Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Cell Mol Med ; 28(13): e18523, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957039

ABSTRACT

This research explores the role of microRNA in senescence of human endothelial progenitor cells (EPCs) induced by replication. Hsa-miR-134-5p was found up-regulated in senescent EPCs where overexpression improved angiogenic activity. Hsa-miR-134-5p, which targeted transforming growth factor ß-activated kinase 1-binding protein 1 (TAB1) gene, down-regulated TAB1 protein, and inhibited phosphorylation of p38 mitogen-activated protein kinase (p38) in hsa-miR-134-5p-overexpressed senescent EPCs. Treatment with siRNA specific to TAB1 (TAB1si) down-regulated TAB1 protein and subsequently inhibited p38 activation in senescent EPCs. Treatment with TAB1si and p38 inhibitor, respectively, showed angiogenic improvement. In parallel, transforming growth factor Beta 1 (TGF-ß1) was down-regulated in hsa-miR-134-5p-overexpressed senescent EPCs and addition of TGF-ß1 suppressed the angiogenic improvement. Analysis of peripheral blood mononuclear cells (PBMCs) disclosed expression levels of hsa-miR-134-5p altered in adult life, reaching a peak before 65 years, and then falling in advanced age. Calculation of the Framingham risk score showed the score inversely correlates with the hsa-miR-134-5p expression level. In summary, hsa-miR-134-5p is involved in the regulation of senescence-related change of angiogenic activity via TAB1-p38 signalling and via TGF-ß1 reduction. Hsa-miR-134-5p has a potential cellular rejuvenation effect in human senescent EPCs. Detection of human PBMC-derived hsa-miR-134-5p predicts cardiovascular risk.


Subject(s)
Adaptor Proteins, Signal Transducing , Cardiovascular Diseases , Cellular Senescence , Endothelial Progenitor Cells , Leukocytes, Mononuclear , MicroRNAs , p38 Mitogen-Activated Protein Kinases , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Endothelial Progenitor Cells/metabolism , Cellular Senescence/genetics , Leukocytes, Mononuclear/metabolism , Middle Aged , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Male , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Female , Aged , Neovascularization, Physiologic/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Adult , Risk Factors
2.
J Cell Mol Med ; 28(12): e18489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899522

ABSTRACT

This study explores the impact of senescence on autocrine C-C motif chemokine ligand 5 (CCL5) in human endothelial progenitor cell (EPCs), addressing the poorly understood decline in number and function of EPCs during ageing. We examined the effects of replication-induced senescence on CCL5/CCL5 receptor (CCR5) signalling and angiogenic activity of EPCs in vitro and in vivo. We also explored microRNAs controlling CCL5 secretion in senescent EPCs, its impact on EPC angiogenic activity, and validated our findings in humans. CCL5 secretion and CCR5 levels in senescent EPCs were reduced, leading to attenuated angiogenic activity. CCL5 enhanced EPC proliferation via the CCR5/AKT/P70S6K axis and increased vascular endothelial growth factor (VEGF) secretion. Up-regulation of miR-409 in senescent EPCs resulted in decreased CCL5 secretion, inhibiting the angiogenic activity, though these negative effects were counteracted by the addition of CCL5 and VEGF. In a mouse hind limb ischemia model, CCL5 improved the angiogenic activity of senescent EPCs. Analysis involving 62 healthy donors revealed a negative association between CCL5 levels, age and Framingham Risk Score. These findings propose CCL5 as a potential biomarker for detection of EPC senescence and cardiovascular risk assessment, suggesting its therapeutic potential for age-related cardiovascular disorders.


Subject(s)
Cellular Senescence , Chemokine CCL5 , Endothelial Progenitor Cells , MicroRNAs , Neovascularization, Physiologic , Animals , Humans , Male , Mice , Angiogenesis , Cell Proliferation , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Down-Regulation/genetics , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/cytology , Ischemia/metabolism , Ischemia/pathology , Ischemia/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Neovascularization, Physiologic/genetics , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics
3.
J Cell Mol Med ; 27(5): 687-700, 2023 03.
Article in English | MEDLINE | ID: mdl-36756741

ABSTRACT

We explored the roles of hsa-microRNA (miR)-409-3p in senescence and signalling mechanism of human endothelial progenitor cells (EPCs). Hsa-miR-409-3p was found upregulated in senescent EPCs. Overexpression of miRNA mimics in young EPCs inhibited angiogenesis. In senescent EPCs, compared to young EPCs, protein phosphatase 2A (PP2A) was downregulated, with activation of p38/JNK by phosphorylation. Young EPCs treated with siPP2A caused inhibited angiogenesis with activation of p38/JNK, similar to findings in senescent EPCs. Time series analysis showed, in young EPCs treated with hsa-miR-409-3p mimics, PP2A was steadily downregulated for 72 h, while p38/JNK was activated with a peak at 48 hours. The inhibited angiogenesis of young EPCs after miRNA-409-3p mimics treatment was reversed by the p38 inhibitor. The effect of hsa-miR-409-3p on PP2A signalling was attenuated by exogenous VEGF. Analysis of human peripheral blood mononuclear cells (PBMCs) obtained from healthy people revealed hsa-miR-409-3p expression was higher in those older than 65 years, compared to those younger than 30 years, regardless of gender. In summary, hsa-miR-409-3p was upregulated in senescent EPCs and acted as a negative modulator of angiogenesis via targeting protein phosphatase 2 catalytic subunit alpha (PPP2CA) gene and regulating PP2A/p38 signalling. Data from human PBMCs suggested hsa-miR-409-3p a potential biomarker for human ageing.


Subject(s)
Endothelial Progenitor Cells , MicroRNAs , Humans , Aging/genetics , Endothelial Progenitor Cells/metabolism , Leukocytes, Mononuclear/metabolism , MicroRNAs/metabolism , Protein Phosphatase 2/genetics , p38 Mitogen-Activated Protein Kinases
4.
Nanomedicine ; 36: 102427, 2021 08.
Article in English | MEDLINE | ID: mdl-34174418

ABSTRACT

Cellular senescence is the progressive impairment of function and proliferation in response to various regulators. Dihydrolipoic acid-coated gold nanoclusters (DHLA-Au NCs), which are molecular clusters with covalently linked dihydroxyl lipoic acid, preserve cellular activities for long-term incubation. DHLA-Au NC delivery was characterized, and we determined the role of growth supplements on internalization, allowing the optimization of DHLA-Au NC bioactivity. In the optimized medium, DHLA-Au NCs attenuated the levels of the senescence-associated phenotype. Molecular mechanism analysis further indicated that during DHLA-Au NC treatment, the activation of the stress signal JNK and its downstream c-Jun were impaired under LPS induction, which led to a decline in AP-1-mediated TNF-α transactivation. Confocal microscopy and subcellular fractionation analysis suggested that DHLA-Au NCs interacted with mitochondria through their lipid moiety and attenuated mitochondria-derived reactive oxygen species. With adequate treatment, DHLA-Au NCs show protection against cellular senescence and inflammation in vitro and in vivo.


Subject(s)
Anti-Inflammatory Agents , Cellular Senescence/drug effects , Coated Materials, Biocompatible , Gold , MAP Kinase Kinase 4/metabolism , Metal Nanoparticles , Mitochondria/metabolism , Thioctic Acid/analogs & derivatives , Transcription Factor AP-1/metabolism , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacokinetics , Coated Materials, Biocompatible/pharmacology , Gold/chemistry , Gold/pharmacology , Humans , Inflammation/drug therapy , Inflammation/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Thioctic Acid/chemistry , Thioctic Acid/pharmacokinetics , Thioctic Acid/pharmacology
5.
Proc Natl Acad Sci U S A ; 107(33): 14769-74, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20679198

ABSTRACT

Cytokine and antiangiogenic gene therapies have proved effective in implanted hepatocellular carcinoma (HCC) models in which small tumor burdens were established in small rodents. These models, however, may not reflect human HCCs, which are frequently detected at a stage when tumors are large and multifocal. In addition, HCC in patients is often associated with viral hepatitis. To investigate the effectiveness of a mixture type of gene therapy strategy on large tumor burdens, we used the woodchuck model in which woodchuck hepatitis virus-induced HCCs are large and multifocal, simulating the conditions in humans. Adenoviruses encoding antiangiogenic factors (pigment epithelium-derived factor and endostatin) or cytokines (GM-CSF and IL-12) were delivered via the hepatic artery separately or in combination into woodchuck livers bearing HCCs. Our results showed that the mixture type of strategy, which contained two cytokines and two antiangiogenic factors, had better antitumor effects on large tumors as compared with monotherapy either with antiangiogenic or cytokine genes. The immunotherapy recruited significant levels of CD3(+) T cells that infiltrated the tumors, whereas the antiangiogenesis-based therapy significantly reduced tumor vasculature. The mixture type of gene therapy achieved both effects. In addition, it induced high levels of natural killer cells and apoptotic cells and reduced the levels of immunosuppressive effectors in the tumor regions. Hence, antiangiogenic therapy may provide the advantage of reducing immune tolerance in large tumors, making them more vulnerable to the immune reactions. Our study implies that in the future, the combination therapy may prove effective for the treatment of patients with advanced HCC.


Subject(s)
Genetic Therapy/methods , Immunotherapy/methods , Liver Neoplasms, Experimental/therapy , Rodent Diseases/therapy , Alanine Transaminase/blood , Angiogenesis Inhibitors/genetics , Angiogenesis Inhibitors/metabolism , Animals , Aspartate Aminotransferases/blood , Combined Modality Therapy , Endostatins/genetics , Endostatins/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Hepatitis B/complications , Hepatitis B/virology , Hepatitis B Virus, Woodchuck/growth & development , Humans , Liver Neoplasms, Experimental/blood , Liver Neoplasms, Experimental/etiology , Marmota , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Rodent Diseases/blood , Rodent Diseases/etiology , Serpins/genetics , Serpins/metabolism , Treatment Outcome , Tumor Burden , gamma-Glutamyltransferase/blood
6.
Int J Cancer ; 130(12): 2892-902, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-21805477

ABSTRACT

Tumor-induced angiogenesis has been shown to suppress immune responses. One mechanism is to suppress leukocyte-endothelial cell interaction by down-regulating the expression of adhesion molecules, such as intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1 and E-selectin on the tumor endothelium, which enables tumor cells to escape immune surveillance. Calreticulin (CRT), a chaperone protein mainly located in the endoplasmic reticulum, has been shown to exert anti-angiogenic activity and inhibit tumor growth. Here, we demonstrate that in addition to inhibiting angiogenesis, CRT also enhances the expression of both ICAM-1 and VCAM-1 on tumor endothelial cells. This expression results in enhanced leukocyte-endothelial cell interactions and increased lymphocyte infiltration into tumors. Therefore, combining intramuscular CRT gene transfer with intratumoral cytokine gene therapies significantly improves the antitumor effects of immunotherapy by markedly increasing the levels of tumor-infiltrating lymphocytes. This combined treatment increased the levels of infiltrating lymphocytes to those achieved using four times the cytokine dosage. The combined therapy also resulted in lower levels of immunosuppressive molecules and higher levels of activated T-cells in the tumor microenvironment than immunotherapy alone. In conclusion, this study describes a new antitumor mechanism of CRT that involves the up-regulation of tumor endothelial adhesion molecules and the enhanced infiltration of tumor-specific lymphocytes. Thus, CRT treatment can make tumor cells more vulnerable to immunotherapy and improve the therapeutic efficacy of immunotherapy.


Subject(s)
Calreticulin/metabolism , E-Selectin/metabolism , Immunotherapy , Intercellular Adhesion Molecule-1/metabolism , Liver Neoplasms, Experimental/immunology , Liver Neoplasms, Experimental/therapy , Vascular Cell Adhesion Molecule-1/metabolism , Animals , Calreticulin/genetics , Cell Line , Cell Line, Tumor , Cell Proliferation , Cricetinae , E-Selectin/biosynthesis , E-Selectin/genetics , Endothelial Cells/immunology , Endothelium, Vascular/immunology , Endothelium, Vascular/metabolism , Gene Transfer Techniques , Intercellular Adhesion Molecule-1/genetics , Leukocytes/immunology , Lymphocyte Activation , Male , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Neovascularization, Pathologic , Rats , Rats, Wistar , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Escape , Vascular Cell Adhesion Molecule-1/genetics
7.
Sci Rep ; 11(1): 13449, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34188086

ABSTRACT

The therapeutic effects of ultrasonic microbubble transfection (UMT)-based vascular endothelial growth factor 165 (VEGF165) gene delivery on young and senescent endothelial progenitor cells (EPCs) were investigated. By UMT, plasmid DNA (pDNA) can be delivered into both young EPCs and senescent EPCs. In the UMT groups, higher pDNA-derived protein expression was found in senescent EPCs than in young EPCs. Consistent with this finding, a higher intracellular level of pDNA copy number was detected in senescent EPCs, with a peak at the 2-h time point post UMT. Ultrasonic microbubble delivery with or without VEGF improved the angiogenic properties, including the proliferation and/or migration activities, of senescent EPCs. Supernatants from young and senescent EPCs subjected to UMT-mediated VEGF transfection enhanced the proliferation and migration of human aortic endothelial cells (HAECs), and the supernatant of senescent EPCs enhanced proliferation more strongly than the supernatant from young EPCs. In the UMT groups, the stronger enhancing effect of the supernatant from senescent cells on HAEC proliferation was consistent with the higher intracellular VEGF pDNA copy number and level of protein production per cell in the supernatant from senescent cells in comparison to the supernatant from young EPCs. Given that limitations for cell therapies are the inadequate number of transplanted cells and/or insufficient cell angiogenesis, these findings provide a foundation for enhancing the therapeutic angiogenic effect of cell therapy with senescent EPCs in ischaemic cardiovascular diseases.


Subject(s)
Cellular Senescence , Endothelial Progenitor Cells/metabolism , Gene Transfer Techniques , Microbubbles , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A , Animals , Humans , Swine , Swine, Miniature , Vascular Endothelial Growth Factor A/biosynthesis , Vascular Endothelial Growth Factor A/genetics
8.
Aging (Albany NY) ; 13(17): 21364-21384, 2021 09 11.
Article in English | MEDLINE | ID: mdl-34508614

ABSTRACT

Senescence reduces the circulating number and angiogenic activity of endothelial progenitor cells (EPCs), and is associated with aging-related vascular diseases. However, it is very time-consuming to obtain aged cells (~1 month of repeated replication) or animals (~2 years) for senescence studies. Here, we established an accelerated senescence model by treating EPCs with deferoxamine (DFO), an FDA-approved iron chelator. Four days of low-dose (3 µM) DFO induced senescent phenotypes in EPCs, including a senescent pattern of protein expression, impaired mitochondrial bioenergetics, altered mitochondrial protein levels and compromised angiogenic activity. DFO-treated early EPCs from young and old donors (< 35 vs. > 70 years old) displayed similar senescent phenotypes, including elevated senescence-associated ß-galactosidase activity and reduced relative telomere lengths, colony-forming units and adenosine triphosphate levels. To validate this accelerated senescence model in vivo, we intraperitoneally injected Sprague-Dawley rats with DFO for 4 weeks. Early EPCs from DFO-treated rats displayed profoundly senescent phenotypes compared to those from control rats. Additionally, in hind-limb ischemic mice, DFO pretreatment compromised EPC angiogenesis by reducing both blood perfusion and capillary density. DFO thus accelerates EPC senescence and appears to hasten model development for cellular senescence studies.


Subject(s)
Aging/metabolism , Cellular Senescence , Deferoxamine/pharmacology , Endothelial Progenitor Cells/cytology , Neovascularization, Pathologic , Animals , Cell Proliferation , Cells, Cultured , Endothelial Progenitor Cells/metabolism , Hindlimb/blood supply , Hindlimb/pathology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mitochondria/metabolism , Rats , Rats, Sprague-Dawley , Telomerase/metabolism
9.
Ultrasound Med Biol ; 45(9): 2434-2443, 2019 09.
Article in English | MEDLINE | ID: mdl-31248639

ABSTRACT

We investigated whether ultrasonic microbubble transfection (UMT) would enhance the transfection of large-sized luciferase plasmids (5.6, 9.2 and 33 kb) and biological impacts. Porcine venous blood endothelial progenitor cells (EPCs) were cultured in a medium containing plasmid DNA (pDNA) of different sizes followed by UMT and functional assays. Real-time polymerase chain reaction was conducted to investigate the effects of transfection of pDNA on multiple molecules central to endothelial function. The results indicated enhanced luciferase expression after UMT but the enhancement declined with increase in the size of the plasmid. UMT of pDNAs sized 5.6 and 9.2 kb into EPCs led to significant enhancement of proliferation. The interleukin-6 (IL-6) secreted from UMT of EPCs also increased in the 5.6- and 9.2-kb pDNA groups. Treatment of the transfected EPCs with anti-IL-6 antibody neutralized the proliferation. In conclusion, UMT of pDNAs sized 5.6 and 9.2 kb into EPCs increased the secretion of IL-6, which in turn enhanced cell proliferation.


Subject(s)
Endothelial Progenitor Cells/metabolism , Interleukin-6/metabolism , Microbubbles , Sonication/methods , Animals , Cell Movement , Cell Proliferation , Cells, Cultured , DNA, Complementary , Plasmids , Swine , Swine, Miniature , Transfection
10.
Genetics ; 198(4): 1685-98, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25245793

ABSTRACT

The selective genotyping approach, where only individuals from the high and low extremes of the trait distribution are selected for genotyping and the remaining individuals are not genotyped, has been known as a cost-saving strategy to reduce genotyping work and can still maintain nearly equivalent efficiency to complete genotyping in QTL mapping. We propose a novel and simple statistical method based on the normal mixture model for selective genotyping when both genotyped and ungenotyped individuals are fitted in the model for QTL analysis. Compared to the existing methods, the main feature of our model is that we first provide a simple way for obtaining the distribution of QTL genotypes for the ungenotyped individuals and then use it, rather than the population distribution of QTL genotypes as in the existing methods, to fit the ungenotyped individuals in model construction. Another feature is that the proposed method is developed on the basis of a multiple-QTL model and has a simple estimation procedure similar to that for complete genotyping. As a result, the proposed method has the ability to provide better QTL resolution, analyze QTL epistasis, and tackle multiple QTL problem under selective genotyping. In addition, a truncated normal mixture model based on a multiple-QTL model is developed when only the genotyped individuals are considered in the analysis, so that the two different types of models can be compared and investigated in selective genotyping. The issue in determining threshold values for selective genotyping in QTL mapping is also discussed. Simulation studies are performed to evaluate the proposed methods, compare the different models, and study the QTL mapping properties in selective genotyping. The results show that the proposed method can provide greater QTL detection power and facilitate QTL mapping for selective genotyping. Also, selective genotyping using larger genotyping proportions may provide roughly equivalent power to complete genotyping and that using smaller genotyping proportions has difficulties doing so. The R code of our proposed method is available on http://www.stat.sinica.edu.tw/chkao/.


Subject(s)
Chromosome Mapping/methods , Genotyping Techniques , Models, Genetic , Models, Statistical , Quantitative Trait Loci , Algorithms , Computer Simulation , Epistasis, Genetic , Genetics, Population
11.
Cancer Lett ; 320(1): 23-30, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22266191

ABSTRACT

We have recently demonstrated that a 4-in-1 gene therapy strategy that contains two anti-angiogenic genes [endostatin and pigment epithelium-derived factor] and two cytokine genes [granulocyte macrophage colony-stimulating factor and interleukin 12] has a considerable antitumor effect on large tumors in a woodchuck hepatoma model. The current study further investigates the underlying mechanisms for the antitumor effect observed by using small rodent models. We found that immunotherapy alone increased immunosuppressive cells in large tumors over time, whereas the anti-angiogenic therapy contained in the 4-in-1 strategy alleviated immunosuppression and made tumors vulnerable to immunotherapy, thus resulting in a synergistic antitumor effect.


Subject(s)
Endostatins/genetics , Endostatins/immunology , Eye Proteins/genetics , Eye Proteins/immunology , Genetic Therapy/methods , Immunotherapy/methods , Liver Neoplasms, Experimental/therapy , Nerve Growth Factors/genetics , Nerve Growth Factors/immunology , Serpins/genetics , Serpins/immunology , Adenoviridae/genetics , Animals , Apoptosis/genetics , Apoptosis/immunology , Cell Line, Tumor , Combined Modality Therapy , Endostatins/biosynthesis , Eye Proteins/biosynthesis , Humans , Liver Neoplasms, Experimental/blood supply , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred BALB C , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/therapy , Nerve Growth Factors/biosynthesis , Serpins/biosynthesis , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology
12.
J Chem Phys ; 121(22): 11053-9, 2004 Dec 08.
Article in English | MEDLINE | ID: mdl-15634056

ABSTRACT

We investigated distributions of angular-anisotropy parameter beta and kinetic energy of fragments after photodissociation of methanol using time-of-flight (TOF) mass spectrometry. Fragments, in particular CH(3)O and CO, were successfully detected using tunable radiation from a synchrotron for photoionization. Following O-H bond fission, a CH(3)O fragment with internal energy greater than 104 kJ mol(-1) dissociates to CH(2)O+H. Elimination of two H(2) accompanies formation of CO. The beta value of hydroxyl hydrogen is -0.26 whereas that of methyl hydrogen is zero. H(2) has two distinct components in TOF spectra; these rapid and slow components have beta values -0.30 and -0.18, respectively. The CH(3)+OH dissociation exhibits a highly anisotropic angular distribution with beta= -0.75. The beta values of fragments from CD(3)OH photolysis are addressed. From measurements of angular-anisotropy parameters of various fragments, we surmise that the transition dipole moment mu is almost perpendicular to the C-O-H plane and that n-3p(x) (2 (1)A") is the major photoexcited state at 157 nm.

SELECTION OF CITATIONS
SEARCH DETAIL