Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(9): e2213793120, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36802434

ABSTRACT

Liver X receptor (LXR) is a critical regulator of cholesterol homeostasis that inhibits T cell receptor (TCR)-induced proliferation by altering intracellular sterol metabolism. However, the mechanisms by which LXR regulates helper T cell subset differentiation remain unclear. Here, we demonstrate that LXR is a crucial negative regulator of follicular helper T (Tfh) cells in vivo. Both mixed bone marrow chimera and antigen-specific T cell adoptive cotransfer studies show a specific increase in Tfh cells among LXRß-deficient CD4+ T cell population in response to immunization and lymphocytic choriomeningitis mammarenavirus (LCMV) infection. Mechanistically, LXRß-deficient Tfh cells express augmented levels of T cell factor 1 (TCF-1) but comparable levels of Bcl6, CXCR5, and PD-1 in comparison with those of LXRß-sufficient Tfh cells. Loss of LXRß confers inactivation of GSK3ß induced by either AKT/Extracellular signal-regulated kinase (ERK) activation or Wnt/ß-catenin pathway, leading to elevated TCF-1 expression in CD4+ T cells. Conversely, ligation of LXR represses TCF-1 expression and Tfh cell differentiation in both murine and human CD4+ T cells. LXR agonist significantly diminishes Tfh cells and the levels of antigen-specific IgG upon immunization. These findings unveil a cell-intrinsic regulatory function of LXR in Tfh cell differentiation via the GSK3ß-TCF1 pathway, which may serve as a promising target for pharmacological intervention in Tfh-mediated diseases.


Subject(s)
T Follicular Helper Cells , T-Lymphocytes, Helper-Inducer , Mice , Humans , Animals , Liver X Receptors/genetics , Liver X Receptors/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Germinal Center , T Cell Transcription Factor 1/genetics , Cell Differentiation
2.
J Biomed Sci ; 31(1): 54, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790021

ABSTRACT

BACKGROUND: Alcohol-related liver disease (ALD) is a major health concern worldwide, but effective therapeutics for ALD are still lacking. Tumor necrosis factor-inducible gene 6 protein (TSG-6), a cytokine released from mesenchymal stem cells, was shown to reduce liver fibrosis and promote successful liver repair in mice with chronically damaged livers. However, the effect of TSG-6 and the mechanism underlying its activity in ALD remain poorly understood. METHODS: To investigate its function in ALD mice with fibrosis, male mice chronically fed an ethanol (EtOH)-containing diet for 9 weeks were treated with TSG-6 (EtOH + TSG-6) or PBS (EtOH + Veh) for an additional 3 weeks. RESULTS: Severe hepatic injury in EtOH-treated mice was markedly decreased in TSG-6-treated mice fed EtOH. The EtOH + TSG-6 group had less fibrosis than the EtOH + Veh group. Activation of cluster of differentiation 44 (CD44) was reported to promote HSC activation. CD44 and nuclear CD44 intracellular domain (ICD), a CD44 activator which were upregulated in activated HSCs and ALD mice were significantly downregulated in TSG-6-exposed mice fed EtOH. TSG-6 interacted directly with the catalytic site of MMP14, a proteolytic enzyme that cleaves CD44, inhibited CD44 cleavage to CD44ICD, and reduced HSC activation and liver fibrosis in ALD mice. In addition, a novel peptide designed to include a region that binds to the catalytic site of MMP14 suppressed CD44 activation and attenuated alcohol-induced liver injury, including fibrosis, in mice. CONCLUSIONS: These results demonstrate that TSG-6 attenuates alcohol-induced liver damage and fibrosis by blocking CD44 cleavage to CD44ICD and suggest that TSG-6 and TSG-6-mimicking peptide could be used as therapeutics for ALD with fibrosis.


Subject(s)
Cell Adhesion Molecules , Hyaluronan Receptors , Liver Cirrhosis , Liver Diseases, Alcoholic , Animals , Male , Mice , Cell Adhesion Molecules/administration & dosage , Ethanol , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/chemically induced , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Mice, Inbred C57BL , Peptides/pharmacology , Peptides/metabolism
3.
Nucleic Acids Res ; 50(D1): D1221-D1230, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34755868

ABSTRACT

A knowledgebase of the systematic functional annotation of fusion genes is critical for understanding genomic breakage context and developing therapeutic strategies. FusionGDB is a unique functional annotation database of human fusion genes and has been widely used for studies with diverse aims. In this study, we report fusion gene annotation updates aided by deep learning (FusionGDB 2.0) available at https://compbio.uth.edu/FusionGDB2/. FusionGDB 2.0 has substantial updates of contents such as up-to-date human fusion genes, fusion gene breakage tendency score with FusionAI deep learning model based on 20 kb DNA sequence around BP, investigation of overlapping between fusion breakpoints with 44 human genomic features across five cellular role's categories, transcribed chimeric sequence and following open reading frame analysis with coding potential based on deep learning approach with Ribo-seq read features, and rigorous investigation of the protein feature retention of individual fusion partner genes in the protein level. Among ∼102k fusion genes, about 15k kept their ORF as In-frames, which is two times compared to the previous version, FusionGDB. FusionGDB 2.0 will be used as the reference knowledgebase of fusion gene annotations. FusionGDB 2.0 provides eight categories of annotations and it will be helpful for diverse human genomic studies.


Subject(s)
Databases, Genetic , Gene Fusion/genetics , Genome, Human/genetics , Genomics , Amino Acid Sequence/genetics , Deep Learning , Humans , Knowledge Bases , Molecular Sequence Annotation
4.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731856

ABSTRACT

We characterized the therapeutic biological modes of action of several terpenes in Poria cocos F.A Wolf (PC) and proposed a broad therapeutic mode of action for PC. Molecular docking and drug-induced transcriptome analysis were performed to confirm the pharmacological mechanism of PC terpene, and a new analysis method, namely diffusion network analysis, was proposed to verify the mechanism of action against Alzheimer's disease. We confirmed that the compound that exists only in PC has a unique mechanism through statistical-based docking analysis. Also, docking and transcriptomic analysis results could reflect results in clinical practice when used complementarily. The detailed pharmacological mechanism of PC was confirmed by constructing and analyzing the Alzheimer's disease diffusion network, and the antioxidant activity based on microglial cells was verified. In this study, we used two bioinformatics approaches to reveal PC's broad mode of action while also using diffusion networks to identify its detailed pharmacological mechanisms of action. The results of this study provide evidence that future pharmacological mechanism analysis should simultaneously consider complementary docking and transcriptomics and suggest diffusion network analysis, a new method to derive pharmacological mechanisms based on natural complex compounds.


Subject(s)
Molecular Docking Simulation , Terpenes , Transcriptome , Terpenes/pharmacology , Terpenes/chemistry , Transcriptome/drug effects , Humans , Wolfiporia/chemistry , Gene Expression Profiling/methods , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Microglia/drug effects , Microglia/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Computational Biology/methods , Animals
5.
Proc Natl Acad Sci U S A ; 117(33): 19982-19993, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32753382

ABSTRACT

The underlying mechanism of necroptosis in relation to cancer is still unclear. Here, MYC, a potent oncogene, is an antinecroptotic factor that directly suppresses the formation of the RIPK1-RIPK3 complex. Gene set enrichment analyses reveal that the MYC pathway is the most prominently down-regulated signaling pathway during necroptosis. Depletion or deletion of MYC promotes the RIPK1-RIPK3 interaction, thereby stabilizing the RIPK1 and RIPK3 proteins and facilitating necroptosis. Interestingly, MYC binds to RIPK3 in the cytoplasm and inhibits the interaction between RIPK1 and RIPK3 in vitro. Furthermore, MYC-nick, a truncated form that is mainly localized in the cytoplasm, prevented TNF-induced necroptosis. Finally, down-regulation of MYC enhances necroptosis in leukemia cells and suppresses tumor growth in a xenograft model upon treatment with birinapant and emricasan. MYC-mediated suppression of necroptosis is a mechanism of necroptosis resistance in cancer, and approaches targeting MYC to induce necroptosis represent an attractive therapeutic strategy for cancer.


Subject(s)
Leukemia/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Female , Humans , Leukemia/genetics , Leukemia/physiopathology , Mice , Mice, Inbred BALB C , Necroptosis , Protein Binding , Protein Transport , Proto-Oncogene Proteins c-myc/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction
6.
Int J Mol Sci ; 24(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37895168

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is an advanced stage of fatty liver disease characterized by liver damage, inflammation, and fibrosis. Although neutrophil infiltration is consistently observed in the livers of patients with NASH, the precise role of neutrophil-recruiting chemokines and infiltrating neutrophils in NASH pathogenesis remains poorly understood. Here, we aimed to elucidate the role of neutrophil infiltration in the transition from fatty liver to NASH by examining hepatic overexpression of interleukin-8 (IL8), a major chemokine responsible for neutrophil recruitment in humans. Mice fed a high-fat diet (HFD) for 3 months developed fatty liver without concurrent liver damage, inflammation, and fibrosis. Subsequent infection with an adenovirus overexpressing human IL8 for an additional 2 weeks increased IL8 levels, neutrophil infiltration, and liver injury in mice. Mechanistically, IL8-induced liver injury was associated with the upregulation of components of the NADPH oxidase 2 complex, which participate in neutrophil oxidative burst. IL8-driven neutrophil infiltration promoted macrophage aggregate formation and upregulated the expression of chemokines and inflammatory cytokines. Notably, IL8 overexpression amplified factors associated with fibrosis, including collagen deposition and hepatic stellate cell activation, in HFD-fed mice. Collectively, hepatic overexpression of human IL8 promotes neutrophil infiltration and fatty liver progression to NASH in HFD-fed mice.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Diet, High-Fat/adverse effects , Disease Models, Animal , Inflammation/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Liver/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism
7.
Int J Mol Sci ; 23(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36142491

ABSTRACT

Neurodegenerative diseases such as Parkinson's disease (PD) are known to be related to oxidative stress and neuroinflammation, and thus, modulating neuroinflammation offers a possible means of treating PD-associated pathologies. Morin (2',3,4',5,7-pentahydroxy flavone) is a flavonol with anti-oxidative and anti-inflammatory effects found in wines, herbs, and fruits. The present study was undertaken to determine whether a morin-containing diet has protective effects in an MPTP-induced mouse model of PD. Mice were fed a control or morin diet for 34 days, and then MPTP (30 mg/kg, i.p.) was administered daily for 5 days to induce a PD-like pathology. We found that dietary morin prevented MPTP-induced motor dysfunction and ameliorated dopaminergic neuronal damage in striatum (STR) and substantia nigra (SN) in our mouse model. Furthermore, MPTP-induced neuroinflammation was significantly reduced in mice fed morin. In vitro studies showed that morin effectively suppressed glial activations in primary microglia and astrocytes, and biochemical analysis and a docking simulation indicated that the anti-inflammatory effects of morin were mediated by blocking the extracellular signal-regulated kinase (ERK)-p65 pathway. These findings suggest that morin effectively inhibits glial activations and has potential use as a functional food ingredient with therapeutic potential for the treatment of PD and other neurodegenerative diseases associated with neuroinflammation.


Subject(s)
Flavones , Food Ingredients , MPTP Poisoning , Neuroprotective Agents , Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Dopaminergic Neurons/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Flavones/pharmacology , Flavonols/metabolism , Flavonols/pharmacology , Flavonols/therapeutic use , MPTP Poisoning/drug therapy , MPTP Poisoning/pathology , Mice , Mice, Inbred C57BL , Microglia/metabolism , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease/complications , Parkinson Disease/etiology
8.
Korean J Parasitol ; 60(4): 289-293, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36041491

ABSTRACT

Blastocystis is a genus of unicellular heterokont parasites belonging to a group of organisms known as Stramenopiles, which includes algae, diatoms, and water molds. Blastocystis includes several species that habitat in the gastrointestinal tracts of organisms as diverse as humans, farm animals, birds, rodents, reptiles, amphibians, fish, and cockroaches. It is important to public health and distributed globally, but its prevalence in dogs in Korea has not been reported to date. Here, we collected 787 canine fecal samples and assessed Blastocystis infection by age, sex, region, season, and diarrhea symptoms. We determined Blastocystis subtypes using phylogenetic analyses based on 18S rRNA gene sequences. We identified, 10 Blastocystis positive samples (1.3%). A higher proportion of infected dogs was asymptomatic; however, infection rates did not significantly differ according to region, age, sex, and season. Phylogenetic analysis showed that the Blastocystis sp. identified belonged to 4 subtypes (STs), ST1, ST5, ST10, and ST14, thus revealed the genetic diversity of Blastocystis sp. in dogs Korean. This is first report on the presence of Blastocystis sp. in dogs Korean. This study revealed a lower infection rate than expected and differed from previous studies in STs. Further studies are warranted to observe the national infection status of Blastocystis in dogs and the genetic characteristics of this genus.


Subject(s)
Blastocystis Infections , Blastocystis , Animals , Blastocystis/genetics , Blastocystis Infections/epidemiology , Blastocystis Infections/parasitology , Blastocystis Infections/veterinary , Dogs , Feces/parasitology , Genetic Variation , Humans , Phylogeny , Prevalence
9.
Med Mycol ; 59(9): 934-938, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-33998652

ABSTRACT

Enterocytozoon bieneusi, an important microsporidian fungus, causes chronic diarrhea in humans and animals worldwide. Out of the 502 fecal samples from wild boars, 13 were positive for the E. bieneusi internal transcribed spacer region, with a prevalence of 2.6%. Six E. bieneusi genotypes, D, EbpC, and four novel KWB1-KWB4, were identified with zoonotic potential. Genotypes D (subgroup 1a) and EbpC (subgroup 1d) were first reported in Korean swine and Korea, respectively; KWB1-KWB4 (subgroup 1e) were most prevalent in this study. Because zoonotic genotypes have been identified, E. bieneusi transmission through wild boars must be closely monitored for proper prevention and treatment, despite their low prevalence. LAY SUMMARY: Enterocytozoon bieneusi is an important microsporidian fungus. Its sequences from wild boars were identified with zoonotic potential. Genotypes D and EbpC were first reported in Korean swine and Korea, respectively. E. bieneusi should be closely monitored to properly prevent and treat animals.


Subject(s)
Enterocytozoon/genetics , Feces/microbiology , Microsporidiosis/microbiology , Sus scrofa/microbiology , Swine Diseases/microbiology , Zoonoses/microbiology , Animals , Animals, Wild/microbiology , Genetic Variation , Genotype , Geography , Male , Microsporidiosis/genetics , Phylogeny , Prevalence , Republic of Korea , Swine , Swine Diseases/genetics
10.
Korean J Parasitol ; 59(6): 639-643, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34974671

ABSTRACT

Enterocytozoon bieneusi is a microsporidian pathogen. Recently, the equestrian population is increasing in Korea. The horse-related zoonotic pathogens, including E. bieneusi, are concerns of public health. A total of 1,200 horse fecal samples were collected from riding centers and breeding farms in Jeju Island and inland areas. Of the fecal samples 15 (1.3%) were PCR positive for E. bieneusi. Interestingly, all positive samples came from Jeju Island. Diarrhea and infection in foals were related. Two genotypes (horse1, horse2) were identified as possible zoonotic groups requiring continuous monitoring.


Subject(s)
Enterocytozoon , Microsporidiosis , Animals , China , Enterocytozoon/genetics , Feces , Genotype , Horses , Microsporidiosis/epidemiology , Microsporidiosis/veterinary , Phylogeny , Prevalence , Zoonoses/epidemiology
11.
Ann Rheum Dis ; 79(12): 1635-1643, 2020 12.
Article in English | MEDLINE | ID: mdl-32895234

ABSTRACT

OBJECTIVES: Recently, necroptosis has attracted increasing attention in arthritis research; however, it remains unclear whether its regulation is involved in osteoarthritis (OA) pathogenesis. Since receptor-interacting protein kinase-3 (RIP3) plays a pivotal role in necroptosis and its dysregulation is involved in various pathological processes, we investigated the role of the RIP3 axis in OA pathogenesis. METHODS: Experimental OA was induced in wild-type or Rip3 knockout mice by surgery to destabilise the medial meniscus (DMM) or the intra-articular injection of adenovirus carrying a target gene (Ad-Rip3 and Ad-Trim24 shRNA). RIP3 expression was examined in OA cartilage from human patients; Trim24, a negative regulator of RIP3, was identified by microarray and in silico analysis. Connectivity map (CMap) and in silico binding approaches were used to identify RIP3 inhibitors and to examine their direct regulation of RIP3 activation in OA pathogenesis. RESULTS: RIP3 expression was markedly higher in damaged cartilage from patients with OA than in undamaged cartilage. In the mouse model, adenoviral RIP3 overexpression accelerated cartilage disruption, whereas Rip3 depletion reduced DMM-induced OA pathogenesis. Additionally, TRIM24 knockdown upregulated RIP3 expression; its downregulation promoted OA pathogenesis in knee joint tissues. The CMap approach and in silico binding assay identified AZ-628 as a potent RIP3 inhibitor and demonstrated that it abolished RIP3-mediated OA pathogenesis by inhibiting RIP3 kinase activity. CONCLUSIONS: TRIM24-RIP3 axis perturbation promotes OA chronicity by activating RIP3 kinase, suggesting that the therapeutic manipulation of this pathway could provide new avenues for treating OA.


Subject(s)
Carrier Proteins/metabolism , Osteoarthritis/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Aged , Aged, 80 and over , Animals , Female , Humans , Male , Mice , Mice, Knockout , Middle Aged , Necroptosis/physiology , Nuclear Proteins/metabolism , Osteoarthritis/pathology , Signal Transduction/physiology , Transcription Factors/metabolism
12.
Korean J Parasitol ; 57(5): 525-529, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31715695

ABSTRACT

Blastocystis is one of the most commonly detected genera of protozoan parasites in the human intestines as well as the intestines of many other species such as pigs in several geographical regions worldwide. However, no studies have examined Blastocystis in pigs in Korea. In this study, PCR and nucleotide sequencing were performed to evaluate the genetic diversity and zoonotic potential of Blastocystis using pig fecal samples. We obtained 646 stool samples from groups of piglets, weaners, growers, finishers, and sows in Korea. A total of 390 Blastocystis-positive samples were identified, and the infection rate was 60.4%. The infection rates were significantly related to age and region. The 4 subtypes (STs) of Blastocystis confirmed by phylogenetic analysis were ST1, ST2, ST3, and ST5, indicating the high genetic diversity of Blastocystis in Korean pigs. ST5 was highly distributed in Korean pigs among detected STs in this study. Some sequences were closely related to those of Blastocystis isolated from humans. This is the first study of Blastocystis in pigs in Korea. Based on the results, Blastocystis is prevalent in Korean pigs. Although a small number of samples were obtained in some areas, the clinical development of Blastocystis infection in pigs and potential for human transmission should be further examined.


Subject(s)
Blastocystis Infections/veterinary , Blastocystis/isolation & purification , Swine Diseases/parasitology , Animals , Blastocystis/classification , Blastocystis/genetics , Blastocystis Infections/epidemiology , Blastocystis Infections/parasitology , Feces/parasitology , Female , Male , Phylogeny , Prevalence , Republic of Korea/epidemiology , Swine , Swine Diseases/epidemiology
13.
Mol Cancer ; 17(1): 175, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30563517

ABSTRACT

Even when targets responsible for chemoresistance are identified, drug development is often hampered due to the poor druggability of these proteins. We systematically analyzed therapy-resistance with a large-scale cancer cell transcriptome and drug-response datasets and predicted the candidate drugs based on the gene expression profile. Our results implicated the epithelial-mesenchymal transition as a common mechanism underlying resistance to chemotherapeutic drugs. Notably, we identified ITGB3, whose expression was abundant in both drug resistance and mesenchymal status, as a promising target to overcome chemoresistance. We also confirmed that depletion of ITGB3 sensitized cancer cells to conventional chemotherapeutic drugs by modulating the NF-κB signaling pathway. Considering the poor druggability of ITGB3 and the lack of feasible drugs to directly inhibit this protein, we took an in silico screening for drugs mimicking the transcriptome-level changes caused by knockdown of ITGB3. This approach successfully identified atorvastatin as a novel candidate for drug repurposing, paving an alternative path to drug screening that is applicable to undruggable targets.


Subject(s)
Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/genetics , Integrin beta3/genetics , Lung Neoplasms/genetics , A549 Cells , Cell Line, Tumor , Drug Discovery/methods , Humans , NF-kappa B/genetics , Pharmacogenetics/methods , Signal Transduction/genetics
14.
Acta Neurochir Suppl ; 126: 111-114, 2018.
Article in English | MEDLINE | ID: mdl-29492544

ABSTRACT

OBJECTIVE: Practical deficiencies related to conventional transcranial Doppler (TCD) sonography have restricted its use and applicability. This work seeks to mitigate several such constraints through the development of a wearable, electronically steered TCD velocimetry system, which enables noninvasive measurement of cerebral blood flow velocity (CBFV) for monitoring applications with limited operator interaction. MATERIALS AND METHODS: A highly-compact, discrete prototype system was designed and experimentally validated through flow phantom and preliminary human subject testing. The prototype system incorporates a custom two-dimensional transducer array and multi-channel transceiver electronics, thereby facilitating acoustic beamformation via phased array operation. Electronic steering of acoustic energy enables algorithmic system controls to map Doppler power throughout the tissue volume of interest and localize regions of maximal flow. Multi-focal reception permits dynamic vessel position tracking and simultaneous flow velocimetry over the time-course of monitoring. RESULTS: Experimental flow phantom testing yielded high correlation with concurrent flowmeter recordings across the expected range of physiological flow velocities. Doppler power mapping has been validated in both flow phantom and preliminary human subject testing, resulting in average vessel location mapping times <14 s. Dynamic vessel tracking has been realized in both flow phantom and preliminary human subject testing. CONCLUSIONS: A wearable prototype CBFV measurement system capable of autonomous vessel search and tracking has been presented. Although flow phantom and preliminary human validation show promise, further human subject testing is necessary to compare velocimetry data against existing commercial TCD systems. Additional human subject testing must also verify acceptable vessel search and tracking performance under a variety of subject populations and motion dynamics-such as head movement and ambulation.


Subject(s)
Blood Flow Velocity/physiology , Cerebrovascular Circulation/physiology , Equipment and Supplies , Middle Cerebral Artery/diagnostic imaging , Ultrasonography, Doppler, Transcranial/instrumentation , Wearable Electronic Devices , Healthy Volunteers , Humans , Phantoms, Imaging
15.
Bioorg Med Chem Lett ; 24(14): 3168-74, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24856059

ABSTRACT

Intake of dietary aroma compounds may regulate cellular lipid metabolism. We demonstrated that trans-caryophyllene, a flavor compound in plant foods and teas, activates peroxisome proliferator-activated receptor (PPAR)-α through direct interaction with the ligand-binding domain of PPAR-α. The agonistic activity of trans-caryophyllene was investigated by the luciferase reporter assay, surface plasmon resonance, and time-resolved fluorescence resonance energy transfer assay. Following the stimulation of cells with trans-caryophyllene, intracellular triglyceride concentrations were significantly reduced by 17%, and hepatic fatty acid uptake was significantly increased by 31%. The rate of fatty acid oxidation was also significantly increased. The expressions of PPAR-α and its target genes and proteins in fatty acid uptake and oxidation were significantly up-regulated as well. In HepG2 cells transfected with small interfering RNA of PPAR-α, the effects of trans-caryophyllene on PPAR-α responsive gene expressions, intracellular triglyceride, fatty acid uptake and oxidation were disappeared. These results indicate that the aroma compound, trans-caryophyllene, is PPAR-α agonist thus regulates cellular lipid metabolism in PPAR-α dependent manners.


Subject(s)
PPAR alpha/agonists , Sesquiterpenes/pharmacology , Dose-Response Relationship, Drug , Humans , Ligands , Models, Molecular , Molecular Conformation , Polycyclic Sesquiterpenes , Sesquiterpenes/chemistry , Stereoisomerism , Structure-Activity Relationship
16.
iScience ; 27(4): 109448, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38551001

ABSTRACT

Epidermal growth factor receptor inhibitors (EGFRi) have exhibited promising clinical outcomes in the treatment of various cancers. However, their widespread application has been limited by low patient eligibility and the emergence of resistance. Leveraging a multi-omics approach (>1000 cancer cell lines), we explored molecular signatures linked to EGFRi responsiveness and found that expression signatures involved in the estrogen response could recapitulate cancer cell dependency on EGFR, a phenomenon not solely attributable to EGFR-activating mutations. By correlating genome-wide function screening data with EGFRi responses, we identified chemokine receptor 6 (CCR6) as a potential druggable target to mitigate EGFRi resistance. In isogenic cell models, pharmacological inhibition of CCR6 effectively reversed acquired EGFRi resistance, disrupting mitochondrial oxidative phosphorylation, a cellular process commonly associated with therapy resistance. Our data-driven strategy unveils drug-response biomarkers and therapeutic targets for resistance, thus potentially expanding EGFRi applicability and efficacy.

17.
Phytomedicine ; 123: 155057, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984121

ABSTRACT

BACKGROUND: Although chronic treatment with glucocorticoids, such as dexamethasone, is frequently associated with muscle atrophy, effective and safe therapeutics for treating muscle atrophy remain elusive. Jakyak-gamcho-tang (JGT), a decoction of Paeoniae Radix and Glycyrrhizae Radix et Rhizoma, has long been used to relieve muscle tension and control muscle cramp-related pain. However, the effects of JGT on glucocorticoid-induced muscle atrophy are yet to be comprehensively clarified. PURPOSE: The objective of the current study was to validate the protective effect of JGT in dexamethasone-induced muscle atrophy models and elucidate its underlying mechanism through integrated in silico - in vitro - in vivo studies. STUDY DESIGN AND METHODS: Differential gene expression was preliminarily analyzed using the RNA-seq data to determine the effects of JGT on C2C12 myotubes. The protective effects of JGT were further validated in dexamethasone-treated C2C12 myotubes by assessing cell viability, myotube integrity, and mitochondrial function or in C57BL/6 N male mice with dexamethasone-induced muscle atrophy by evaluating muscle mass and physical performance. Transcriptomic pathway analysis was also performed to elucidate the underlying mechanism. RESULTS: Based on preliminary gene set enrichment analysis using the RNA-seq data, JGT regulated various pathways related to muscle differentiation and regeneration. Dexamethasone-treated C2C12 myotubes and muscle tissues of atrophic mice displayed substantial muscle protein degradation and muscle loss, respectively, which was efficiently alleviated by JGT treatment. Importantly, JGT-mediated protective effects were associated with observations such as preservation of mitochondrial function, upregulation of myogenic signaling pathways, including protein kinase B/mammalian target of rapamycin/forkhead box O3, inhibition of ubiquitin-mediated muscle protein breakdown, and downregulation of inflammatory and apoptotic pathways induced by dexamethasone. CONCLUSION: To the best of our knowledge, this is the first report to demonstrate that JGT could be a potential pharmaceutical candidate to prevent muscle atrophy induced by chronic glucocorticoid treatment, highlighting its known effects for relieving muscle spasms and pain. Moreover, transcriptomic pathway analysis can be employed as an efficient in silico tool to predict novel pharmacological candidates and elucidate molecular mechanisms underlying the effects of herbal medications comprising diverse biologically active ingredients.


Subject(s)
Drugs, Chinese Herbal , Glucocorticoids , Glycyrrhiza , Paeonia , Male , Mice , Animals , Mice, Inbred C57BL , Muscular Atrophy/chemically induced , Muscular Atrophy/drug therapy , Muscle Fibers, Skeletal , Muscle Proteins/metabolism , Muscle Proteins/pharmacology , Muscle Proteins/therapeutic use , Dexamethasone/pharmacology , Pain , Mammals
18.
Sci Data ; 11(1): 974, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242618

ABSTRACT

Traditional herbal medicine, rooted in a long history of use in East Asia, combines several herbs to create treatments showing high efficacy with minimal side effects, for specific diseases. Such combination therapies represent a potential reservoir of new drugs for treating multifactorial and incurable chronic diseases. However, the complexity of their mechanisms of action due to the combination of multiple compounds, has limited their research integration into modern pharmacological science. To address this challenge, we constructed drug-induced transcriptome data for herbal medicines through systematic experiments, analyzed with the aid of various omics databases. We introduce KORE-Map 1.0 (Korean medicine Omics Resource Extension Map), the first comprehensive resource of drug-derived transcriptome data for representative tonifying herbal medicines, effective in enhancing the immune system. This dataset aims to provide novel insights into the combinatorial mechanisms of these herbal medicines and to aid in the discovery of new therapeutic targets and indications for various incurable diseases.


Subject(s)
Transcriptome , Humans , Medicine, Korean Traditional , Plants, Medicinal/genetics , Herbal Medicine
19.
Biochim Biophys Acta Mol Cell Res ; : 119856, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357548

ABSTRACT

Obesity is recognized as a significant contributor to the onset of kidney disease. However, the key processes involved in the development of kidney disease in obese individuals are not well understood. Here, we investigated the effects of high-fat diet (HFD)-induced obesity on folic acid (FA)-induced kidney injury in mice. Mice were fed an HFD for 12 weeks to induce obesity, followed by an additional intraperitoneal injection of FA. The results showed that mice fed HFD developed higher levels of kidney damage than those in the chow group. In contrast, mice exposed to both HFD and FA showed less fibrosis and inflammatory responses compared to the FA only treated group. Furthermore, the HFD with FA group exhibited elevated lipid accumulation in the kidney and reduced expression of mitochondrial proteins compared to the FA-treated group. Under in vitro experimental conditions, we found that lipid accumulation induced by oleic acid treatment reduced inflammatory and fibrotic responses in both renal tubules and fibroblasts. Finally, RNA sequencing analysis revealed that the inflammasome and pyroptosis signaling pathways were significantly increased in the HFD group with FA injection. In summary, these findings suggest that obesity increases renal injury due to a lack of appropriate inflammatory, fibrotic, and metabolic responses and the activation of the inflammasome and pyroptosis signaling pathways.

20.
J Nutr Biochem ; 134: 109765, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39255902

ABSTRACT

Calorie restriction (CR) is known to confer health benefits, including longevity and disease prevention. Although CR is promising in preventing chronic kidney disease (CKD), its potential impact on the progression of kidney fibrosis from acute kidney injury (AKI) to CKD remains unclear. Here, we present evidence that CR exacerbates renal damage in a mouse model of folic acid (FA)-induced renal fibrosis by altering mitochondrial metabolism and inflammation. Mice subjected to CR (60% of ad libitum) for three days were subjected to high dose of FA (250 mg/kg) injection and maintained under CR for an additional week before being sacrificed. Biochemical analyses showed that CR mice exhibited increased kidney injury and fibrosis. RNA sequencing analysis demonstrated decreased electron transport and oxidative phosphorylation (OXPHOS) in CR kidneys with injury, heightened inflammatory, and fibrotic responses. CR significantly decreased OXPHOS gene and protein levels and reduced ß-oxidation-associated proteins in the kidney. To determine whether defects in mitochondrial metabolism is associated with inflammation in the kidney, further in vitro experiments were performed. NRK52E kidney epithelial cells were treated with antimycin A to induce mitochondrial damage. Antimycin A treatment significantly increased chemokine expression via a STING-dependent pathway. Serum restriction in NRK49F kidney fibroblasts was observed to enhance the fibrotic response induced by TGFß under in vitro conditions. In summary, our results indicate that CR exacerbates fibrosis and inflammatory responses in the kidney by altering mitochondrial metabolism, highlighting the importance of adequate energy supply for an effective response to AKI and fibrosis development.

SELECTION OF CITATIONS
SEARCH DETAIL