Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Radiology ; 296(2): E72-E78, 2020 08.
Article in English | MEDLINE | ID: mdl-32216717

ABSTRACT

Background Current coronavirus disease 2019 (COVID-19) radiologic literature is dominated by CT, and a detailed description of chest radiography appearances in relation to the disease time course is lacking. Purpose To describe the time course and severity of findings of COVID-19 at chest radiography and correlate these with real-time reverse transcription polymerase chain reaction (RT-PCR) testing for severe acute respiratory syndrome coronavirus 2, or SARS-CoV-2, nucleic acid. Materials and Methods This is a retrospective study of patients with COVID-19 confirmed by using RT-PCR and chest radiographic examinations who were admitted across four hospitals and evaluated between January and March 2020. Baseline and serial chest radiographs (n = 255) were reviewed with RT-PCR. Correlation with concurrent CT examinations (n = 28) was performed when available. Two radiologists scored each chest radiograph in consensus for consolidation, ground-glass opacity, location, and pleural fluid. A severity index was determined for each lung. The lung scores were summed to produce the final severity score. Results The study was composed of 64 patients (26 men; mean age, 56 years ± 19 [standard deviation]). Of these, 58 patients had initial positive findings with RT-PCR (91%; 95% confidence interval: 81%, 96%), 44 patients had abnormal findings at baseline chest radiography (69%; 95% confidence interval: 56%, 80%), and 38 patients had initial positive findings with RT-PCR testing and abnormal findings at baseline chest radiography (59%; 95% confidence interval: 46%, 71%). Six patients (9%) showed abnormalities at chest radiography before eventually testing positive for COVID-19 with RT-PCR. Sensitivity of initial RT-PCR (91%; 95% confidence interval: 83%, 97%) was higher than that of baseline chest radiography (69%; 95% confidence interval: 56%, 80%) (P = .009). Radiographic recovery (mean, 6 days ± 5) and virologic recovery (mean, 8 days ± 6) were not significantly different (P = .33). Consolidation was the most common finding (30 of 64; 47%) followed by ground-glass opacities (21 of 64; 33%). Abnormalities at chest radiography had a peripheral distribution (26 of 64; 41%) and lower zone distribution (32 of 64; 50%) with bilateral involvement (32 of 64; 50%). Pleural effusion was uncommon (two of 64; 3%). The severity of findings at chest radiography peaked at 10-12 days from the date of symptom onset. Conclusion Findings at chest radiography in patients with coronavirus disease 2019 frequently showed bilateral lower zone consolidation, which peaked at 10-12 days from symptom onset. © RSNA, 2020.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/methods , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/virology , Radiographic Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Severity of Illness Index , Tomography, X-Ray Computed/methods , Young Adult
2.
JACC Cardiovasc Imaging ; 14(3): 602-611, 2021 03.
Article in English | MEDLINE | ID: mdl-33248966

ABSTRACT

OBJECTIVES: This study investigated the prognosis of coronary microvascular disease (CMD) as determined by stress perfusion cardiac magnetic resonance (CMR) in patients with ischemic symptoms but without significant coronary artery disease (CAD). BACKGROUND: Patients with CMD have poorer prognosis with various cardiac diseases. The myocardial perfusion reserve index (MPRI) derived from noninvasive stress perfusion CMR has been established to diagnose microvascular angina with a threshold MPRI <1.4. The prognosis of CMD as determined by MPRI is unknown. METHODS: Chest pain patients without epicardial CAD or myocardial disease from January 2009 to December 2017 were retrospectively included from 3 imaging centers in Hong Kong (HK). Stress perfusion CMR examinations were performed using either adenosine or adenosine triphosphate. Adequate stress was assessed by achieving splenic switch-off sign. Measurement of MPRI was performed in all stress perfusion CMR scans. Patients were followed for major adverse cardiovascular events defined as all-cause death, acute coronary syndrome (ACS), epicardial CAD development, heart failure hospitalization and non-fatal stroke. RESULTS: A total of 218 patients were studied (mean age 59 ± 12 years; 49.5% male) and the average MPRI of that cohort was 1.56 ± 0.33. Females and a history of hyperlipidemia were predictors of lower MPRI. Major adverse cardiovascular events (MACE) occurred in 15.6% of patients during a median follow-up of 5.5 years (interquartile range: 4.6 to 6.8 years). The optimal cutoff value of MPRI in predicting MACE was found with a threshold MPRI ≤1.47. Patients with MPRI ≤1.47 had three-fold increased risk of MACE compared with those with MPRI >1.47 (hazard ratio [HR]: 3.14; 95% confidence interval [CI]: 1.58 to 6.25; p = 0.001). Multivariate Cox regression after adjusting for age and hypertension demonstrated that MPRI was an independent predictor of MACE (HR: 0.10; 95% CI: 0.03 to 0.34; p < 0.001). CONCLUSIONS: Stress perfusion CMR-derived MPRI is an independent imaging marker that predicts MACE in patients with ischemic symptom and no overt CAD over the medium term.


Subject(s)
Microvascular Angina , Aged , Coronary Circulation , Female , Humans , Magnetic Resonance Imaging, Cine , Magnetic Resonance Spectroscopy , Male , Microvascular Angina/diagnostic imaging , Middle Aged , Perfusion , Predictive Value of Tests , Prognosis , Retrospective Studies , Vasodilator Agents
3.
J Thorac Imaging ; 35(6): 369-376, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32969949

ABSTRACT

PURPOSE: To evaluate the performance of a deep learning (DL) algorithm for the detection of COVID-19 on chest radiographs (CXR). MATERIALS AND METHODS: In this retrospective study, a DL model was trained on 112,120 CXR images with 14 labeled classifiers (ChestX-ray14) and fine-tuned using initial CXR on hospital admission of 509 patients, who had undergone COVID-19 reverse transcriptase-polymerase chain reaction (RT-PCR). The test set consisted of a CXR on presentation of 248 individuals suspected of COVID-19 pneumonia between February 16 and March 3, 2020 from 4 centers (72 RT-PCR positives and 176 RT-PCR negatives). The CXR were independently reviewed by 3 radiologists and using the DL algorithm. Diagnostic performance was compared with radiologists' performance and was assessed by area under the receiver operating characteristics (AUC). RESULTS: The median age of the subjects in the test set was 61 (interquartile range: 39 to 79) years (51% male). The DL algorithm achieved an AUC of 0.81, sensitivity of 0.85, and specificity of 0.72 in detecting COVID-19 using RT-PCR as the reference standard. On subgroup analyses, the model achieved an AUC of 0.79, sensitivity of 0.80, and specificity of 0.74 in detecting COVID-19 in patients presented with fever or respiratory systems and an AUC of 0.87, sensitivity of 0.85, and specificity of 0.81 in distinguishing COVID-19 from other forms of pneumonia. The algorithm significantly outperforms human readers (P<0.001 using DeLong test) with higher sensitivity (P=0.01 using McNemar test). CONCLUSIONS: A DL algorithm (COV19NET) for the detection of COVID-19 on chest radiographs can potentially be an effective tool in triaging patients, particularly in resource-stretched health-care systems.


Subject(s)
COVID-19/diagnostic imaging , Deep Learning , Lung/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Thoracic/methods , Adult , Aged , Algorithms , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Sensitivity and Specificity , Young Adult
4.
Int J Infect Dis ; 101: 74-82, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32947055

ABSTRACT

OBJECTIVES: To develop: (1) two validated risk prediction models for coronavirus disease-2019 (COVID-19) positivity using readily available parameters in a general hospital setting; (2) nomograms and probabilities to allow clinical utilisation. METHODS: Patients with and without COVID-19 were included from 4 Hong Kong hospitals. The database was randomly split into 2:1: for model development database (n = 895) and validation database (n = 435). Multivariable logistic regression was utilised for model creation and validated with the Hosmer-Lemeshow (H-L) test and calibration plot. Nomograms and probabilities set at 0.1, 0.2, 0.4 and 0.6 were calculated to determine sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). RESULTS: A total of 1330 patients (mean age 58.2 ± 24.5 years; 50.7% males; 296 COVID-19 positive) were recruited. The first prediction model developed had age, total white blood cell count, chest x-ray appearances and contact history as significant predictors (AUC = 0.911 [CI = 0.880-0.941]). The second model developed has the same variables except contact history (AUC = 0.880 [CI = 0.844-0.916]). Both were externally validated on the H-L test (p = 0.781 and 0.155, respectively) and calibration plot. Models were converted to nomograms. Lower probabilities give higher sensitivity and NPV; higher probabilities give higher specificity and PPV. CONCLUSION: Two simple-to-use validated nomograms were developed with excellent AUCs based on readily available parameters and can be considered for clinical utilisation.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Area Under Curve , COVID-19/etiology , Female , Hospitals , Humans , Logistic Models , Male , Middle Aged , Nomograms , Probability
SELECTION OF CITATIONS
SEARCH DETAIL