Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Genome Res ; 30(9): 1258-1273, 2020 09.
Article in English | MEDLINE | ID: mdl-32887686

ABSTRACT

Improved identification of structural variants (SVs) in cancer can lead to more targeted and effective treatment options as well as advance our basic understanding of the disease and its progression. We performed whole-genome sequencing of the SKBR3 breast cancer cell line and patient-derived tumor and normal organoids from two breast cancer patients using Illumina/10x Genomics, Pacific Biosciences (PacBio), and Oxford Nanopore Technologies (ONT) sequencing. We then inferred SVs and large-scale allele-specific copy number variants (CNVs) using an ensemble of methods. Our findings show that long-read sequencing allows for substantially more accurate and sensitive SV detection, with between 90% and 95% of variants supported by each long-read technology also supported by the other. We also report high accuracy for long reads even at relatively low coverage (25×-30×). Furthermore, we integrated SV and CNV data into a unifying karyotype-graph structure to present a more accurate representation of the mutated cancer genomes. We find hundreds of variants within known cancer-related genes detectable only through long-read sequencing. These findings highlight the need for long-read sequencing of cancer genomes for the precise analysis of their genetic instability.


Subject(s)
Breast Neoplasms/genetics , Genomic Structural Variation , Whole Genome Sequencing/methods , Cell Line, Tumor , DNA Copy Number Variations , DNA Methylation , DNA, Neoplasm , Female , Humans , Nanopores , Organoids , RNA-Seq
2.
Nat Methods ; 17(12): 1191-1199, 2020 12.
Article in English | MEDLINE | ID: mdl-33230324

ABSTRACT

Probing epigenetic features on DNA has tremendous potential to advance our understanding of the phased epigenome. In this study, we use nanopore sequencing to evaluate CpG methylation and chromatin accessibility simultaneously on long strands of DNA by applying GpC methyltransferase to exogenously label open chromatin. We performed nanopore sequencing of nucleosome occupancy and methylome (nanoNOMe) on four human cell lines (GM12878, MCF-10A, MCF-7 and MDA-MB-231). The single-molecule resolution allows footprinting of protein and nucleosome binding, and determination of the combinatorial promoter epigenetic signature on individual molecules. Long-read sequencing makes it possible to robustly assign reads to haplotypes, allowing us to generate a fully phased human epigenome, consisting of chromosome-level allele-specific profiles of CpG methylation and chromatin accessibility. We further apply this to a breast cancer model to evaluate differential methylation and accessibility between cancerous and noncancerous cells.


Subject(s)
Breast Neoplasms/genetics , Chromatin/genetics , DNA Methylation/genetics , Nanopore Sequencing/methods , Cell Line, Tumor , CpG Islands/genetics , DNA/metabolism , Epigenome/genetics , Female , Genome, Human/genetics , Humans , MCF-7 Cells , Methyltransferases/metabolism , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA
3.
Genes Chromosomes Cancer ; 58(8): 530-540, 2019 08.
Article in English | MEDLINE | ID: mdl-30664813

ABSTRACT

Telomerase reverse transcriptase (TERT) activation plays an important role in cancer development by enabling the immortalization of cells. TERT regulation is multifaceted, and its promoter methylation has been implicated in controlling expression through alteration in transcription factor binding. We have characterized TERT promoter methylation, transcription factor binding, and TERT expression levels in five differentiated thyroid cancer (DTC) cell lines and six normal thyroid tissue samples by targeted bisulfite sequencing, ChIP-qPCR, and qRT-PCR. DTC cell lines express varying levels of TERT and exhibit TERT promoter methylation patterns similar to patterns seen in other telomerase positive cancer cell lines. The minimal promoter immediately surrounding the transcription start site is hypomethylated, while further upstream portions show dense methylation. In contrast, the TERT promoter in normal thyroid tissue is largely unmethylated throughout and expresses TERT minimally. Transcription factor binding is also affected by TERT mutation status. The E-twenty-six (ETS) factor GABPA exhibits TERT binding in the TERT mutant DTC cells only, and allele-specific methylation patterns at the minimal promoter were observed as well, which may indicate allele-specific factor recruitment at the minimal promoter. Furthermore, we identified binding sites for activators MYC and GSC in the hypermethylated upstream region, pointing to its possible importance in TERT regulation. Overall, TERT expression and telomerase activity depend on the interplay of multiple regulatory mechanisms including TERT promoter methylation, mutation status, and recruitment of transcription factors. This work explores of the interplay between these regulatory mechanisms and offers insight into cellular control of active telomerase in human cancer.


Subject(s)
DNA Methylation , Gene Expression Regulation, Neoplastic , Promoter Regions, Genetic , Telomerase/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Transcription Factors/metabolism , Alleles , Binding Sites , Cell Line, Tumor , CpG Islands , Humans , Mutation , Nucleotide Motifs , Protein Binding , Proto-Oncogene Proteins c-myc/metabolism , Thyroid Neoplasms/pathology , Transcription Initiation Site
4.
Gastro Hep Adv ; 3(6): 830-841, 2024.
Article in English | MEDLINE | ID: mdl-39280905

ABSTRACT

Background and Aims: The colonic epithelium serves as both a barrier to lumenal contents and a gatekeeper of inflammatory responses. In ulcerative colitis (UC), epithelial dysfunction is a core feature, but little is known about the cellular changes that may underlie disease pathology. We therefore evaluated how the chromatin epigenetics and proteome of epithelial cells differs between health and UC. Methods: We sorted live CD326+ epithelial cells from colon biopsies of healthy control (HC) screening colonoscopy recipients and from inflamed or uninflamed colon segments of UC patients on no biologic nor immunomodulator therapy (n = 5-7 subjects per group). Cell lysates were analyzed by proteomic evaluation and nuclei were analyzed for open chromatin with assay for transposase-accessible chromatin using sequencing. Results: Proteins most highly elevated in inflamed UC biopsies relative to HC were those encoded by the HLA-DRA (P = 3.1 × 10-33) and CD74 (P = 1.6 × 10-27), genes associated with antigen presentation, and the antimicrobial dual oxidase 2 (DUOX2) (P = 3.2 × 10-28) and lipocalin-2 (P = 2.2 × 10-26) genes. Conversely, the water channel aquaporin 8 was strikingly less common with inflammation (P = 1.9 × 10-18). Assay for transposase-accessible chromatin using sequencing revealed more open chromatin around the aquaporin 8 gene in HCs (P = 2.0 × 10-2) and more around the DUOX2/DUOXA2 locus in inflamed UC colon (P = 5.7 × 10-4), suggesting an epigenetic basis for differential protein expression by epithelial cells in health and disease. Conclusion: Numerous differences exist between the proteome and chromatin of colonic epithelial cells in UC patients and HCs, some of which correlate to suggest specific epigenetic mechanisms regulating the epithelial proteome.

5.
Nat Commun ; 15(1): 6469, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085222

ABSTRACT

Genetic variation in the human leukocyte antigen (HLA) loci is associated with risk of immune-mediated diseases, but the molecular effects of HLA polymorphism are unclear. Here we examined the effects of HLA genetic variation on the expression of 2940 plasma proteins across 45,330 Europeans in the UK Biobank, with replication analyses across multiple ancestry groups. We detected 504 proteins affected by HLA variants (HLA-pQTL), including widespread trans effects by autoimmune disease risk alleles. More than 80% of the HLA-pQTL fine-mapped to amino acid positions in the peptide binding groove. HLA-I and II affected proteins expressed in similar cell types but in different pathways of both adaptive and innate immunity. Finally, we investigated potential HLA-pQTL effects on disease by integrating HLA-pQTL with fine-mapped HLA-disease signals in the UK Biobank. Our data reveal the diverse effects of HLA genetic variation and aid the interpretation of associations between HLA alleles and immune-mediated diseases.


Subject(s)
Alleles , Blood Proteins , Genetic Variation , HLA Antigens , Humans , HLA Antigens/genetics , Blood Proteins/genetics , Blood Proteins/metabolism , United Kingdom , Genetic Predisposition to Disease , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , White People/genetics , Immunity, Innate/genetics , Polymorphism, Single Nucleotide
6.
Biotechnol J ; 16(6): e2000350, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33484505

ABSTRACT

Chinese hamster ovary (CHO) cells are the most extensively used mammalian production system for biologics intended for use in humans. A critical step in the establishment of production cell lines is single cell cloning, with the objective of achieving high productivity and product quality. Despite general use, knowledge of the effects of this process is limited. Importantly, single cell cloned cells display a wide array of observed phenotypes, which so far was attributed to the instability and variability of the CHO genome. In this study we present data indicating that the emergence of diverse phenotypes during single cell cloning is associated with changes in DNA methylation patterns and transcriptomes that occur during the subcloning process. The DNA methylation pattern of each analyzed subclone, randomly picked from all outgrowing clones of the experiment, had unique changes preferentially found in regulatory regions of the genome such as enhancers, and de-enriched in actively transcribed sequences (not including the respective promoters), indicating that these changes resulted in adaptations of the relative gene expression pattern. The transcriptome of each subclone also had a significant number of individual changes. These results indicate that epigenetic regulation is a hidden, but important player in cell line development with a major role in the establishment of high performing clones with improved characteristics for bioprocessing.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Animals , CHO Cells , Cricetulus , DNA , DNA Methylation/genetics , Humans
7.
Nat Biotechnol ; 38(4): 433-438, 2020 04.
Article in English | MEDLINE | ID: mdl-32042167

ABSTRACT

Despite recent improvements in sequencing methods, there remains a need for assays that provide high sequencing depth and comprehensive variant detection. Current methods1-4 are limited by the loss of native modifications, short read length, high input requirements, low yield or long protocols. In the present study, we describe nanopore Cas9-targeted sequencing (nCATS), an enrichment strategy that uses targeted cleavage of chromosomal DNA with Cas9 to ligate adapters for nanopore sequencing. We show that nCATS can simultaneously assess haplotype-resolved single-nucleotide variants, structural variations and CpG methylation. We apply nCATS to four cell lines, to a cell-line-derived xenograft, and to normal and paired tumor/normal primary human breast tissue. Median sequencing coverage was 675× using a MinION flow cell and 34× using the smaller Flongle flow cell. The nCATS sequencing requires only ~3 µg of genomic DNA and can target a large number of loci in a single reaction. The method will facilitate the use of long-read sequencing in research and in the clinic.


Subject(s)
CRISPR-Associated Protein 9/metabolism , Nanopore Sequencing/methods , RNA, Guide, Kinetoplastida/metabolism , Animals , Cells, Cultured , Chromosomes, Human/genetics , Genetic Loci/genetics , Genetic Variation , Genotype , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, DNA
8.
Sci Data ; 4: 170148, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28994822

ABSTRACT

Whole genome bisulfite sequencing (WGBS) analysis of DNA methylation uses massively parallel next generation sequencing technology to characterize global epigenetic patterns and fluctuations throughout a range of tissue samples. Development of the vertebrate retina is thought to involve extensive epigenetic reprogramming during embryogenesis. The chicken embryo (Gallus gallus) is a classic model system for studying developmental biology and retinogenesis, however, there are currently no publicly available data sets describing the developing chicken retinal methylome. Here we used Illumina WGBS analysis to characterize genome-wide patterns of DNA methylation in the developing chicken retina as well as cornea and brain in an effort to further our understanding of retina-specific epigenetic regulation. These data will be valuable to the vision research community for correlating global changes in DNA methylation to differential gene expression between ocular and neural tissues during critical developmental time points of retinogenesis in the chicken retina.


Subject(s)
Brain , Chickens , Cornea , DNA Methylation , Retina , Animals , Genome , Whole Genome Sequencing
9.
Article in English | MEDLINE | ID: mdl-25570544

ABSTRACT

Advanced hardware components embedded in modern smartphones have the potential to serve as widely available medical diagnostic devices, particularly when used in conjunction with custom software and tested algorithms. The goal of the present pilot study was to develop a smartphone application that could quantify the severity of Parkinson's disease (PD) motor symptoms, and in particular, bradykinesia. We developed an iPhone application that collected kinematic data from a small cohort of PD patients during guided movement tasks and extracted quantitative features using signal processing techniques. These features were used in a classification model trained to differentiate between overall motor impairment of greater and lesser severity using standard clinical scores provided by a trained neurologist. Using a support vector machine classifier, a classification accuracy of 0.945 was achieved under 6-fold cross validation, and several features were shown to be highly discriminatory between more severe and less severe motor impairment by area under the receiver operating characteristic curve (AUC > 0.85). Accurate classification for discriminating between more severe and less severe bradykinesia was not achieved with these methods. We discuss future directions of this work and suggest that this platform is a first step toward development of a smartphone application that has the potential to provide clinicians with a method for monitoring patients between clinical appointments.


Subject(s)
Cell Phone , Monitoring, Physiologic/instrumentation , Parkinson Disease/diagnosis , Parkinson Disease/physiopathology , Signal Processing, Computer-Assisted/instrumentation , Software , Aged , Aged, 80 and over , Female , Fingers/physiopathology , Humans , Male , Pilot Projects , Support Vector Machine , Task Performance and Analysis
10.
Colloids Surf B Biointerfaces ; 112: 108-12, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23973999

ABSTRACT

Barium titanate nanoparticles (BT NP) belong to a class of second harmonic generating (SHG) nanoprobes that have recently demonstrated promise in biological imaging. Unfortunately, BT NPs display low cellular uptake efficiencies, which may be a problem if cellular internalization is desired or required for a particular application. To overcome this issue, while concomitantly developing a particle platform that can also deliver nucleic acids into cells, we coated the BT NPs with the cationic polymer polyethylenimine (PEI)-one of the most effective nonviral gene delivery agents. Coating of BT with PEI yielded complexes with positive zeta potentials and resulted in an 8-fold increase in cellular uptake of the BT NPs. Importantly, we were able to achieve high levels of gene delivery with the BT-PEI/DNA complexes, supporting further efforts to generate BT platforms for coupled imaging and gene therapy.


Subject(s)
Barium Compounds/chemistry , Gene Transfer Techniques , Metal Nanoparticles/chemistry , Polyethyleneimine/chemistry , Titanium/chemistry , Biological Transport, Active , Cell Survival , DNA, Recombinant/administration & dosage , DNA, Recombinant/genetics , Drug Carriers , Genetic Therapy , Green Fluorescent Proteins/genetics , HeLa Cells , Humans , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/ultrastructure , Microscopy, Confocal , Molecular Imaging/methods , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL