Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Environ Sci Technol ; 52(11): 6237-6245, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29714471

ABSTRACT

Bacterial quorum quenching (QQ) by means of degrading signaling molecules has been applied to antibiofouling strategies in a membrane bioreactor (MBR) for wastewater treatment. However, the target signaling molecules have been limited to N-acyl homoserine lactones participating in intraspecies quorum sensing. Here, an approach to disrupting autoinducer-2 (AI-2) signaling molecules participating in interspecies quorum sensing was pursued as a next-generation antibiofouling strategy in an MBR for wastewater treatment. We isolated an indigenous QQ bacterium ( Acinetobacter sp. DKY-1) that can attenuate the expression of the quorum-sensing (QS) response through the inactivation of an autoinducer-2 signaling molecule, 4,5-dihydroxy-2,3-pentanedione (DPD), among four kinds of autoinducer-2 QS bacteria. DKY-1 released AI-2 QQ compounds, which were verified to be hydrophilic with a molecular weight of <400 Da. The addition of DKY-1 entrapping beads into an MBR significantly decreased DPD concentration and remarkably reduced membrane biofouling. This new approach, combining molecular biology with wastewater engineering, could enlarge the range of QQ-MBR for antibiofouling and energy savings in the field of wastewater treatment.


Subject(s)
Acinetobacter , Biofouling , Bacteria , Bioreactors , Quorum Sensing , Wastewater
2.
Environ Sci Technol ; 50(20): 10914-10922, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27634354

ABSTRACT

In the last 30 years, the use of membrane bioreactors (MBRs) for advanced wastewater treatment and reuse have been expanded continuously, but they still suffer from excessive energy consumption resulting from the intrinsic problem of membrane biofouling. One of the major causes of biofouling in MBRs is bacterial quorum sensing (QS) via N-acylhomoserine lactones (AHLs) and/or autoinducer-2 (AI-2), enabling intra- and interspecies communications, respectively. In this study, we demonstrate that farnesol can substantially mitigate membrane biofouling in a MBR due to its quorum quenching (QQ) activity. When Candida albicans (a farnesol producing fungus) entrapping polymer beads (AEBs) were placed in the MBR, the rate of transmembrane pressure (TMP) rise-up was substantially decreased, even for lower aeration intensities. This finding corresponds to a specific aeration energy savings of approximately 40% (25% through the physical washing effect and a further 15% through the biological QQ effect of AEBs) compared to conventional MBRs without AEBs. A real-time RT-qPCR analysis revealed that farnesol secreted from C. albicans mitigated the biofilm formation in MBRs via the suppression of AI-2 QS. Successful control of biofouling and energy savings through fungal-to-bacterial QQ could be expanded to the plant scale for MBRs in wastewater treatment with economic feasibility.


Subject(s)
Quorum Sensing/drug effects , Wastewater , Biofouling , Bioreactors/microbiology , Membranes, Artificial , Waste Disposal, Fluid
3.
Korean J Physiol Pharmacol ; 20(5): 507-14, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27610037

ABSTRACT

Although 3D-complex fractionated atrial electrogram (CFAE) mapping is useful in radiofrequency catheter ablation for persistent atrial fibrillation (AF), the directions and configuration of the bipolar electrodes may affect the electrogram. This study aimed to compare the spatial reproducibility of CFAE by changing the catheter orientations and electrode distance in an in-silico left atrium (LA). We conducted this study by importing the heart CT image of a patient with AF into a 3D-homogeneous human LA model. Electrogram morphology, CFAE-cycle lengths (CLs) were compared for 16 different orientations of a virtual bipolar conventional catheter (conv-cath: size 3.5 mm, inter-electrode distance 4.75 mm). Additionally, the spatial correlations of CFAE-CLs and the percentage of consistent sites with CFAE-CL<120 ms were analyzed. The results from the conv-cath were compared with that obtained using a mini catheter (mini-cath: size 1 mm, inter-electrode distance 2.5 mm). Depending on the catheter orientation, the electrogram morphology and CFAE-CLs varied (conv-cath: 11.5±0.7% variation, mini-cath: 7.1±1.2% variation), however the mini-cath produced less variation of CFAE-CL than conv-cath (p<0.001). There were moderate spatial correlations among CFAE-CL measured at 16 orientations (conv-cath: r=0.3055±0.2194 vs. mini-cath: 0.6074±0.0733, p<0.001). Additionally, the ratio of consistent CFAE sites was higher for mini catheter than conventional one (38.3±4.6% vs. 22.3±1.4%, p<0.05). Electrograms and CFAE distribution are affected by catheter orientation and electrode configuration in the in-silico LA model. However, there was moderate spatial consistency of CFAE areas, and narrowly spaced bipolar catheters were less influenced by catheter direction than conventional catheters.

4.
Environ Sci Technol ; 47(2): 836-42, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23256502

ABSTRACT

Recently, interspecies quorum quenching by bacterial cells encapsulated in a vessel was described and shown to be efficient and economically feasible for biofouling control in membrane bioreactors (MBRs). In this study, free-moving beads entrapped with quorum quenching bacteria were applied to the inhibition of biofouling in a MBR. Cell entrapping beads (CEBs) with a porous microstructure were prepared by entrapping quorum quenching bacteria ( Rhodococcus sp. BH4) into alginate beads. In MBRs provided with CEBs, the time to reach a transmembrane pressure (TMP) of 70 kPa was 10 times longer than without CEBs. The mitigation of biofouling was attributed to both physical (friction) and biological (quorum quenching) effects of CEBs, the latter being much more important. Because of the quorum quenching effect of CEBs, microbial cells in the biofilm generated fewer extracellular polymeric substances and thus formed a loosely bound biofilm, which enabled it to slough off from the membrane surface more easily. Furthermore, collisions between the moving CEBs and membranes gave rise to frictional forces that facilitated detachment of the biofilm from the membrane surface. CEBs bring bacterial quorum quenching closer to being a practical solution to the problem of biofouling in MBRs.


Subject(s)
Biofouling/prevention & control , Bioreactors/microbiology , Quorum Sensing , Rhodococcus/physiology , Alginates/chemistry , Cells, Immobilized/physiology , Equipment Design , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Membranes, Artificial , Porosity , Pressure
5.
Appl Microbiol Biotechnol ; 97(23): 10223-31, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23644749

ABSTRACT

It has been reported that an indigenous quorum quenching bacterium, Rhodococcus sp. BH4, which was isolated from a real plant of membrane bioreactor (MBR) has promising potential to control biofouling in MBR. However, little is known about quorum quenching mechanisms by the strain BH4. In this study, various characteristics of strain BH4 were investigated to elucidate its behavior in more detail in the mixed liquor of MBR. The N-acyl homoserine lactone hydrolase (AHL-lactonase) gene of strain BH4 showed a high degree of identity to qsdA in Rhodococcus erythropolis W2. The LC-ESI-MS analysis of the degradation product by strain BH4 confirmed that it inactivated AHL activity by hydrolyzing the lactone bond of AHL. It degraded a wide range of N-acyl homoserine lactones (AHLs), but there was a large difference in the degradation rate of each AHL compared to other reported AHL-lactonase-producing strains belonging to Rhodococcus genus. Its quorum quenching activity was confirmed not only in the Luria-Bertani medium, but also in the synthetic wastewater. Furthermore, the amount of strain BH4 encapsulated in the vessel as well as the material of the vessel substantially affected the quorum quenching activity of strain BH4, which provides useful information, particularly for the biofouling control in a real MBR plant from an engineering point of view.


Subject(s)
Bacterial Adhesion , Bioreactors/microbiology , Quorum Sensing , Rhodococcus/physiology , Acyl-Butyrolactones/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Membranes, Artificial , Molecular Sequence Data , Rhodococcus/enzymology , Rhodococcus/genetics
6.
Appl Microbiol Biotechnol ; 97(10): 4665-75, 2013 May.
Article in English | MEDLINE | ID: mdl-22846900

ABSTRACT

Quorum sensing gives rise to biofilm formation on the membrane surface, which in turn causes a loss of water permeability in membrane bioreactors (MBRs) for wastewater treatment. Enzymatic quorum quenching was reported to successfully inhibit the formation of biofilm in MBRs through the decomposition of signal molecules, N-acyl homoserine lactones (AHLs). The aim of this study was to elucidate the mechanisms of quorum quenching in more detail in terms of microbial population dynamics and proteomics. Microbial communities in MBRs with and without a quorum quenching enzyme (acylase) were analyzed using pyrosequencing and compared with each other. In the quorum quenching MBR, the rate of transmembrane pressure (TMP) rise-up was delayed substantially, and the proportion of quorum sensing bacteria with AHL-like autoinducers (such as Enterobacter, Pseudomonas, and Acinetobacter) also decreased in the entire microbial community of mature biofilm in comparison to that in the control MBR. These factors were attributed to the lower production of extracellular polymeric substances (EPS), which are known to play a key role in the formation of biofilm. Proteomic analysis using the Enterobacter cancerogenus strain ATCC 35316 demonstrates the possible depression of protein expression related to microbial attachments to solid surfaces (outer membrane protein, flagellin) and the agglomeration of microorganisms (ATP synthase beta subunit) with the enzymatic quorum quenching. It has been argued that changes in the microbial population, EPS and proteins via enzymatic quorum quenching could inhibit the formation of biofilm, resulting in less biofouling in the quorum quenching MBR.


Subject(s)
Bioreactors , Enzymes/metabolism , Proteomics , Quorum Sensing
7.
Environ Sci Technol ; 46(9): 4877-84, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22471519

ABSTRACT

Recently, enzymatic quorum quenching has proven its potential as an innovative approach for biofouling control in the membrane bioreactor (MBR) for advanced wastewater treatment. However, practical issues on the cost and stability of enzymes are yet to be solved, which requires more effective quorum quenching methods. In this study, a novel quorum quenching strategy, interspecies quorum quenching by bacterial cell, was elaborated and proved to be efficient and economically feasible biofouling control in MBR. A recombinant Escherichia coli which producing N-acyl homoserine lactonase or quorum quenching Rhodococcus sp. isolated from a real MBR plant was encapsulated inside the lumen of microporous hollow fiber membrane, respectively. The porous membrane containing these functional bacteria (i.e., "microbial-vessel") was put into the submerged MBR to alleviate biofouling on the surface of filtration membrane. The effect of biofouling inhibition by the microbial-vessel was evaluated over 80 days of MBR operation. Successful control of biofouling in a laboratory scale MBR suggests that the biofouling control through the interspecies quorum quenching could be expanded to the plant scale of MBR and various environmental engineering systems with economic feasibility.


Subject(s)
Biofouling , Bioreactors , Escherichia coli/physiology , Quorum Sensing , Rhodococcus/physiology , Membranes, Artificial , Water Purification
8.
Biochem Biophys Res Commun ; 404(2): 615-21, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21144828

ABSTRACT

The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, and eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Chromosomal Instability , Chromosomes, Mammalian/drug effects , Drug Resistance, Neoplasm/genetics , Paclitaxel/pharmacology , Telomere/metabolism , Tubulin Modulators/pharmacology , Animals , Apoptosis , Cell Cycle , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , Mice , Telomere/genetics
9.
Appl Microbiol Biotechnol ; 85(4): 1061-8, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19568747

ABSTRACT

Genome analysis of C. glutamicum ATCC 13032 has showed one putative adenylate cyclase gene, cyaB (cg0375) which encodes membrane protein belonging to class III adenylate cyclases. To characterize the function of cyaB, a deletion mutant was constructed, and the mutant showed decreased level of intracellular cyclic AMP compared to that of wild-type. Interestingly, the cyaB mutant displayed growth defect on acetate medium, and this effect was reversed by complementation with cyaB gene. Similarly, it showed growth defect on glucose-acetate mixture minimal medium, and the utilization of glucose was retarded in the presence of acetate. The deletion mutant retained the activity of glyoxylate bypass enzymes. Additionally, the mutant could grow on ethanol but not on propionate medium. The data obtained from this study suggests that adenylate cyclase plays an essential role in the acetate metabolism of C. glutamicum, even though detailed regulatory mechanisms involving cAMP are not yet clearly defined. The observation that glyoxylate bypass enzymes are derepressed in cyaB mutant indicates the involvement of cAMP in the repression of aceB and aceA.


Subject(s)
Adenylyl Cyclases/metabolism , Corynebacterium glutamicum/enzymology , Acetates/metabolism , Adenylyl Cyclases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/growth & development , Cyclic AMP/metabolism , Escherichia coli/genetics , Ethanol/metabolism , Gene Deletion , Genes, Bacterial , Glucose/metabolism , Molecular Sequence Data , Propionates/metabolism
10.
J Microbiol Biotechnol ; 30(6): 937-945, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32160697

ABSTRACT

N-acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) plays a major role in development of biofilms, which contribute to rise in infections and biofouling in water-related industries. Interference in QS, called quorum quenching (QQ), has recieved a lot of attention in recent years. Rhodococcus spp. are known to have prominent quorum quenching activity and in previous reports it was suggested that this genus possesses multiple QQ enzymes, but only one gene, qsdA, which encodes an AHL-lactonase belonging to phosphotriesterase family, has been identified. Therefore, we conducted a whole genome sequencing and analysis of Rhodococcus sp. BH4 isolated from a wastewater treatment plant. The sequencing revealed another gene encoding a QQ enzyme (named jydB) that exhibited a high AHL degrading activity. This QQ enzyme had a 46% amino acid sequence similarity with the AHL-lactonase (AidH) of Ochrobactrum sp. T63. HPLC analysis and AHL restoration experiments by acidification revealed that the jydB gene encodes an AHL-lactonase which shares the known characteristics of the α/ß hydrolase family. Purified recombinant JydB demonstrated a high hydrolytic activity against various AHLs. Kinetic analysis of JydB revealed a high catalytic efficiency (kcat/KM) against C4-HSL and 3-oxo-C6 HSL, ranging from 1.88 × 106 to 1.45 × 106 M-1 s-1, with distinctly low KM values (0.16 - 0.24 mM). This study affirms that the AHL degrading activity and biofilm inhibition ability of Rhodococcus sp. BH4 may be due to the presence of multiple quorum quenching enzymes, including two types of AHL-lactonases, in addition to AHL-acylase and oxidoreductase, for which the genes have yet to be described.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Quorum Sensing , Rhodococcus/enzymology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Biofilms/growth & development , Genes, Bacterial , Kinetics , Rhodococcus/genetics , Wastewater/microbiology , Whole Genome Sequencing
11.
Proteins ; 71(1): 476-84, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18186467

ABSTRACT

The M37 lipase from Photobacterium lipolyticum shows an extremely low activation energy and strong activity at low temperatures, with optimum activity seen at 298 K and more than 75% of the optimum activity retained down to 278 K. Though the M37 lipase is most closely related to the filamentous fungal lipase, Rhizomucor miehei lipase (RML) at the primary structure level, their activity characteristics are completely different. In an effort to identify structural components of cold adaptation in lipases, we determined the crystal structure of the M37 lipase at 2.2 A resolution and compared it to that of nonadapted RML. Structural analysis revealed that M37 lipase adopted a folding pattern similar to that observed for other lipase structures. However, comparison with RML revealed that the region beneath the lid of the M37 lipase included a significant and unique cavity that would be occupied by a lid helix upon substrate binding. In addition, the oxyanion hole was much wider in M37 lipase than RML. We propose that these distinct structural characteristics of M37 lipase may facilitate the lateral movement of the helical lid and subsequent substrate hydrolysis, which might explain its low activation energy and high activity at low temperatures.


Subject(s)
Acclimatization , Bacterial Proteins/chemistry , Cold Temperature , Lipase/chemistry , Photobacterium/enzymology , Crystallography, X-Ray , Enzyme Activation , Photobacterium/physiology , Protein Conformation
12.
J Microbiol Biotechnol ; 18(9): 1518-21, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18852506

ABSTRACT

Bacteria sense their population density and coordinate the expression of target genes, including virulence factors in Gram-negative bacteria, by the N-acylhomoserine lactones (AHLs)-dependent quorum-sensing (QS) mechanism. In contrast, several soil bacteria are able to interfere with QS by enzymatic degradation of AHLs, referred to as quorum quenching. A potent AHL-degrading enzyme, AiiA, of Bacillus thuringiensis has been reported to effectively attenuate the virulence of bacteria by quorum quenching. However, little is known about the role of AiiA in B. thuringiensis itself. In the present study, an aiiA-defective mutant was generated to investigate the role of AiiA in rhizosphere competence in the root system of pepper. The aiiA mutant showed no detectable AHL-degrading activity and was less effective for suppression of soft-rot symptom caused by Erwinia carotovora on the potato slice. On the pepper root, the survival rate of the aiiA mutant significantly decreased over time compared with that of wild type. Interestingly, viable cell count analysis revealed that the bacterial number and composition of E. carotovora were not different between treatments of wild type and the aiiA mutant, although root application of the aiiA mutant in pepper failed to protect the plant from root rot. These results provide evidence that AiiA can play an important role in rhizosphere competentce of B. thuringiensis and bacterial quorum quenching to Gram-negative bacteria without changing bacterial number or composition.


Subject(s)
Bacillus thuringiensis/enzymology , Bacterial Proteins/metabolism , Capsicum/microbiology , Metalloendopeptidases/metabolism , Plant Roots/microbiology , Quorum Sensing , Bacillus thuringiensis/genetics , Bacillus thuringiensis/physiology , Bacterial Proteins/genetics , Cloning, Molecular , Colony Count, Microbial , Ligases/metabolism , Metalloendopeptidases/genetics , Mutation , Pectobacterium carotovorum/growth & development , Pectobacterium carotovorum/pathogenicity , Plant Diseases/microbiology , Polymerase Chain Reaction , Quorum Sensing/genetics
13.
J Microbiol ; 55(10): 800-808, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28956352

ABSTRACT

Burkholderia sp. is a gram-negative bacterium that commonly exists in the environment, and can cause diseases in plants, animals, and humans. Here, a transposon mutant library of a Burkholderia lata isolate from a pig with swine respiratory disease in Korea was screened for strains showing attenuated virulence in Caenorhabditis elegans. One such mutant was obtained, and the Tn5 insertion junction was mapped to rpfR, a gene encoding a cyclic di-GMP phosphodiesterase that functions as a receptor. Mutation of rpfR caused a reduction in growth on CPG agar and swimming motility as well as a rough colony morphology on Congo red agar. TLC analysis showed reduced AHL secretion, which was in agreement with the results from plate-based and bioluminescence assays. The mutant strain produced significantly more biofilm detected by crystal violet staining than the parent strain. SEM of the mutant strain clearly showed that the overproduced biofilm contained a filamentous structure. These results suggest that the cyclic di-GMP phosphodiesterase RpfR plays an important role in quorum sensing modulation of the bacterial virulence and biofilm formation.


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases/genetics , 3',5'-Cyclic-GMP Phosphodiesterases/physiology , Biofilms/growth & development , Burkholderia/enzymology , Burkholderia/genetics , Genes, Bacterial/genetics , Virulence Factors/genetics , 3',5'-Cyclic-GMP Phosphodiesterases/deficiency , Animals , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Burkholderia/cytology , Burkholderia/growth & development , Caenorhabditis elegans/genetics , Chromosome Mapping , DNA Transposable Elements/genetics , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Gene Knockout Techniques , Locomotion , Mutation , Phenotype , Quorum Sensing , Republic of Korea , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Swine , Virulence , Virulence Factors/deficiency , Virulence Factors/physiology
14.
J Microbiol Biotechnol ; 27(3): 552-560, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-27974728

ABSTRACT

Quorum quenching (QQ) bacteria entrapped in a polymeric composite hydrogel (QQ medium) have been successfully applied in membrane bioreactors (MBRs) for effective biofouling control. However, in order to bring QQ technology closer to practice, the physical strength and lifetime of QQ media should be improved. In this study, enforcement of physical strength, as well as an extension of the lifetime of a previously reported QQ bacteria entrapping hollow cylinder (QQ-HC), was sought by adding a dehydration procedure following the cross-linking of the polymeric hydrogel by inorganic compounds like Ca2+ and boric acid. Such prepared medium demonstrated enhanced physical strength possibly through an increased degree of physical cross-linking. As a result, a longer lifetime of QQ-HCs was confirmed, which led to improved biofouling mitigation performance of QQ-HC in an MBR. Furthermore, QQ-HCs stored under dehydrated condition showed higher QQ activity when the storage time lasted more than 90 days owing to enhanced cell viability. In addition, the dormant QQ activity after the dehydration step could be easily restored through reactivation with real wastewater, and the reduced weight of the dehydrated media is expected to make handling and transportation of QQ media highly convenient and economical in practice.


Subject(s)
Bacterial Physiological Phenomena , Dehydration , Ions/metabolism , Bioreactors , Culture Media , Fermentation , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Microbial Viability
15.
J Microbiol Biotechnol ; 27(3): 573-583, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28068666

ABSTRACT

Biofilm formation on the membrane surface results in the loss of permeability in membrane bioreactors (MBRs) for wastewater treatment. Studies have revealed that cellulose is not only produced by a number of bacterial species but also plays a key role during formation of their biofilm. Hence, in this study, cellulase was introduced to a MBR as a cellulose-induced biofilm control strategy. For practical application of cellulase to MBR, a cellulolytic (i.e., cellulase-producing) bacterium, Undibacterium sp. DM-1, was isolated from a lab-scale MBR for wastewater treatment. Prior to its application to MBR, it was confirmed that the cell-free supernatant of DM-1 was capable of inhibiting biofilm formation and of detaching the mature biofilm of activated sludge and cellulose-producing bacteria. This suggested that cellulase could be an effective anti-biofouling agent for MBRs used in wastewater treatment. Undibacterium sp. DM-1-entrapping beads (i.e., cellulolytic-beads) were applied to a continuous MBR to mitigate membrane biofouling 2.2-fold, compared with an MBR with vacant-beads as a control. Subsequent analysis of the cellulose content in the biofilm formed on the membrane surface revealed that this mitigation was associated with an approximately 30% reduction in cellulose by cellulolytic-beads in MBR.


Subject(s)
Biofouling , Bioreactors , Cellulose/metabolism , Fermentation , Oxalobacteraceae/physiology , Sewage/microbiology , Biofilms , Cellulase/metabolism , Oxalobacteraceae/isolation & purification
16.
Biochim Biophys Acta ; 1750(1): 5-8, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15894524

ABSTRACT

The quorum sensing (QS) systems in Gram-negative bacteria are mostly associated with diffusible N-acyl-L-homoserine lactones (AHLs). AHL-degrading enzymes hydrolyze the AHLs into inactive molecules, thereby blocking the QS systems that are closely linked to virulence factor production and biofilm formation. Consequently, these enzymes have recently attracted intense interest for the development of anti-infection therapies for plants and animals. However, despite significant progress in the investigation of AHL-degrading enzymes, no structure is yet available. Accordingly, this study reports on the expression and purification of the AHL-lactonase from Bacillus thuringiensis subsp. kurstaki HD263, as well as the successful crystallization of the enzyme. High-quality native crystals were obtained and a complete data set collected at 2.0 A resolution. The native crystal was found to belong to the space group P2(1)2(1)2(1), with unit cell parameters a=52.7 A, b=55.9 A, and c=74.1 A and one molecule in the asymmetric unit. MAD data were also collected at 2.4 A resolution for a SeMet-substituted crystal.


Subject(s)
Bacillus thuringiensis/enzymology , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/isolation & purification , Crystallization/methods , Crystallography, X-Ray
17.
FEMS Microbiol Lett ; 261(1): 102-8, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16842366

ABSTRACT

N-acylhomoserine lactones (AHLs) are conserved signal molecules that control diverse biological activities in quorum sensing system of Gram-negative bacteria. Recently, several soil bacteria were found to degrade AHLs, thereby interfering with the quorum sensing system. Previously, Rhodococcus erythropolis W2 was reported to degrade AHLs by both oxido-reductase and AHL-acylase. In the present study, two AHL-utilizing bacteria, strains LS31 and PI33, were isolated and identified as the genus Rhodococcus. They exhibited different AHL-utilization abilities: Rhodococcus sp. strain LS31 rapidly degraded a wide range of AHLs, including N-3-oxo-hexanoyl-l-homoserine lactone (OHHL), whereas Rhodococcus sp. strain PI33 showed relatively less activity towards 3-oxo substituents. Coculture of strain LS31 with Erwinia carotovora effectively reduced the amount of OHHL and pectate lyase activity, compared with coculture of strain PI33 with E. carotovora. A mass spectrometry analysis indicated that both strains hydrolyzed the lactone ring of AHL to generate acylhomoserine, suggesting that AHL-lactonases (AHLases) from the two Rhodococcus strains are involved in the degradation of AHL, in contrast to R. erythropolis W2. To the best of our knowledge, this is the first report on AHLases of Rhodococcus spp.


Subject(s)
4-Butyrolactone/analogs & derivatives , Bacterial Proteins/metabolism , Carboxylic Ester Hydrolases/metabolism , Rhodococcus/enzymology , 4-Butyrolactone/metabolism , Bacterial Proteins/physiology , Carbon/metabolism , Carboxylic Ester Hydrolases/physiology , Pectobacterium carotovorum/metabolism , Rhodococcus/classification , Rhodococcus/isolation & purification , Signal Transduction , Substrate Specificity
18.
J Microbiol Biotechnol ; 26(10): 1746-1754, 2016 Oct 28.
Article in English | MEDLINE | ID: mdl-27381336

ABSTRACT

Recently, spherical beads entrapping quorum quenching (QQ) bacteria have been reported as effective moving QQ-media for biofouling control in MBRs for wastewater treatment owing to their combined effects of biological (i.e., quorum quenching) and physical washing. Taking into account both the mass transfer of signal molecules through the QQ-medium and collision efficiencies of the QQ-medium against the filtration membranes in a bioreactor, a cylindrical medium (QQ-cylinder) was developed as a new shape of moving QQ-medium. The QQ-cylinders were compared with previous QQ-beads in terms of the QQ activity and the physical washing effect under identical loading volumes of each medium in batch tests. It was found that the QQ activity of a QQ-medium was highly dependent on its specific surface area, regardless of the shape of the medium. In contrast, the physical washing effect of a QQ-medium was greatly affected by its geometric structure. The enhanced anti-biofouling property of the QQ-cylinders relative to QQ-beads was confirmed in a continuous laboratory-scale MBR with a flat-sheet membrane module.


Subject(s)
Biofouling/prevention & control , Bioreactors , Membranes, Artificial , Quorum Sensing , Wastewater/microbiology , Water Purification/methods
19.
FEBS Lett ; 579(16): 3461-6, 2005 Jun 20.
Article in English | MEDLINE | ID: mdl-15949807

ABSTRACT

Lipase L1 from Geobacillus stearothermophilus L1 contains an unusual extra domain, making a tight intramolecular interaction with the main catalytic domain through a Zn2+-binding coordination. To elucidate the role of the Zn2+, we disrupted the Zn2+-binding site by mutating the zinc-ligand residues (H87A, D61A/H87A, and D61A/H81A/H87A/D238A). The activity vs. temperature profiles of the mutant enzymes showed that the disruption of the Zn2+-binding site resulted in a notable decrease in the optimal temperature for maximal activity from 60 to 45-50 degrees C. The mutations also abolished the Zn2+-induced thermal stabilization. The wild-type enzyme revealed a 34.6-fold increase in stabilization with the addition of Zn2+ at 60 degrees C, whereas the mutant enzymes exhibited no response to Zn2+. Additional circular dichroism spectroscopy studies also confirmed the structural stabilizing role of Zn2+ on lipase L1 at elevated temperatures.


Subject(s)
Bacillaceae/enzymology , Lipase/chemistry , Temperature , Zinc/chemistry , Amino Acid Sequence , Binding Sites/genetics , Catalytic Domain , Enzyme Stability , Lipase/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Protein Denaturation , Protein Structure, Tertiary
20.
FEMS Microbiol Lett ; 244(2): 259-66, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15766777

ABSTRACT

Corynebacterium glutamicum ATCC 13032 has four enzyme II (EII) genes of the phosphotransferase system in its genome encoding transporters for sucrose, glucose, fructose, and an unidentified EII. To analyze the function of these EII genes, they were inactivated via homologous recombination and the resulting mutants characterized for sugar utilization. Whereas the sucrose EII was the only transport system for sucrose in C. glutamicum, fructose and glucose were each transported by a second transporter in addition to their corresponding EII. In addition, the ptsF ptsG double mutant carrying deletions in the EII genes for fructose and glucose accumulated fructose in the culture broth when growing on sucrose. As no fructokinase gene exists in the C. glutamicum genome, the fructokinase gene from Clostridium acetobutylicum was expressed in C. glutamicum and resulted in the direct phosphorylation of fructose without any fructose efflux. Accordingly, since fructokinase could direct fructose flux to the pentose phosphate pathway for the supply of NADPH, fructokinase expression may be a potential strategy for enhancing amino acid production.


Subject(s)
Corynebacterium glutamicum/genetics , Fructokinases/metabolism , Fructose/metabolism , Gene Expression Regulation, Bacterial , Glucose/metabolism , Corynebacterium glutamicum/metabolism , Fructokinases/genetics , Mutation , Pentose Phosphate Pathway/physiology
SELECTION OF CITATIONS
SEARCH DETAIL