nm accuracy. Increasing the C insertion process leads to thicker 3D C nanodots seeded at the hBN point vacancy site. Other light elements are also observed to bind to hBN vacancies, including O, opening up a wide range of complex defect structures that include B, C, N, and O atoms. The ability to selectively fill point vacancies in hBN with C atoms provides a pathway for creating non-hydrogenated covalently bonded C molecules embedded in the insulating hBN.

3.
Nanotechnology ; 32(2): 025704, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-32947266

ABSTRACT

Point defects in freestanding graphene monolayers such as monovacancies (MVs) and divacancies have been investigated at atomic scale with aberration-corrected transmission electron microscopy and theoretical calculations. In general, these defects can be formed simply by the absence of individual carbon atoms and carbon bond reconstructions in the graphene lattice under electron and ion irradiation. However, in this study, we found that oxygen and hydrogen atoms can be involved in the formation of these point defects caused by the simultaneous detachment of oxygen-carbon atoms. Here we report the effect of the oxygen and hydrogen atoms on the graphene surface forming the point defects under electron beam irradiation, and their role of stabilizing other MVs when composed of 13-5 ring pairs. In addition, theoretical analysis using density functional theory calculations demonstrates that the participating atoms can form the point defects in the intermediate states and stabilize 13-5 ring pairs under electron beam irradiation.

4.
Nanotechnology ; 32(38)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34130260

ABSTRACT

For graphene-based 2D materials, charge transfer at the interface between graphene and ferromagnetic metal leads to many intriguing phenomena. However, because of the unidirectional spin orientation in ferromagnetic transition metals, interface interaction plays a detrimental role in diminishing the magnetic parameters on 2D surfaces. To overcome this issue, we have synthesized ultrathin 2D weak antiferromagneticß-NiOOH layers on a graphene surface. By exploiting the charge transfer effect and tuning the thickness of the thinß-NiOOH layers, conversion of ferromagnetism along with giant coercivity and the thermo-remnant magnetic memory effect were observed. As antiferromagnets have two spin orientations, transfer of charge at the interface breaks the nullifying effect of zero magnetization in antiferromagnets and the combined system behaves like a 2D ferrimagnet. Whenever, the sandwich structure ofß-NiOOH/graphene/ß-NiOOH is formed, it also shows interlayer exchange coupling those results in huge exchange bias and anomalous temperature dependence of coercivity. Due to the strong exchange interaction between the layers, the combined system also shows a robust temperature-based memory effect. Spin-polarized density functional theory was also calculated to confirm the interface interaction and its quantitative evaluation by means of Bader charge analysis and charge-density mapping.

5.
Nano Lett ; 15(9): 5950-5, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26313338

ABSTRACT

We demonstrate the formation of partial dislocations in graphene at elevated temperatures of ≥500 °C with single atom resolution aberration corrected transmission electron microscopy. The partial dislocations spatially redistribute strain in the lattice, providing an energetically more favorable configuration to the perfect dislocation. Low-energy migration paths mediated by partial dislocation formation have been observed, providing insights into the atomistic dynamics of graphene during annealing. These results are important for understanding the high temperature plasticity of graphene and partial dislocation behavior in related crystal systems, such as diamond cubic materials.

6.
Nano Lett ; 14(3): 1634-42, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24588782

ABSTRACT

The relative prevalence of various configurations of the tetravacancy defect in monolayer graphene has been examined using aberration corrected transmission electron microscopy (TEM). It was found that the two most common structures are extended linear defect structures, with the 3-fold symmetric Y-tetravacancy seldom imaged, in spite of this being a low energy state. Using density functional theory and tight-binding molecular dynamics calculations, we have determined that our TEM observations support a dynamic model of the tetravacancy under electron irradiation, with Stone-Wales bond rotations providing a mechanism for defect relaxation into lowest energy configurations. The most prevalent tetravacancy structures, while not necessarily having the lowest formation energy, are found to have a local energy minimum in the overall energy landscape for tetravacancies, explaining their relatively high occurrence.

7.
Nano Lett ; 14(7): 3972-80, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24959991

ABSTRACT

Vacancy defects in graphene with an odd number of missing atoms, such as the trivacancy, have been imaged at atomic resolution using aberration corrected transmission electron microscopy. These defects are not just stabilized by simple bond reconstructions between under-coordinated carbon atoms, as exhibited by even vacancies such as the divacancy. Instead we have observed reconstructions consisting of under-coordinated bridging carbon atoms spanning the vacancy to saturate edge atoms. We report detailed studies of the effect of this bridging atom on the configuration of the trivacancy and higher order odd number vacancies, as well as its role in defect stabilization in amorphous systems. Theoretical analysis using density functional theory and tight-binding molecular dynamics calculations demonstrate that the bridging atom enables the low energy reconfiguration of these defect structures.

8.
Nano Lett ; 14(7): 3766-72, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24945707

ABSTRACT

We present an atomic resolution structural study of covalently bonded dopant pairs in the lattice of monolayer graphene. Two iron (Fe) metal atoms that are covalently bonded within the graphene lattice are observed and their interaction with each other is investigated. The two metal atom dopants can form small paired clusters of varied geometry within graphene vacancy defects. The two Fe atoms are created within a 10 nm diameter predefined location in graphene by manipulating a focused electron beam (80 kV) on the surface of graphene containing an intentionally deposited Fe precursor reservoir. Aberration-corrected transmission electron microscopy at 80 kV has been used to investigate the atomic structure and real time dynamics of Fe dimers embedded in graphene vacancies. Four different stable structures have been observed; two variants of an Fe dimer in a graphene trivacancy, an Fe dimer embedded in two adjacent monovacancies and an Fe dimer trapped by a quadvacancy. According to spin-sensitive DFT calculations, these dimer structures all possess magnetic moments of either 2.00 or 4.00 µB. The dimer structures were found to evolve from an initial single Fe atom dopant trapped in a graphene vacancy.

9.
Nano Lett ; 13(10): 4937-44, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24020902

ABSTRACT

Ripples in graphene are an out-of-plane distortion that help stabilize suspended monolayer graphene. The introduction of disclinations and dislocations into the lattice of graphene is predicted to extensively ripple graphene to form "hillocks" to accommodate the strain in the system. Here, we confirm this theoretical prediction by intentionally introducing large numbers of dislocations into a predefined area of pristine monolayer graphene by scanning focused electron beam irradiation and imaging the rippled atomic lattice structure with aberration-corrected transmission electron microscopy. Hillocks are observed and analyzed using geometric phase analysis to determine heights of ~0.5 nm. Time-dependent imaging shows the rippling is dynamic under the electron beam and can fluctuate between different structural configurations. This demonstrates a means of perturbing the structure of graphene in all three spatial dimensions with nanoscale precision.


Subject(s)
Graphite/chemistry , Microscopy, Electron, Transmission/methods , Nanostructures/chemistry , Particle Size , Surface Properties
10.
Sci Adv ; 9(22): eadf7426, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37267366

ABSTRACT

Al-Zn-Mg alloys are widely used in the transportation industry owing to their high strength-to-weight ratio. In these alloys, the main strengthening mechanism is precipitation hardening that occurs because of the formation of nano-sized precipitates. Herein, an interfacial structure of η4 precipitates, one of the main precipitates in these alloys, is revealed using aberration-corrected scanning transmission electron microscopy and first-principles calculations. These precipitates exhibit a pseudo-periodic steps and bridges. The results of this study demonstrate that the peculiar interface structure of η4/Al relieves the strain energy of η4 precipitates thus stabilizing them. The atomistic role of this interfacial structure in the nucleation and growth of the precipitates is elucidated. This study paves the way for tailoring the mechanical properties of alloys by controlling their precipitation kinetics.

11.
Nanotechnology ; 23(42): 425302, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-23036991

ABSTRACT

Although graphene looks attractive to replace indium tin oxide (ITO) in optoelectronic devices, the luminous efficiency of light emitting diodes (LEDs) with graphene transparent conducting electrodes has been limited by degradation in graphene taking place during device fabrication. In this study, it was found that the quality of graphene after the device fabrication was a critical factor affecting the performance of GaN-based LEDs. In this paper, the qualities of graphene after two different device fabrication processes were evaluated by Raman spectroscopy and atomic force microscopy. It was found that graphene was severely damaged and split into submicrometer-scale islands bounded by less conducting boundaries when graphene was transferred onto LED structures prior to the GaN etching process for p-contact formation. On the other hand, when graphene was transferred after the GaN etch and p-contact metallization, graphene remained intact and the resulting InGaN/GaN LEDs showed electrical and optical properties that were very close to those of LEDs with 200 nm thick ITO films. The forward-voltages and light output powers of LEDs were 3.03 V and 9.36 mW at an injection current of 20 mA, respectively.

12.
Small Methods ; 6(11): e2200880, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36250995

ABSTRACT

Ruddlesden-Popper oxides (A2 BO4 ) have attracted significant attention regarding their potential application in novel electronic and energy devices. However, practical uses of A2 BO4 thin films have been limited by extended defects such as out-of-phase boundaries (OPBs). OPBs disrupt the layered structure of A2 BO4 , which restricts functionality. OPBs are ubiquitous in A2 BO4 thin films but inhomogeneous interfaces make them difficult to suppress. Here, OPBs in A2 BO4 thin films are suppressed using a novel method to control the substrate surface termination. To demonstrate the technique, epitaxial thin films of cuprate superconductor La2- x Srx CuO4 (x = 0.15) are grown on surface-reconstructed LaSrAlO4 substrates, which are terminated with self-limited perovskite double layers. To date, La2- x Srx CuO4 thin films are grown on LaSrAlO4 substrates with mixed-termination and exhibit multiple interfacial structures resulting in many OPBs. In contrast, La2- x Srx CuO4 thin films grown on surface-reconstructed LaSrAlO4 substrates energetically favor only one interfacial structure, thus inhibiting OPB formation. OPB-suppressed La2- x Srx CuO4 thin films exhibit significantly enhanced superconducting properties compared with OPB-containing La2- x Srx CuO4 thin films. Defect engineering in A2 BO4 thin films will allow for the elimination of various types of defects in other complex oxides and facilitate next-generation quantum device applications.

13.
J Phys Chem Lett ; 12(34): 8430-8439, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34436917

ABSTRACT

Polymorph conversion of transition metal dichalcogenides (TMDs) offers intriguing material phenomena that can be applied for tuning the intrinsic properties of 2D materials. In general, group VIB TMDs can have thermodynamically stable 2H phases and metastable 1T/T' phases. Herein, we report key principles to apply carbon monoxide (CO)-based gas-solid reactions for a universal polymorph conversion of group VIB TMDs without forming undesirable compounds. We found that the process conditions are strongly dependent on the reaction chemical potential of cations in the TMDs, which can be predicted by thermodynamic calculations, and that polymorphic conversion is triggered by S vacancy (VS) formation. Furthermore, we conducted DFT calculations for the reaction barriers of VS formation and S diffusion to reveal the polymorph conversion mechanism of WS2 and compared it with that of MoS2. We believe that phase engineering 2D materials via thermodynamically designed gas-solid reactions could be functionally used to achieve defect-related nanomaterials.

14.
Nat Commun ; 12(1): 3765, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34155218

ABSTRACT

For steady electroconversion to value-added chemical products with high efficiency, electrocatalyst reconstruction during electrochemical reactions is a critical issue in catalyst design strategies. Here, we report a reconstruction-immunized catalyst system in which Cu nanoparticles are protected by a quasi-graphitic C shell. This C shell epitaxially grew on Cu with quasi-graphitic bonding via a gas-solid reaction governed by the CO (g) - CO2 (g) - C (s) equilibrium. The quasi-graphitic C shell-coated Cu was stable during the CO2 reduction reaction and provided a platform for rational material design. C2+ product selectivity could be additionally improved by doping p-block elements. These elements modulated the electronic structure of the Cu surface and its binding properties, which can affect the intermediate binding and CO dimerization barrier. B-modified Cu attained a 68.1% Faradaic efficiency for C2H4 at -0.55 V (vs RHE) and a C2H4 cathodic power conversion efficiency of 44.0%. In the case of N-modified Cu, an improved C2+ selectivity of 82.3% at a partial current density of 329.2 mA/cm2 was acquired. Quasi-graphitic C shells, which enable surface stabilization and inner element doping, can realize stable CO2-to-C2H4 conversion over 180 h and allow practical application of electrocatalysts for renewable energy conversion.

15.
RSC Adv ; 10(12): 6822-6830, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-35493897

ABSTRACT

Amorphous carbon (a-C) films have attracted significant attention due to their reliable structures and superior mechanical, chemical and electronic properties, making them a strong candidate as an etch hard mask material for the fabrication of future integrated semiconductor devices. Density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations were performed to investigate the energetics, structure, and mechanical properties of the a-C films with an increasing sp3 content by adjusting the atomic density or hydrogen content. A drastic increase in the bulk modulus is observed by increasing the atomic density of the a-C films, which suggests that it would be difficult for the films hardened by high atomic density to relieve the stress of the individual layers within the overall stack in integrated semiconductor devices. However, the addition of hydrogen into the a-C films has little effect on increasing the bulk modulus even though the sp3 content increases. For the F blocking nature, the change in the sp3 content by both atomic density and H concentration makes the diffusion barrier against the F atom even higher and suppresses the F diffusion, indicating that the F atom would follow the diffusion path passing through the sp2 carbon and not the sp3 carbon due to the significantly high barrier. For the material design of a-C films with adequate doped characteristics, our results can provide a new straightforward strategy to tailor the a-C films with excellent mechanical and other novel physical and chemical properties.

16.
ACS Nano ; 14(5): 6034-6042, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32324376

ABSTRACT

Scanning moiré fringe (SMF) is a widely utilized technique for the precise measurement of the strain field in semiconductor transistors and heterointerfaces. With the growing challenges of traditional chip scaling, two-dimensional (2D) materials turn out to be ideal candidates for incorporation into semiconductor devices. Therefore, a method to efficiently locate defects and grain boundaries in 2D materials is highly essential. Here, we present a demonstration of using the SMF method to locate the domain boundaries at the nearly coherent interfaces with sub-angstrom spatial resolution under submicron fields of views. The strain field of small angle grain boundary and lateral heterojunction are instantaneously found and precisely determined by a quick SMF method without any atomic resolution images.

17.
Sci Adv ; 6(24): eaba4942, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32577521

ABSTRACT

The structural transformations of graphene defects have been extensively researched through aberration-corrected transmission electron microscopy (AC-TEM) and theoretical calculations. For a long time, a core concept in understanding the structural evolution of graphene defects has been the Stone-Thrower-Wales (STW)-type bond rotation. In this study, we show that undercoordinated atoms induce bond formation and breaking, with much lower energy barriers than the STW-type bond rotation. We refer to them as mediator atoms due to their mediating role in the breaking and forming of bonds. Here, we report the direct observation of mediator atoms in graphene defect structures using AC-TEM and annular dark-field scanning TEM (ADF-STEM) and explain their catalytic role by tight-binding molecular dynamics (TBMD) simulations and image simulations based on density functional theory (DFT) calculations. The study of mediator atoms will pave a new way for understanding not only defect transformation but also the growth mechanisms in two-dimensional materials.

18.
Sci Rep ; 9(1): 18961, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31831828

ABSTRACT

Amorphous carbon (a-C) films have received significant attention due to their reliable structures and superior mechanical, chemical and electronic properties, making them a strong candidate as a hard mask material. We investigated the energetics, structure, and electronic and mechanical properties of the B, N, and Cl doped a-C films based on density functional theory (DFT) calculation. Our DFT calculated results clearly show that introducing B and N atoms into a-C films makes the bulk modulus slightly reduced as a function of the concentration increases. Interestingly, it is noted that introducing Cl atom into a-C films makes the bulk modulus is drastically reduced, which suggests that the films softened by Cl doping would relieve residual stress of the individual layers within the overall stacks in integrated semiconductor devices. These requirements become more important and increasingly more challenging to meet as the device integrity grows. In the perspective of F blocking nature, B doping into a-C films pulls in and captures the F atom due to the strong bonding nature of B‒F bond than C-F bond. Unlike the B doping, for the N doped a-C film, F atom has extremely large diffusion barrier of 4.92 eV. This large diffusion barrier is attributed to the electrostatically repulsive force between both atoms. The Cl doped a-C film shows consistently the similar results with the N doped a-C film because both N and Cl atoms have large electro-negativity, which causes F atom to push out. If one notes the optimized designing with the suitable doped characteristics, our results could provide a new straightforward strategy to tailor the a-C films with excellent mechanical and other novel physical and chemical properties.

19.
ACS Nano ; 13(2): 2379-2388, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30673212

ABSTRACT

We present an atomic level study of reversible cyclization processes in suspended nanoconstricted regions of graphene that form linear carbon chains (LCCs). Before the nanoconstricted region reaches a single linear carbon chain (SLCC), we observe that a double linear carbon chain (DLCC) structure often reverts back to a ribbon of sp2 hybridized oligoacene rings, in a process akin to the Bergman rearrangement. When the length of the DLCC system only consists of ∼5 atoms in each LCC, full recyclization occurs for all atoms present, but for longer DLCCs we find that only single sections of the chain are modified in their bonding hybridization and no full ring closure occurs along the entire DLCCs. This process is observed in real time using aberration-corrected transmission electron microscopy and simulated using density functional theory and tight binding molecular dynamics calculations. These results show that DLCCs are highly sensitive to the adsorption of local gas molecules or surface diffusion impurities and undergo structural modifications.

20.
ACS Nano ; 13(10): 12162-12170, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31553564

ABSTRACT

Platinum atomic layers grown on graphene were investigated by atomic resolution transmission electron microscopy (TEM). These TEM images reveal the epitaxial relationship between the atomically thin platinum layers and graphene, with two optimal epitaxies observed. The energetics of these epitaxies influences the grain structure of the platinum film, facilitating grain growth via in-plane rotation and assimilation of neighbor grains, rather than grain coarsening from the movement of grain boundaries. This growth process was enabled due to the availability of several possible low-energy intermediate states for the rotating grains, the Pt-Gr epitaxies, which are minima in surface energy, and coincident site lattice grain boundaries, which are minima in grain boundary energy. Density functional theory calculations reveal a complex interplay of considerations for minimizing the platinum grain energy, with free platinum edges also having an effect on the relative energetics. We thus find that the platinum atomic layer grains undergo significant reorientation to minimize interface energy (via epitaxy), grain boundary energy (via low-energy orientations), and free edge energy. These results will be important for the design of two-dimensional graphene-supported platinum catalysts and obtaining large-area uniform platinum atomic layer films and also provide fundamental experimental insight into the growth of heteroepitaxial thin films.

SELECTION OF CITATIONS
SEARCH DETAIL